Commodity Tax Reform

Narrow Problem - when lump-sum taxes are infeasible, what set of commodity taxes raises a target level of revenue and leaves consumers as well off as possible

Fixed Revenue - fixed for now; later we'll reverse the problem and consider how much revenue can be raise for a given level of inefficiency (which we'll use to determine if a public good should be funded... have to account for inefficiency that results from tax)

More Generally - study optimal commodity taxation has other benefits:
(1) Direct vs. Indirect Taxation
 Direct Taxes - based on property, wealth, income, factor income
 Benefits - (i) can tax different people at different rates; (ii) factors are inelastically supplied while indirect taxes tend to cause consumption distortions
 Labor-Leisure - some argue labor supply isn't inelastic when factoring labor/leisure choice instead of just labor supply
 Indirect Taxes - based on business transactions (e.g., sales tax, excise tax, tariffs)

History - federal government moved from indirect to direct (mainly through 16th Amendment which legalized income tax with redistribution)
Hamilton: "not a lot to be gained in distinction of direct vs. indirect"... just history

(2) Value-of-Service Pricing
 Railroad Rates - Interstate Commerce Commission established in 1880s to regulate railroad rates; farmers pushed for regulation to lower shipping rates for farm output; R/R have high fixed cost which need to be allocated so rates exceed marginal cost; ICC decided to discriminate over commodities and keep rates low for commodities with highly elastic demand (i.e., not farm output or coal)

(3) General Theory of Second Best (Lipsey & Lancaster, 1957)
 Said we shouldn't try to counter distortions if they can't be removed

(4) Regulated Utility Pricing - Boitteux
 How do you want to set prices as a multiproduct monopolist; Boitteux worked for France's state-owned utility company looking at different types of customers

Formal Treatment - of optimal commodity tax
 Ramsey, 1927
 Samuelson, 1951 (unpublished)
 Boitteux, 1956 (in French)
 Diamond & Mirrlees, 1971 (explicit general equilibrium framework)... what we'll study
 Stiglitz & Dasgupta, 1971
 Baumol & Bradford, 1970 (specialized to utility pricing)

Tax Reform - Dixit (1975 & 1977); follows theory of 2nd best; what can we do to get local improvement... use duality, but requires lots of conditions so in real world it's hard to guarantee if change will be an improvement

Commodities - \(n + 1 \) of them
 Good Zero - numeraire; think of it as minus labor supply; \(p_0 = 1, \ q_0 = 1, \ t_0 = 0 \)
 (untaxed)... "normalization" (explained in Diamond-Mirrlees)

Commodity Vector - \((x_0, x) = (x_0, x_1, x_2, \ldots, x_n) \)

Consumer Prices - \(q = (q_1, \ldots, q_n) \)

Producer Prices - \(p = (p_1, \ldots, p_n) \)

Taxes - \(t = q - p \) (difference between what consumers pay and what producers receive
Production Cost - \(C(x) \) = numeraire cost of producing \(x \) (think of all output using only labor, \(x_0 \))

Marginal Cost - \(C_x = \left(\frac{\partial C}{\partial x_1}, \frac{\partial C}{\partial x_2}, \ldots, \frac{\partial C}{\partial x_n} \right) \)

\(C_{xx} = \left(\frac{\partial^2 C}{\partial x_i \partial x_j} \right) \), \(n \times n \) matrix; assume positive semidefinite (allows fixed cost, but otherwise convex technology)

Single Consumer - can think of it as many identical consumers
\(E(1, q, u) = \) minimum expenditure at prices \((1, q) \) to get utility \(u \)

Compensated Demands -
\[
x_0 = E_0(1, q, u) = \frac{\partial E}{\partial q_0} \quad \text{(don't forget } q = \text{ after-tax prices the consumer pays)}
\]

\[
x = E_q(1, q, u) = \begin{bmatrix} \frac{\partial E}{\partial q} \end{bmatrix}
\]

Assume \(E_{qq} \) is negative definite (rules out kinked demand curves)

Homogeneity of Degree Zero - \(E_{i0} + \sum_{j=1}^{n} q_j E_{q_j} = 0 \), \(i = 0, 1, \ldots n \)

Note: \(E_{i0} = \frac{\partial^2 E}{\partial q_i \partial q_0} = \frac{\partial x_i^c}{\partial q_0} = \frac{\partial x_0^c}{\partial q_i} \)

Vector notation: \(E_{q0} + q \cdot E_{qq} = 0 \) and \(E_{q0} + q \cdot E_{qq} = 0 \)

Endowment - of numeraire is \(Z \)

Government - collects commodity taxes and a lump-sum tax to raise amount of \(G \) of numeraire good

Budget Constraint - \(t'x + T = G \) (commodity tax revenue + lump-sum revenue = \(G \))

Producer Profit - \(P = p'x - C(x) \)
Distributed as lump-sum to consumer

Consumer Budget - \(Z - T + P = E(1, q, u) \)

Sub in gov't budget constraint: \(Z - (G - t'x) + P = E(1, q, u) \)

Sub in producer profit: \(Z - G + t'x + (p'x - C(x)) = E(1, q, u) \)

Solve for \(Z \) : \(Z = G - t'x + p'x + C(x) + E(1, q, u) \)

Sub \(t'x = (q - p)'x \) (cancels \(-p'x \) : \(Z = G - q'x + C(x) + E(1, q, u) \))

Sub \(x = E_q(1, q, u) : Z = G + E(1, q, u) - q' E_q(1, q, u) + C(E_q(1, q, u)) \)

Sub \(E_0 = E(1, q, u) - q' E_q(1, q, u) : Z = G + E_0 + C(E_q(1, q, u)) \)

English - consumer endowment of labor \((T) = \) government spending \((G) \) + amount kept by consumer (leisure; \(E_0 \)) + amount consumed in production \((C(E_q(1, q, u))) \)

Totally differentiate (first box above): \(T \) and \(G \) are constant

\[
0 = E_q q' dq - dq' E_q dq + C_x q' E_{qq} dq + (E_0_q + C_x q' E_{qq}) du
\]

Combine terms: \(0 = E_q q' dq - dq' E_q + (C_x q - q' E_{qq}) dq + (E_0_q + C_x q' E_{qq}) du \)
Note $E_q' dq = dq' E_q = 0 = (C_x - q)' E_{qq} dq + (E_{0u} + C_x' E_{qu}) du$

Solve for du: $du = \frac{(q - C_x)' E_{qq} dq}{E_{0u} + C_x' E_{qu}} = \frac{(1 \times n)(n \times n)(n \times 1)}{1}$ = scalar

Know $E_{0u} + q' E_{qu} = \frac{\partial E}{\partial u} > 0$ (resource cost at consumer prices increases as utility increases) \(\therefore\) assume $E_{0u} + C_x' E_{qu} > 0$ (i.e., resource cost at producer prices increases as utility increases)

\(\therefore\) du has the same sign as $(q - C_x)' E_{qq} dq$

What Are We Doing? - looking at changing consumer prices (rather than tax; actually same as controlling tax with fixed producer prices) and seeing whether consumers are better off ($du > 0$) or worse off ($du < 0$); assume we adjust the lump-sum tax to maintain government revenue so consumer utility is not affected by changes government purchases

Better Off - want to find sufficient conditions to guarantee $(q - C_x)' E_{qq} dq > 0$ (so we have $du > 0$... consumers are better off)

Reduce Tax (Price) - reducing tax on good i means $dq_i < 0$

\[n = 2 \text{ Case} \quad (q - C_x)' E_{qq} dq = \left[\begin{array}{c} q_1 - c_1 \\ q_2 - c_2 \\ q_1 - c_1 \\ q_2 - c_2 \end{array} \right]^T \left[\begin{array}{cc} E_{11} & E_{12} \\ E_{21} & E_{22} \end{array} \right] \left[\begin{array}{c} dq_1 \\ dq_2 \\ dq_1 \\ dq_2 \end{array} \right] = \]

\[= (q_1 - c_1)E_{11} dq_1 + (q_1 - c_1)E_{12} dq_2 + (q_2 - c_2)E_{21} dq_1 + (q_2 - c_2)E_{22} dq_2 \]

Tax One Good - suppose $q_2 = c_2$ (i.e., consumer price for good 2 equals marginal cost; that implies price taking on producer side and no taxes on good 2); this means $dq_2 = 0$ and $q_2 - c_2 = 0$ so the expression above simplifies to one term:

$(q_1 - c_1)E_{11} dq_1$

$q_1 - c_1 > 0$ (since good 1 is taxed, the consumer price must be greater than MC)

$E_{11} < 0$ (because we assumed E_{qq} is negative definite)

That means if $dq_1 < 0 \Rightarrow du > 0$

English - if only one good is taxed, lowering the tax (i.e., price) on that good toward MC, then consumers are better off; makes sense and is the same result form the partial equilibrium set up (i.e., want price = MC)

Tax Both Goods - Now we have $q_1 - c_1 > 0$ and $q_2 - c_2 > 0$; assume we hold price of good 2 constant (i.e., $dq_2 = 0$; don't change the tax); now the expression above simplifies to two terms

$(q_1 - c_1)E_{11} dq_1 + (q_2 - c_2)E_{21} dq_1$

If we lower the price of good 1 ($dq_1 < 0$), we know from previous case that the first term will be negative

The second case is ambiguous:
\[q_2 - c_2 > 0 \text{ and } dq_i < 0, \text{ but } E_{21} \text{ can go either way} \]

Another way to look at it is to factor \(dq_i \):

\[
(q - C_x)'E_{qq}dq = [(q_1 - c_1)E_{11} + (q_2 - c_2)E_{21}]dq_i
\]

We now the first term in brackets is negative and \(dq_i \) is negative; if the second term is sufficiently positive, we could end up with the expression overall being negative (i.e., if \(E_{21} > 0 \), \(dq_i < 0 \Rightarrow du < 0 \))

\[\Rightarrow \text{ lowering the price of good one may or may not make consumers better off} \]

Contradiction? - that sounds weird, but what's happening when we lower the price of good 1 there's a shift in the compensated demand for good 2; if \(E_{21} \) is positive, the shift is to the right (or up) which increases excess burden for good 2 while lowering \(q_1 \) decreases excess burden for good 1

Yet Another way to look at it is to recognize \(E_{qq}dq = dx^c \) so

\[
(q - C_x)'E_{qq}dq = (q - C_x)'dx^c, \text{ which means the sign of } du \text{ depends on how compensated demands change}
\]

Propositions - these are conditions to guarantee \(du > 0 \) (key is looking for patterns in the "distortion" (i.e., tax or price change: \(q - C_x \)) or in \(E_{qq} \)

1. **Proportional Change** - If consumer prices move toward marginal cost in proportion to existing distortions and the lump-sum tax changes to hold revenue constant then welfare rises

 The proportional change means \(dq = -(q - C_x)dh \), where \(dh \) is a scalar (measures the length of vector in graph; distance traveled by price change) so now the sign of \(du \) is the same as the sign of

 \[
 (q - C_x)'E_{qq}dq = -(q - C_x)'E_{qq}(q - C_x)dh
 \]

 Symmetric quadratic form \(E_{qq} \) is neg. def. so this product is < 0

 We have \((-)(-)(+)\) so \(du > 0 \)

2. **Corlett-Hague Theorem** - holding revenue constant through commodity taxes (i.e., \((q - C_x)'x = R \); they didn't use lump-sum tax like Dixit did; that makes this more general and realistic than previous proposition), if prices are initially above MC by same factor for all goods (i.e., \(q_i - c_i = \beta c_i \) [proportional to \(c_i \)], welfare increases with small increases in prices of commodities complementary to the numeraire and small decreases in prices

 Proposition
 - Wherever we start, we move toward \((c_1, c_2)\)
 - Initially on ray thru origin and \((c_1, c_2)\)
 - Move in either direction, but can't go far ("small changes") because it moves off proportional line and theorem no longer holds
of commodities that are substitutes for numeraire; so sign of \(du \) is the same as the sign of
\[(q - C_x)' E_{qq} dq = -\beta q' E_{qq} dq \quad \text{(scalar)(1x)(n)(n)(n)(1)}\]

Apply homogeneity of degree zero assumption: \(E_{00} + q'E_{0q} = 0 \) and \(E_{q0} + q'E_{qq} = 0 \)

\[-\beta q' E_{qq} dq = \beta E_{q0}' dq\]

Sign of this term depends on sign of \(E_{q0}' dq \) which is taken care of in the assumption:

- \(E_{i0} > 0 \) (substitutes) \(\Rightarrow dq_i < 0 \)
- \(E_{i0} < 0 \) (complements) \(\Rightarrow dq_i > 0 \)

\[\therefore \beta E_{q0}' dq > 0 \text{ so } du > 0\]

Improvement - although this is restrictive in that we have to start with proportional distortions, we don’t have to use a proportional tax (as long as there are substitutes and complements to the numeraire)

(3) **General** - given an arbitrary initial price vector; lowering \(q_j \) toward its marginal cost increases welfare if...

(a) good \(j \) is complementary to all goods with greater proportional distortions
(b) good \(j \) is substitute for all other goods (including numeraire)
(c) we adjust lump-sum taxes to hold revenue constant

Proof: recall sign of \(du \) will be same as sign of \((q - C_x)' E_{qq} dq \)

Label proportion of distortions with \(\beta_j = \frac{q_j - c_j}{q_j} \)

(similar to Corlett-Hague Thm except each good can have a different distortion)

Sort commodities by distortion so \(\beta_1 \leq \beta_2 \leq \ldots \leq \beta_j \leq \ldots \leq \beta_n \)

We are only changing the price of good \(j \) so \(dq_j < 0 \) and \(dq_k = 0 \) for \(k \neq j \)

That means \((q - C_x)' E_{qq} dq \) becomes \(\sum_{i=1}^{n} (q_i - c_i) E_{ij} dq_j = \sum_{i=1}^{n} \beta_i q_i E_{ij} dq_j \)

Use homogeneity of degree 0 again: \(E_{j0} + \sum_{i=1}^{n} q_i E_{ij} = 0 \)

We can rewrite this as \(\beta_j \left(E_{j0} + \sum_{i=1}^{n} q_i E_{ij} \right) dq_j = 0 \)

Now subtract it from \(\sum_{i=1}^{n} \beta_i q_i E_{ij} dq_j \)

\[\sum_{i=1}^{n} \beta_i q_i E_{ij} dq_j - \beta_j \left(E_{j0} + \sum_{i=1}^{n} q_i E_{ij} \right) dq_j = \]

\[\sum_{i=1}^{n} \left(\beta_i - \beta_j \right) q_i E_{ij} dq_j \]

To sign this, remember \(dq_j < 0 \); (a) and (b) take care of the rest

- \(E_{ij} > 0 \) (substitutes) \(\Rightarrow \beta_i - \beta_j \leq 0 \) (this include numeraire so \(E_{j0} > 0 \))
- \(E_{ij} < 0 \) (complements) \(\Rightarrow \beta_i - \beta_j \geq 0 \)

We have (-)(-) so \(du > 0 \)
Good with Largest Distortion - special case where \(j = n \); lowering the price lessens excess burden if good \(n \) is a substitute for everything... that's a strong condition; if there are any complementary relationships, we can't guarantee lowering price would lower excess burden (it can, we just can't guarantee it)

Summary - common 2nd best result: reducing one distortion isn't obviously good (i.e., not clearly an improvement) when other distortions exist

Hamilton: "In the case of multiple distortions, tread carefully with your intuition."

If we know compensated demand derivatives (\(E_{qq} \)) we can get clearer results