You can find many of our published and unpublished movies below.

Posted on Oct 13, 2015.Posted by Herek

 

Writing in the granular gel medium allows for complex structures to be generated without the restrictions associated with ink solidification. The hanging parts of the knot can be printed before the parts that support them because they need no support with this method. Recently published in Science Advances!!

Posted on Oct 13, 2015.Posted by Herek

 

3D writing into liquid-like solids made from granular hydrogel particles allows complex paths to be followed while making nested thin-shelled structures. The Matryoshka dolls shown here have smooth curved shapes, sharp corners, and seamless joining between bases and tops as they are printed one piece at a time. Recently published in Science Advances!!

Posted on Oct 13, 2015.Posted by Herek

 

A printing nozzle is mounted on a microscope and translated through a granular gel writing medium (green) while injecting a linear trace of fluorescent particles (red). This video allows us to see what 3D printing into a granular gel looks like at the microscopic scale as it happens. Recently published in Science Advances!!

Posted on Jan 21, 2015.Posted by Iñárritu

 

MDCK cell Tracking. MDCK cells are imaged in time-lapse on a microscope. Cells are tracked automatically by simultaneously imaging only their fluorescent nuclei. Cell centers are used to compute a Voronoi tessellation of space, measuring the approximate projected area of each cell. The real-time duration is approximately 4 hours. Movie plays through two times. Recently published in Biophys. J.!!

Posted on Jan 21, 2015.Posted by Iñárritu

 

MDCK cell volume fluctuations. Colors correspond to instantaneous size. When cells are small, they appear with violet and blue hues. When cells are large, they appear with yellow and orange hues. Cells are approximately 30 microns across, and the real-time duration is about 4 hours. Movie plays through two times.Recently published in Biophys. J.!!

Posted on April 18, 2014.Posted by Anderson

 

B. subtilis biofilm / EPS matrix production. Bacillus subtilis 3610, brightfield /fluorescence overlay. Field of view is ~1cm, duration is about 24 hours. 9x9 micrographs stitched together. Cells express PtapA-YFP reporters. Fluorescence is a measure of EPS matrix production. Recently published in NJP!

Posted on January 29, 2014.Posted by Tarantino

 

EPS knockout Bacillus Subtilis colony growth. Bright field microscopy, each frame is 81 images stitched together (9x9), duration about 20 hours, colony grows to just over a centimeter in diameter. Pretty good resolution on youtube... look at in in full screen mode. Recently published in NJP!

Posted on January 25, 2012.Posted by Spielberg

 

Just some old data to throw on our website. MDCK on collagen coated glass bottom petri dishes. 1 minute per frame, 266 frames.

Posted on January 25, 2012.Posted by Spielberg

 

Resurrection ferns closing and opening. We mounted a canon digital camera to a live oak limb. CHDK firmware controls the camera. We wrote a custom time-lapse script to capture images. Movie duration ~24 hours. Movie repeats once.

Posted on January 25, 2012.Posted by Eisener

 

We were taking time lapse movies of christmas wreath lichens when we saw one of them walking around! Lichens aren't supposed to walk around. It turns out that this little bug covers itself in lichen to get around and avoid being eaten by predators. Cool! (Location: Sapelo island, Georgia)

Posted on January 25, 2012.Posted by Eisener

 

Taking time-lapse movies of christmas wreath lichens, we found that their moss and bark substrate substantially swelled up and contracted daily, probably caused by cycles of moistening and desiccation. (Location: Sapelo Island, Georgia)