Rev. June 2006
LIGHTNING:
PHYSICS AND
EFFECTS
(ENCYCLOPEDIA OF LIGHTNING)
by V.A. RAKOV and M.A. UMAN
Cambridge
University Press, ISBN 0521583276 , 687 p., 2003
Chapter |
1.1.Historical overview
1.2.Types of lightning discharges and lightning terminology
1.3.Summary of salient lightning properties
1.4.The global electric circuit
1.4.1.Conductivity of the atmosphere
1.4.2.Fair-weather electric field
1.4.3."Classical" view of atmospheric electricity
1.4.4.Maxwell current density
1.4.5.Modeling of the global circuit
1.4.6.Alternative views of the global circuit
1.5.Regarding the utilization of lightning energy
1.6.Summary
2.2.Characterization of individual storms and storm systems
2.2.1.Lightning flash rate in various storms
2.2.2.Lightning in the Blizzard of '93
2.2.3.Lightning in hurricanes
2.2.4.Lightning in mesoscale convective complexes
2.2.5.Lightning and severe weather phenomena
2.2.6.Flash rate versus some nonelectrical cloud properties
2.2.7.Lightning bipolar pattern
2.2.8.Lightning and rainfall
2.3.Thunderstorm days
2.4.Thunderstorm hours
2.5.Lightning flash density
2.5.1.Lightning flash counters
2.5.2.Lightning locating systems
2.5.3.Satellite-based detectors
2.6.Long-term variations in lightning incidence
2.7.Ratio of cloud to cloud-to-ground flashes
2.8.Characteristics of lightning as a function of season, location, and storm type
2.8.1.Season
2.8.2.Region
2.8.3.Latitude
2.8.4.Topography
2.8.5.Storm type
2.9.Lightning incidence to various objects
2.9.1.General information
2.9.2.Downward flashes
2.9.3.Upward flashes
2.10.Summary
3. Electrical structure of
lightning-producing
clouds (Rakov)
3.2.Cumulonimbus
3.2.1.Idealized gross charge distribution
3.2.1.1.General information
3.2.1.2.Simple model
3.2.2.Inferences from remote measurements
3.2.3.Inferences from in-situ measurements
3.2.4.Maximum electric fields: Implications for lightning initiation
3.2.5.Charges and charge densities
3.2.6.Mechanisms of cloud electrification
3.2.6.1.Convection mechanism
3.2.6.2.Graupel-ice mechanism
3.2.7.Origin of the lower positive charge center
3.2.8.Lightning representation in numerical cloud models
3.3.Non-cumulonimbus
3.4.Summary
4. Downward negative lightning
discharges to
ground (Rakov)
4.1.Introduction
4.2.General picture
4.3.Initial breakdown
4.3.1.General information
4.3.2.Initial breakdown pulses
4.3.3.Lightning initiation in thunderclouds
4.4.Stepped leader
4.4.1.General information
4.4.2.Speed and duration
4.4.3.Electrical characteristics
4.4.4.Overall electric and magnetic fields
4.4.5.Leader to return stroke electric field change ratio
4.4.6.Leader steps
4.4.7.Streamer zone
4.4.8.Step-formation mechanism
4.5.Attachment process
4.5.1.Time-resolved optical images
4.5.l.1.First strokes
4.5.1.2.Subsequent strokes
4.5.2.Still photographs
4.5.2.1.A split or loop in the channel
4.5.2.2.Both upward and downward branching
4.5.2.3.Unconnected upward discharges
4.5.2.4.An abrupt change in the channel shape near the ground
4.6.Return stroke
4.6.1.Parameters derived from channel-base current measurements
4.6.2.Luminosity variation along the channel and propagation speed
4.6.3.Measured electric and magnetic fields
4.6.4.Calculation of electric and magnetic fields
4.6.4.1.Field equations
4.6.4.2.Channel-base current equation
4.6.4.3.Channel tortuosity and branches
4.6.4.4.Propagation effects
4.6.5.Properties of the return-stroke channel
4.7.Subsequent leader
4.7.1.General information
4.7.2.Speed and duration
4.7.3.Electrical characteristics
4.7.4.Overall electric fields
4.7.5.Dart-stepped leader
4.7.6."Chaotic" leader
4.7.7.Narrow-band radiation
4.7.8.Inferences on dart-leader mechanism
4.8.Continuing current
4.9.M component
4.9.1.General information
4.9.2.Luminosity
4.9.3.Current
4.9.4.Electric fields
4.9.5.VHF-UHF imaging
4.9.6.Mechanism of the lightning M component
4.10.J- and K-processes
4.10.1.General information
4.10.2.Properties of K processes
4.10.3.Inferences on K-process mechanism
4.11.Regular pulse bursts
4.12.Summary
5. Positive and bipolar
lightning discharges to
ground (Rakov)
5.1.Introduction
5.2.Conditions conducive to the occurrence of positive lightning
5.3.Characterization of positive lightning
5.3.1.General information
5.3.2.Comparison of positive and negative leaders
5.3.3.Mechanism of the positive leader
5.3.4.Microsecond-scale electric and magnetic field waveforms
5.3.5.Peak current
5.3.6.Return-stroke speed
5.4.Bipolar lightning discharges to ground
5.5.Summary
6. Upward lightning initiated
by ground-based
objects (Rakov)
6.1.Introduction
6.2.General characterization
6.2.1.Upward negative lightning
6.2.2.Upward positive lightning
6.2.3.Upward bipolar lightning
6.3.Overall electrical characteristics
6.4.Impulsive currents
6.5.Lightning current reflections within tall objects
6.6.Electromagnetic fields due to lightning strikes to tall objects
6.7.Acoustic output
6.8.Summary
7. Artificial initiation
(triggering) of
lightning by ground-based activity (Rakov)
7.1. Introduction
7.2. Rocket-triggered lightning
7.2.1. Triggering techniques
7.2.1.1. Classical triggering
7.2.1.2. Altitude triggering
7.2.2. Optically observed characteristics
7.2.2.1. Classical triggering
7.2.2.2. Altitude triggering
7.2.3. Overall current waveforms
7.2.3.1. Classical triggering
7.2.3.2. Altitude triggering
7.2.4. Parameters of return-stroke current waveforms
7.2.5. Return-stroke current peak vs. grounding conditions
7.2.6. Close electric fields
7.2.7. Studies of lightning interaction with various objects and systems
7.2.7.1. Power distribution lines
7.2.7.2. Power transmission lines
7.2.7.3. Miscellaneous experiments
7.3. Other lightning triggering techniques
7.3.l. General information on the use of lasers
7.3.1.1. Infrared lasers
7.3.1.2. Ultraviolet lasers
7.3.2. Microwave beam
7.3.3. Water jet
7.3.4. Transient flame
7.4. Summary
8. Winter lightning in Japan
(Rakov)
8.1. Introduction
8.2. Formation of winter thunderclouds
8.3. Evolution of winter thunderclouds
8.4. Characteristics of natural winter lightning
8.5. Rocket-triggered lightning in winter
8.6.Summary
9.1.Introduction
9.2.General information
9.3.Phenomenology inferred from VHF-UHF imaging
9.3.1.Bilevel flashes
9.3.2.Predominantly horizontal flashes
9.4.Early (active) stage
9.4.1.Overall characteristics
9.4.2.Electric and magnetic field pulses
9.4.2.1.General characterization
9.4.2.2.Narrow bipolar pulses
9.5.Late (final) stage
9.5.1.Overall characteristics
9.5.2.Wideband electric and magnetic field pulses
9.6.Comparison to ground discharges
9.7.Summary
10. Lightning and airborne
vehicles (Uman)
10.2. Statistics on lightning strikes to aircraft
10.3. Major airborne research programs
10.3.1. F-100F (Air Force Cambridge Research Laboratories, Rough Rider,
1964-1966)
10.3.2. F-106B (NASA Storm Hazards Program, 1980-1986)
10.3.3. CV-580 (USAF/FAA Lightning Characterization Program, 1984-
1985, 1987)
10.3.4. C-160 (French Transall Program, 1984, 1988)
10.4. Mechanisms of lightning/aircraft interaction
10.4.1. Aircraft initiation
10.4.2. The interception process
10.4.3. Other inferences and results
10.5. Lightning test standards
10.6. Accidents
10.6.1. Boeing 707 in 1963
10.6.2. Boeing 747 in 1976
10.6.3. Fairchild Metro III in 1988 and Fokker F28 MK 0100 in 1998
10.6.4. Aircraft struck by lightning at very low altitude
10.6.5. Apollo 12 in 1969
10.6.6. Atlas-Centaur 67 in 1987
10.7. Summary
11.1.Introduction
11.2.Observations
11.2.1.Time to and
duration of
thunder
11.2.2.The sounds of
thunder
11.2.3.Frequency
spectrum
11.2.4.Energy
11.2.5.Pressure
11.3.Generation mechanisms
11.3.1.The acoustic
emission
from rapidly heated channels
11.3.2.The thunder
theory of
Few
11.3.3.Effects of
tortuosity
and branches
11.3.4.The acoustic
emission
due to relief of electrostatic pressure
11.4.Propagation
11.5.Acoustic imaging of lightning channels
11.6.Summary
12. Modeling of lightning
processes (Rakov)
12.1. Introduction
12.2. Return stroke
12.2.1. General overview
12.2.2. Gas dynamic models
12.2.3. Electromagnetic models
12.2.4. Distributed-circuit models
12.2.5. Engineering models
12.2.6. Testing model validity
12.2.6.1. Gas dynamic models
12.2.6.2. Electromagnetic models
12.2.6.3. Distributed-circuit models
12.2.6.4. Engineering models
12.2.7. Further topics in return-stroke modeling
12.2.7.1. Treatment of the upper, in-cloud portion of the channel
12.2.7.2. Boundary conditions at ground
12.2.7.3. Return-stroke front speed at early times
12.2.7.4. Initial bidirectional extension of the return-stroke channel
12.2.7.5. Relation between leader and return-stroke models
12.3. Dart leader
12.4. Stepped leader
12.5. M component
12.6. Other processes
13. The distant lightning
electromagnetic
environment: Atmospherics, Schumann resonances, and whistlers (Uman)
13.1.Introduction
13.2.Theoretical background
13.2.1.Characterization of the ionosphere and magnetosphere
13.2.2.General equations
13.2.3.Four special cases
13.2.4.Reflection and transmission
13.3.Atmospherics
13.3.1.History and observed characteristics
13.3.2.Theory
13.3.3.Applications
13.4.Schumann resonances
13.4.1.History and observed characteristics
13.4.2.Theory
13.4.3.Determination of atmospheric properties, lightning properties, and
worldwide thunderstorm activity
13.5.Whistlers
13.5.1.History, observed characteristics, and use to determine magnetospheric properties
13.5.2.Theory
13.6.Radio noise
13.7.Summary
14. Lightning effects in the
middle and upper
atmosphere (Uman)
14.1.Introduction
14.2.Upward lightning channels from cloud tops
14.3.Low-luminosity transient discharges in the mesosphere
14.3.1. Blue starters
14.3.2.Blue jets
14.3.3.Red sprites
14.3.3.1.Observations
14.3.3.2.Theory
14.4. Elves: low-luminosity transient phenomena in the lower ionosphere
14.5.Runaway electrons, X-rays, and gamma-rays
14.6.Interaction of lightning and thundercloud electric fields with the ionosphere and the magnetosphere
14.6.1Transient effects
14.6.2.Steady infrared glow
14.7.Summary
15. Lightning effects on the
chemistry of the
atmosphere (Uman)
15.1. Introduction
15.2. Mechanism of NO production by return stroke channels
15.3. Laboratory determination of NO yield per unit energy
15.4 Ground-based field determination of NO yield per lightning flash
15.5. Estimation of global NO production using the flash extrapolation approach (FEA)
15.6 Estimation of NO production from airborne measurements
15.7. Estimation of NO production from extrapolation of nuclear explosion data
15.8. Transport of lightning-produced trace gases
15.9. Production of trace gases in the primitive Earth atmosphere and in the atmospheres of other planets
15.10. Summary
16. Extraterrestrial lightning
(Rakov/Uman)
16.1.Introduction
16.2.Detection Techniques
16.3.Venus
16.3.1.General information
16.3.2.Optical measurements
16.3.2.1.Venera 9 spectrometer
16.3.2.2.Pioneer Venus star sensor
16.3.2.3.Vega 1 and Vega 2 balloons
16.3.3.RF signals in and above the ionosphere
16.3.3.1.Pioneer Venus orbiter
16.3.3.2.Solitary 100-Hz signals
16.3.3.3.Multifrequency signals
16.3.3.4.Higher-frequency signals versus 100 Hz signals
16.3.3.5.Galileo and Cassini flybys
16.3.4.RF signals below the ionosphere
16.4.Jupiter
16.4.1.General information
16.4.2.Optical signals
16.4.2.1.Voyager 1 and Voyager 2
16.4.2.2.Galileo probe
16.4.2.3.Galileo orbiter
16.4.3.Whistlers
16.4.4.Other RF signals
16.4.4.1.Voyager 1 and Voyager 2
16.4.4.2.Galileo probe
16.5.Saturn
16.5.1.General information
16.5.2.RF signals
16.6.Uranus
16.6.1.General information
16.6.2.RF signals
16.7.Neptune
16.7.1.General information
16.7.2.Optical measurements
16.7.3.Whistlers
16.7.4.Other RF signals
16.8.Concluding remarks
17. Lightning locating
(Uman/Rakov)
17.1.Introduction
1.7.2.Electric and magnetic field amplitude techniques
17.2.1.Electrostatic field change
17.2.2.Electric and magnetic radiation field peaks
17.3.Magnetic field direction finding
17.4.Time of arrival technique
17.4.1.Very short baseline (tens to hundreds of meters) systems
17.4.2.Short baseline (tens of kilometers) systems
17.4.3.Long baseline (hundreds to thousands of kilometers) systems
17.5.The U.S. National Lightning Detection Network
17.6.Interferometry
17.7.Ground-based optical direction finding
17.8.Detection from satellites
17.9.Radar
17.10.Summary
18. Deleterious effects of
lightning and
protective techniques (Uman)
18.2.Basic mechanisms of lightning damage
18.3.Protection
18.3.1.Types of protection
18.3.2.Protective zones
18.3.3.Protection systems: application to structures
18.3.4.Grounding
18.3.5.Surge protective devices
18.3.6.Topological shielding
18.3.7.Non-conventional protection techniques: lightning elimination and
early streamer emission systems
18.3.7.1. Overview
18.3.7.2.Lightning elimination systems
18.3.7.3.Early streamer emission systems
18.4.Lightning interaction with specific objects and systems
18.4.1.Boats
18.4.2.Trees
18.4.3.Distribution and transmission power lines
18.4.3.1.General information
18.4.3.2.Distribution lines
18.4.3.3.Transmission lines
18.4.4.Underground cables
18.4.5.Telecommunication systems
18.4.5.1.General information
18.4.5.2.Electric and acoustic shock from telephones
18.4.5.3.Overhead lines
18.4.5.3.Underground lines
18.5.Lightning test standards
18.6.Summary
19. Lightning hazards to humans
and animals
(Uman)
19.2.Electrical aspects
19.3.Medical aspects
19.4.Personal safety
19.5.Summary
20.1.Introduction
20.2.Witness reports of ball lightning
20.2.1.Outdoors in Australia
20.2.2.Outdoors in Germany
20.2.3.Indoors in Virginia
20.2.4.Indoors in Nebraska
20.2.5.Indoors in Virginia
20.2.6.Indoors in Washington state
20.2.7.In a KC-97 aircraft
20.2.8.In a commercial aircraft
20.2.9.Electrical-apparatus related ball lightning observations
20.2.9.1.From a power circuit breaker switchboard
20.2.9.2.From a radio transmitter
20.3.Ball lightning statistics
20.4.Ball lightning theories
20.5.Laboratory simulation of ball lightning
20.6.Bead lightning
20.7.Other types of unusual lightning and lightning-like discharges
20.7.1.Volcano lightning
20.7.2.Earthquake lightning
20.7.3.Nuclear lightning
20.8.Summary
Appendix. BOOKS ON
LIGHTNING AND
RELATED SUBJECTS (Rakov)
Index