Taxation-Inefficiency and Optimal Taxation (Chapter 20)
Taxation-Inefficiencies

• Indonesia: cars are more heavily taxed than motorcycles.
 – Consumers’ solution: turn motorcycles into cars and even buses by ‘artful additions’
 – Issue: obviously not desirable in terms of public safety, leading to inefficiencies

• As a result of the tax, consumers will change their behavior to avoid the tax, causing inefficiencies.
Taxation-Inefficiencies

• Consider a 50 cent per gallon tax levied on producers of gasoline:
 – Increase in the marginal cost of producers shifting the supply curve upwards by the tax amount
 – Reduces the quantity of gasoline demanded
 – The trades with social marginal benefit higher than social marginal cost will not take place
Taxation-Inefficiencies

• Consider a 50 cent per gallon tax levied on producers of gasoline:
Taxation-Inefficiencies

• Consider a 50 cent per gallon tax levied on producers of gasoline:
 – Reduction in consumer surplus: trapezoid EBAF
 – Reduction in producer surplus: trapezoid FACG
 – Tax revenue: EBCG
 – **Tax inefficiency = (Reduction in CS + Reduction in PS) – Tax Revenue**
 – Tax inefficiency would be the same if the tax was levied on the consumers.
Taxation-Inefficiencies

• Elasticities determine tax inefficiency
 – The more elastic the demand/supply is, the higher the deadweight loss will be
 • Higher elasticity of demand (supply) ⇒ more ways for consumers (producers) to avoid taxation ⇒ higher inefficiencies
 • The inefficiency of any tax is determined by the extent to which consumers and producers change their behavior to avoid the tax; deadweight loss is caused by individuals and firms making inefficient consumption and production choices in order to avoid taxation.
Taxation-Inefficiencies

- Elasticities determine tax inefficiency
 - The more elastic the demand/supply is, the higher the deadweight loss will be
Taxation-Inefficiencies

• Math behind the figures
 – Consider the case where consumers pay the tax

\[
\text{DWL} = -0.5 * \Delta Q * \tau
\]

• Change in price for consumers:
 \[
 \text{Total price change} = \Delta P + \tau
 \]

• Elasticity of demand:
 \[
 \eta_d = \frac{\Delta Q}{\Delta P + \tau} \times \left(\frac{P}{Q}\right)
 \]

\[
\eta_s = \frac{\Delta Q}{\Delta P} \times \left(\frac{P}{Q}\right)
\]

• Solve for \(\Delta Q / Q\)
Taxation-Inefficiencies

• Math behind the figures
 – Consider the case where consumers pay the tax

$$\eta_d = \frac{\Delta Q}{Q} = \eta_d \times \frac{(\Delta P + \tau)}{P}$$

$$= \eta_s \times \frac{\Delta P}{P}$$

$$\Rightarrow \eta_d \times \frac{(\Delta P + \tau)}{P} = \eta_s \times \frac{\Delta P}{P}$$

$$\Rightarrow \Delta P = [\eta_d / (\eta_s - \eta_d)] \times \tau$$

• Substitute ΔP into $\Delta Q / Q$
Taxation-Inefficiencies

• Math behind the figures
 – Consider the case where consumers pay the tax

\[\Delta Q / Q = \eta_s \times (\Delta P / P) \]

\[\Delta Q / Q = \eta_s \times [\eta_d / (\eta_s - \eta_d)] \times \tau / P \]

\[\Delta Q = (Q / P) \times [\eta_s \eta_d / (\eta_s - \eta_d)] \times \tau \]

\[DWL = -0.5 \times (Q / P) \times [\eta_s \eta_d / (\eta_s - \eta_d)] \times \tau^2 \]
Taxation-Inefficiencies

- **Math behind the figures**
 - Consider the case where consumers pay the tax
 - **Marginal deadweight loss**: the increase in deadweight loss per unit increase in the tax

\[
MDWL = \frac{\partial DWL}{\partial \tau} = - \frac{Q}{P} \times \left[\frac{\eta_s \eta_d}{(\eta_s - \eta_d)} \right] \times \tau
\]

- Marginal deadweight loss increases with the tax rate
Taxation-Inefficiencies

• Marginal deadweight loss increases with the tax rate
Taxation-Inefficiencies

- Deadweight loss and efficient tax systems
 - The government should tax the markets with no preexisting distortions such as externalities, monopolies etc.
Taxation-Inefficiencies

• Deadweight loss and efficient tax systems
 – Governments should ‘smooth’ tax rates over time due to increasing marginal deadweight loss
 • Instead of raising the taxes from 20% to 40% in one year and reverting back the following year, the government should raise tax rate by 1% for the next 20 years.
Taxation-Optimal Taxation

• **Optimal Commodity Taxation**
 – In order to raise a certain level of tax revenue, how should we tax the goods?
 • Ramsey’s rule of optimal commodity taxation
 • Set commodity taxes such that, for any i

\[
\frac{\text{MDWL}_i}{\text{MR}_i} = \lambda
\]
Taxation-Optimal Taxation

• Optimal Commodity Taxation
 – Ramsey’s rule of optimal commodity taxation
 • MDWL_i: the change in the deadweight loss with a unit increase in the tax rate of good i
 • MR_i: the change in the tax revenue raised with a unit increase in the tax rate of good i
 • λ: the social value of additional government revenues
 • $(\text{MDWL}_i / \text{MR}_i)$: marginal cost of taxation
 • λ: marginal benefit of taxation
Taxation-Optimal Taxation

• **Optimal Commodity Taxation**
 – Ramsey’s rule of optimal commodity taxation
 • For two goods i and k, if

 $\frac{MDWL_i}{MR_i} > \frac{MDWL_k}{MR_k} = \lambda$

 • Lower the tax rate on good i ⇒ marginal deadweight loss will decline
 • Lower the tax rate until the first quantity equals λ.
Taxation-Optimal Taxation

• **Optimal Commodity Taxation**
 – Ramsey’s rule of optimal commodity taxation
 • If λ is high \Rightarrow the marginal benefit of an additional dollar of tax revenue raised is high
 • Increase the tax rates on all goods.
Taxation-Optimal Taxation

• **Optimal Commodity Taxation**
 – Ramsey’s rule of optimal commodity taxation
 • When we write it in terms of elasticities of demand

\[T_i^* = - \left(\frac{1}{\eta_i} \right) \times \lambda \]

where \(T_i^* \) is the optimal tax for good \(i \) and \(\eta_i \) is the elasticity of demand for good \(i \).
Taxation-Optimal Taxation

• **Optimal Commodity Taxation**
 – Ramsey’s rule of optimal commodity taxation

\[T_i^* = - \left(\frac{1}{\eta_i} \right) \times \lambda \]

– **Implications**
 • When elasticity of demand for a good is high, it should be taxed at a lower rate, since the cost of taxation will be high.
 • It is better to tax a wide variety of goods at a moderate rate than to tax very few goods at a high rate (tax-smoothing).
Taxation-Optimal Taxation

• **Optimal Commodity Taxation**
 – Ramsey’s rule of optimal commodity taxation
 – **Equity Implications**
 • Consider two goods: cereal (low elasticity) and caviar (high elasticity)
 • Ramsey’s rule implies that the government should tax cereal harsher than caviar.
 • Even though the outcome will be efficient, it will violate vertical equity.
 • Government should also take into account the redistributive effects of the taxation in addition to efficiency concerns.
Taxation-Optimal Taxation

• Optimal Income Taxation
 – In order to raise a certain level of tax revenue, how should we tax the individual incomes?
 – Basic model
 • Everyone in the society has the same utility function with diminishing marginal utility.
 • The total amount of income in the society is fixed.
 • Society has a utilitarian social welfare function.
 – Under these assumptions, the optimal tax system is on that leaves everyone with the same level of post-tax income ⇒ 100% marginal tax rate
Taxation-Optimal Taxation

• Optimal Income Taxation
 – General model
 • It is unrealistic to expect that individuals will not change their labor supply when faced with a higher income tax.
 • Higher income tax ⇒ lower labor supply ⇒ lower tax base (Laffer curve)
Taxation-Optimal Taxation

- Optimal Income Taxation
 - General model
 - Similar to optimal commodity taxation, we set the marginal benefit of taxation equal to the marginal cost.
 \[
 \frac{MU_i}{MR_i} = \lambda
 \]
 For two individuals \(i \) and \(k \), if
 \[
 \frac{MU_i}{MR_i} > \frac{MU_k}{MR_k} = \lambda
 \]
 increase the tax rate for individual \(i \) \(\Rightarrow \) decrease MU and increase MR (if on the ‘correct’ side).
Taxation-Optimal Taxation

- Optimal Income Taxation
 - General model
 - **Vertical equity:** Social welfare is maximized when those with high level of consumption are taxed more heavily and those with low level of consumption are taxed less heavily.
 - **Behavioral responses:** A tax rise on any group will reduce their labor supply and reduce the tax revenues.
Taxation-Optimal Taxation

• **Optimal Income Taxation**
 – *Example*

\[
\lambda = \frac{MU}{MR_{\text{Poor}}} = \frac{MU}{MR_{\text{Rich}}}
\]
Taxation-Optimal Taxation

• Tax-benefit linkages
 – Consider a workers’ compensation program (which provides reimbursement to the injured workers) financed by a payroll tax on employers.
 • Decrease the labor demand of employers at each wage level shifting the labor demand curve downwards.
 • The compensation, on the other hand, increases the labor supply since workers with ‘risky’ jobs will not ask their employers for compensation.
Taxation-Optimal Taxation

- **Tax-benefit linkages**
 - Consider a workers’ compensation program
Taxation-Optimal Taxation

• Tax-benefit linkages
 – Why doesn’t the employer provide the compensation?
 • Market failures: If the employer provides compensation, might attract accident-prone workers (adverse selection), increasing compensation costs.

 – The tax-benefit linkage is strongest when taxes paid are directly linked to a benefit for the workers.