Back to Home Page

Rev. June 2006
 

LIGHTNING: PHYSICS AND EFFECTS
 (ENCYCLOPEDIA OF LIGHTNING)

 by V.A. RAKOV and M.A. UMAN

Cambridge University Press, ISBN 0521583276 , 687 p., 2003

Errata

Additions to Appendix

Reviews

 

Table of Contents

Chapter

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Appendix


1. Introduction (Rakov)

1.1.Historical overview

1.2.Types of lightning discharges and lightning terminology

1.3.Summary of salient lightning properties

1.4.The global electric circuit

1.4.1.Conductivity of the atmosphere

1.4.2.Fair-weather electric field

1.4.3."Classical" view of atmospheric electricity

1.4.4.Maxwell current density

1.4.5.Modeling of the global circuit

1.4.6.Alternative views of the global circuit

1.5.Regarding the utilization of lightning energy

1.6.Summary

        References

Back to Top

2. Incidence of lightning (Rakov)

2.1.Introduction

2.2.Characterization of individual storms and storm systems

2.2.1.Lightning flash rate in various storms

2.2.2.Lightning in the Blizzard of '93

2.2.3.Lightning in hurricanes

2.2.4.Lightning in mesoscale convective complexes

2.2.5.Lightning and severe weather phenomena

2.2.6.Flash rate versus some nonelectrical cloud properties

2.2.7.Lightning bipolar pattern

2.2.8.Lightning and rainfall

2.3.Thunderstorm days

2.4.Thunderstorm hours

2.5.Lightning flash density

2.5.1.Lightning flash counters

2.5.2.Lightning locating systems

2.5.3.Satellite-based detectors

2.6.Long-term variations in lightning incidence

2.7.Ratio of cloud to cloud-to-ground flashes

2.8.Characteristics of lightning as a function of season, location, and storm type

2.8.1.Season

2.8.2.Region

2.8.3.Latitude

2.8.4.Topography

2.8.5.Storm type

2.9.Lightning incidence to various objects

2.9.1.General information

2.9.2.Downward flashes

2.9.3.Upward flashes

2.10.Summary

        References

Back to Top


3. Electrical structure of lightning-producing clouds (Rakov)

3.1.Introduction

3.2.Cumulonimbus

3.2.1.Idealized gross charge distribution

3.2.1.1.General information

3.2.1.2.Simple model

3.2.2.Inferences from remote measurements

3.2.3.Inferences from in-situ measurements

3.2.4.Maximum electric fields: Implications for lightning initiation

3.2.5.Charges and charge densities

3.2.6.Mechanisms of cloud electrification

3.2.6.1.Convection mechanism

3.2.6.2.Graupel-ice mechanism

3.2.7.Origin of the lower positive charge center

3.2.8.Lightning representation in numerical cloud models

3.3.Non-cumulonimbus

3.4.Summary

        References

Back to Top


4. Downward negative lightning discharges to ground (Rakov)

4.1.Introduction

4.2.General picture

4.3.Initial breakdown

4.3.1.General information

4.3.2.Initial breakdown pulses

4.3.3.Lightning initiation in thunderclouds

4.4.Stepped leader

4.4.1.General information

4.4.2.Speed and duration

4.4.3.Electrical characteristics

4.4.4.Overall electric and magnetic fields

4.4.5.Leader to return stroke electric field change ratio

4.4.6.Leader steps

4.4.7.Streamer zone

4.4.8.Step-formation mechanism

4.5.Attachment process

4.5.1.Time-resolved optical images

4.5.l.1.First strokes

4.5.1.2.Subsequent strokes

4.5.2.Still photographs

4.5.2.1.A split or loop in the channel

4.5.2.2.Both upward and downward branching

4.5.2.3.Unconnected upward discharges

4.5.2.4.An abrupt change in the channel shape near the ground

4.6.Return stroke

4.6.1.Parameters derived from channel-base current measurements

4.6.2.Luminosity variation along the channel and propagation speed

4.6.3.Measured electric and magnetic fields

4.6.4.Calculation of electric and magnetic fields

4.6.4.1.Field equations

4.6.4.2.Channel-base current equation

4.6.4.3.Channel tortuosity and branches

4.6.4.4.Propagation effects

4.6.5.Properties of the return-stroke channel

4.7.Subsequent leader

4.7.1.General information

4.7.2.Speed and duration

4.7.3.Electrical characteristics

4.7.4.Overall electric fields

4.7.5.Dart-stepped leader

4.7.6."Chaotic" leader

4.7.7.Narrow-band radiation

4.7.8.Inferences on dart-leader mechanism

4.8.Continuing current

4.9.M component

4.9.1.General information

4.9.2.Luminosity

4.9.3.Current

4.9.4.Electric fields

4.9.5.VHF-UHF imaging

4.9.6.Mechanism of the lightning M component

4.10.J- and K-processes

4.10.1.General information

4.10.2.Properties of K processes

4.10.3.Inferences on K-process mechanism

4.11.Regular pulse bursts

4.12.Summary

         References

Back to Top


5. Positive and bipolar lightning discharges to ground (Rakov)

5.1.Introduction

5.2.Conditions conducive to the occurrence of positive lightning

5.3.Characterization of positive lightning

5.3.1.General information

5.3.2.Comparison of positive and negative leaders

5.3.3.Mechanism of the positive leader

5.3.4.Microsecond-scale electric and magnetic field waveforms

5.3.5.Peak current

5.3.6.Return-stroke speed

5.4.Bipolar lightning discharges to ground

5.5.Summary

        References

Back to Top


6. Upward lightning initiated by ground-based objects (Rakov)

6.1.Introduction

6.2.General characterization

6.2.1.Upward negative lightning

6.2.2.Upward positive lightning

6.2.3.Upward bipolar lightning

6.3.Overall electrical characteristics

6.4.Impulsive currents

6.5.Lightning current reflections within tall objects

6.6.Electromagnetic fields due to lightning strikes to tall objects

6.7.Acoustic output

6.8.Summary

        References

Back to Top


7. Artificial initiation (triggering) of lightning by ground-based activity (Rakov)

7.1. Introduction

7.2. Rocket-triggered lightning

7.2.1. Triggering techniques

7.2.1.1. Classical triggering

7.2.1.2. Altitude triggering

7.2.2. Optically observed characteristics

7.2.2.1. Classical triggering

7.2.2.2. Altitude triggering

7.2.3. Overall current waveforms

7.2.3.1. Classical triggering

7.2.3.2. Altitude triggering

7.2.4. Parameters of return-stroke current waveforms

7.2.5. Return-stroke current peak vs. grounding conditions

7.2.6. Close electric fields

7.2.7. Studies of lightning interaction with various objects and systems

7.2.7.1. Power distribution lines

7.2.7.2. Power transmission lines

7.2.7.3. Miscellaneous experiments

7.3. Other lightning triggering techniques

7.3.l. General information on the use of lasers

7.3.1.1. Infrared lasers

7.3.1.2. Ultraviolet lasers

7.3.2. Microwave beam

7.3.3. Water jet

7.3.4. Transient flame

7.4. Summary

        References

Back to Top


8. Winter lightning in Japan (Rakov)

8.1. Introduction

8.2. Formation of winter thunderclouds

8.3. Evolution of winter thunderclouds

8.4. Characteristics of natural winter lightning

8.5. Rocket-triggered lightning in winter

8.6.Summary

        References

Back to Top


9. Cloud discharges (Rakov)

9.1.Introduction

9.2.General information

9.3.Phenomenology inferred from VHF-UHF imaging

9.3.1.Bilevel flashes

9.3.2.Predominantly horizontal flashes

9.4.Early (active) stage

9.4.1.Overall characteristics

9.4.2.Electric and magnetic field pulses

9.4.2.1.General characterization

9.4.2.2.Narrow bipolar pulses

9.5.Late (final) stage

9.5.1.Overall characteristics

9.5.2.Wideband electric and magnetic field pulses

9.6.Comparison to ground discharges

9.7.Summary

        References

Back to Top


10. Lightning and airborne vehicles (Uman)

10.1. Introduction

10.2. Statistics on lightning strikes to aircraft

10.3. Major airborne research programs

10.3.1. F-100F (Air Force Cambridge Research Laboratories, Rough Rider,

1964-1966)

10.3.2. F-106B (NASA Storm Hazards Program, 1980-1986)

10.3.3. CV-580 (USAF/FAA Lightning Characterization Program, 1984-

1985, 1987)

10.3.4. C-160 (French Transall Program, 1984, 1988)

10.4. Mechanisms of lightning/aircraft interaction

10.4.1. Aircraft initiation

10.4.2. The interception process

        10.4.3. Other inferences and results

10.5. Lightning test standards

10.6. Accidents

10.6.1. Boeing 707 in 1963

10.6.2. Boeing 747 in 1976

10.6.3. Fairchild Metro III in 1988 and Fokker F28 MK 0100 in 1998

10.6.4. Aircraft struck by lightning at very low altitude

10.6.5. Apollo 12 in 1969

10.6.6. Atlas-Centaur 67 in 1987

10.7. Summary

        References

Back to Top


11. Thunder (Uman/Rakov)

   11.1.Introduction
   11.2.Observations
         11.2.1.Time to and duration of thunder
         11.2.2.The sounds of thunder
         11.2.3.Frequency spectrum
         11.2.4.Energy
         11.2.5.Pressure
   11.3.Generation mechanisms
         11.3.1.The acoustic emission from rapidly heated channels
         11.3.2.The thunder theory of Few
         11.3.3.Effects of tortuosity and branches
         11.3.4.The acoustic emission due to relief of electrostatic pressure
    11.4.Propagation
    11.5.Acoustic imaging of lightning channels
    11.6.Summary

        References

Back to Top


12. Modeling of lightning processes (Rakov)

12.1. Introduction

12.2. Return stroke

    12.2.1. General overview

    12.2.2. Gas dynamic models

    12.2.3. Electromagnetic models

    12.2.4. Distributed-circuit models

    12.2.5. Engineering models

    12.2.6. Testing model validity

        12.2.6.1. Gas dynamic models

        12.2.6.2. Electromagnetic models

        12.2.6.3. Distributed-circuit models

        12.2.6.4. Engineering models

    12.2.7. Further topics in return-stroke modeling

        12.2.7.1. Treatment of the upper, in-cloud portion of the channel

        12.2.7.2. Boundary conditions at ground

        12.2.7.3. Return-stroke front speed at early times

        12.2.7.4. Initial bidirectional extension of the return-stroke channel

        12.2.7.5. Relation between leader and return-stroke models

12.3. Dart leader

12.4. Stepped leader

12.5. M component

12.6. Other processes

        References

Back to Top


13. The distant lightning electromagnetic environment: Atmospherics, Schumann resonances, and whistlers (Uman)

13.1.Introduction

13.2.Theoretical background

13.2.1.Characterization of the ionosphere and magnetosphere

13.2.2.General equations

13.2.3.Four special cases

13.2.4.Reflection and transmission

13.3.Atmospherics

13.3.1.History and observed characteristics

13.3.2.Theory

13.3.3.Applications

13.4.Schumann resonances

13.4.1.History and observed characteristics

13.4.2.Theory

13.4.3.Determination of atmospheric properties, lightning properties, and

worldwide thunderstorm activity

13.5.Whistlers

13.5.1.History, observed characteristics, and use to determine magnetospheric properties

13.5.2.Theory

13.6.Radio noise

13.7.Summary

        References

Back to Top


14. Lightning effects in the middle and upper atmosphere (Uman)

14.1.Introduction

14.2.Upward lightning channels from cloud tops

14.3.Low-luminosity transient discharges in the mesosphere

14.3.1. Blue starters

14.3.2.Blue jets

14.3.3.Red sprites

14.3.3.1.Observations

14.3.3.2.Theory

14.4. Elves: low-luminosity transient phenomena in the lower ionosphere

14.5.Runaway electrons, X-rays, and gamma-rays

14.6.Interaction of lightning and thundercloud electric fields with the ionosphere and the magnetosphere

14.6.1Transient effects

14.6.2.Steady infrared glow

14.7.Summary

        References

Back to Top


15. Lightning effects on the chemistry of the atmosphere (Uman)

15.1.    Introduction

15.2.    Mechanism of NO production by return stroke channels

15.3.    Laboratory determination of NO yield per unit energy

15.4     Ground-based field determination of NO yield per lightning flash

15.5.    Estimation of global NO production using the flash extrapolation approach (FEA)

15.6     Estimation of NO production from airborne measurements

15.7.    Estimation of NO production from extrapolation of nuclear explosion data

15.8.    Transport of lightning-produced trace gases

15.9.    Production of trace gases in the primitive Earth atmosphere and in the atmospheres of other planets

15.10.  Summary

        References

Back to Top


16. Extraterrestrial lightning (Rakov/Uman)

16.1.Introduction

16.2.Detection Techniques

16.3.Venus

16.3.1.General information

16.3.2.Optical measurements

16.3.2.1.Venera 9 spectrometer

16.3.2.2.Pioneer Venus star sensor

16.3.2.3.Vega 1 and Vega 2 balloons

16.3.3.RF signals in and above the ionosphere

16.3.3.1.Pioneer Venus orbiter

16.3.3.2.Solitary 100-Hz signals

16.3.3.3.Multifrequency signals

16.3.3.4.Higher-frequency signals versus 100 Hz signals

16.3.3.5.Galileo and Cassini flybys

16.3.4.RF signals below the ionosphere

16.4.Jupiter

16.4.1.General information

16.4.2.Optical signals

16.4.2.1.Voyager 1 and Voyager 2

16.4.2.2.Galileo probe

16.4.2.3.Galileo orbiter

16.4.3.Whistlers

16.4.4.Other RF signals

16.4.4.1.Voyager 1 and Voyager 2

16.4.4.2.Galileo probe

16.5.Saturn

16.5.1.General information

16.5.2.RF signals

16.6.Uranus

16.6.1.General information

16.6.2.RF signals

16.7.Neptune

16.7.1.General information

16.7.2.Optical measurements

16.7.3.Whistlers

16.7.4.Other RF signals

16.8.Concluding remarks

        References

Back to Top


17. Lightning locating (Uman/Rakov)

17.1.Introduction

1.7.2.Electric and magnetic field amplitude techniques

17.2.1.Electrostatic field change

17.2.2.Electric and magnetic radiation field peaks

17.3.Magnetic field direction finding

17.4.Time of arrival technique

17.4.1.Very short baseline (tens to hundreds of meters) systems

17.4.2.Short baseline (tens of kilometers) systems

17.4.3.Long baseline (hundreds to thousands of kilometers) systems

17.5.The U.S. National Lightning Detection Network

17.6.Interferometry

17.7.Ground-based optical direction finding

17.8.Detection from satellites

17.9.Radar

17.10.Summary

        References

Back to Top


18. Deleterious effects of lightning and protective techniques (Uman)

18.1.Introduction

18.2.Basic mechanisms of lightning damage

18.3.Protection

18.3.1.Types of protection

18.3.2.Protective zones

18.3.3.Protection systems: application to structures

18.3.4.Grounding

18.3.5.Surge protective devices

18.3.6.Topological shielding

18.3.7.Non-conventional protection techniques: lightning elimination and

early streamer emission systems

18.3.7.1. Overview

18.3.7.2.Lightning elimination systems

18.3.7.3.Early streamer emission systems

18.4.Lightning interaction with specific objects and systems

18.4.1.Boats

18.4.2.Trees

18.4.3.Distribution and transmission power lines

18.4.3.1.General information

18.4.3.2.Distribution lines

18.4.3.3.Transmission lines

18.4.4.Underground cables

18.4.5.Telecommunication systems

18.4.5.1.General information

18.4.5.2.Electric and acoustic shock from telephones

18.4.5.3.Overhead lines

18.4.5.3.Underground lines

18.5.Lightning test standards

18.6.Summary

        References

Back to Top


19. Lightning hazards to humans and animals (Uman)

19.1.Statistics

19.2.Electrical aspects

19.3.Medical aspects

19.4.Personal safety

19.5.Summary

        References

Back to Top

20.Ball lightning, bead lightning, and other unusual discharges (Uman)

20.1.Introduction

20.2.Witness reports of ball lightning

20.2.1.Outdoors in Australia

20.2.2.Outdoors in Germany

20.2.3.Indoors in Virginia

20.2.4.Indoors in Nebraska

20.2.5.Indoors in Virginia

20.2.6.Indoors in Washington state

20.2.7.In a KC-97 aircraft

20.2.8.In a commercial aircraft

20.2.9.Electrical-apparatus related ball lightning observations

20.2.9.1.From a power circuit breaker switchboard

20.2.9.2.From a radio transmitter

20.3.Ball lightning statistics

20.4.Ball lightning theories

20.5.Laboratory simulation of ball lightning

20.6.Bead lightning

20.7.Other types of unusual lightning and lightning-like discharges

20.7.1.Volcano lightning

20.7.2.Earthquake lightning

20.7.3.Nuclear lightning

20.8.Summary

        References

Back to Top


Appendix. BOOKS ON LIGHTNING AND RELATED SUBJECTS (Rakov)

Index

Back to Top

Back to Home Page

 

AddFreeStats