Monetary Policy and Stabilization

Background - Phillips curve suggests (incorrectly) we can trade higher \(\pi \) for lower \(u \); Okin's Law gives us the benefit (increase \(Y \) by 2% for each 1% less \(u \)); only thing we know about cost of higher \(\pi \) is decreased real money balances \((M/P)\); need to compare gains \((\Delta Y)\) with cost \((\Delta(M/P))\)

Optimum Quantity of Money - article by Friedman (1969); real title should be optimal inflation rate; looked at costs and benefits for higher or lower inflation rate to determine the best rate

Assumption - initial assumption to make numbers easier is that there is no growth, no inflation, and no securities (i.e., money is the only asset)

Benefits of Holding Money - \(\rho \) measures rate of return on services of money

- **Pecuniary Services** - "shoe leather costs"; higher money balance yields return (less time getting it out of the vault; could use it to produce something)

- **Non-Pecuniary Service** - "utility"; holding more money allows person to withstand bad times (emergency spending) without diminishing lifestyle

Diminishing Returns - \((M/P)\uparrow \Rightarrow \rho \downarrow\)

Cost of Holding Money - consume less now (don’t worry about interest because we assumed money is the only asset and there’s no inflation); \(\delta \) is discount rate of consumption (measure of impatience, how hard it is to hold money to next period); will be different for each consumer, but can look at as average in aggregate

Adding Inflation - increases cost of holding money so cost is now \(\delta + \pi \)

Private Optimal - with no inflation, should have \(\rho = \delta \) adding inflation means \(\rho = \delta + \pi \)

Social Optimal - Friedman argued that there is a positive externality to money holding; if people want to hold more money they do so at no social cost; first they postpone or reduce consumption to increase their demand for money \((L \uparrow \Rightarrow LM \downarrow)\), eventually prices will fall increasing real money balances \((P \downarrow \Rightarrow LM \uparrow)\); problem occurs if only one person does this; everyone else benefits from the higher \(M/P \), but the individual suffers less consumption without making it up completely; since there is zero social cost, the optimal amount of money occurs at \(\rho = 0 \Rightarrow \pi = -\delta \) (Friedman was saying the government should induce negative inflation to subsidize money holding)

Being Away from Optimal - cost of being away from optimal \(M/P \) is area under the curve

Numerical Example - using Baumol model (transactions demand for money... note: this will overestimate the cost of inflation): \(L = L_0 Y^{1/2} i^{-1/2} \) which allows us to calculate money demand, \(L \), which we substitute for real money balances \(M/P \); given current \(M/P = $1200B \), \(i = 5\% \), \(\pi = 2\% \), we know \(r = i - \pi = 3\% \); this allows us to find \(i \) for different levels of \(\pi \), which then lets us calculate \((M/P)t = 1200/\sqrt{it/5\%})\); \(i \) is the benefit of holding money so \(\rho = i \) (for this example); create table and find \(\delta \) by using \(\pi = 0 \) (looking for \(\rho = \delta \) so in this case, \(\delta = 3\% \)); the cost of inflation is the area under the curve, which equals \(i(M/P) \); not that the current situation \((\pi = 2\%) \) costs \$60B... in an economy with \(Y = $10000B \), this is less than 1 percent so cost of higher in inflation is fairly low; much lower than the gains that resulting from lower unemployment
Cost = \pi \rho \frac{M}{P} \frac{i(M/P)}{i(M/P)}

<table>
<thead>
<tr>
<th>\pi</th>
<th>i</th>
<th>M/P</th>
<th>\rho</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2%</td>
<td>1%</td>
<td>2683</td>
<td>1%</td>
</tr>
<tr>
<td>0</td>
<td>3%</td>
<td>1549</td>
<td>3%</td>
</tr>
<tr>
<td>2%</td>
<td>5%</td>
<td>1200</td>
<td>5%</td>
</tr>
<tr>
<td>4%</td>
<td>7%</td>
<td>1014</td>
<td>7%</td>
</tr>
<tr>
<td>6%</td>
<td>9%</td>
<td>894</td>
<td>9%</td>
</tr>
<tr>
<td>8%</td>
<td>11%</td>
<td>809</td>
<td>11%</td>
</tr>
<tr>
<td>10%</td>
<td>13%</td>
<td>744</td>
<td>13%</td>
</tr>
</tbody>
</table>

Additional Benefit - higher inflation also forces higher I (if constant \(r \)) so it helps prevent a liquidity trap, so having a modest amount (2-4%) is good.

Real World - the fact that economies with 50% inflation function suggests costs of high inflation aren't so great when compared to having 50% unemployment, but there can be too much inflation...

Hyperinflation (Inflationary Finance)

Cagan - "monetary dynamics of hyperinflation"; studied classic example of hyperinflation (post-World War I Germany; unpopular government couldn't increase taxes; it borrowed until creditors wouldn't lend anymore; then it printed money to cover spending)

Inflationary Finance - print currency to finance government purchases; very inflationary

U.S. System - Federal Reserve's assets include bonds; liabilities are cash in circulation; inflationary finance would involve government issuing new bonds for $xB and the Fed then buying $xB in bonds (by printing money)

Example - assume government wants to purchase some real amount of goods each year

Borrowing - \(G \uparrow \Rightarrow IS \uparrow \Rightarrow W \uparrow \Rightarrow LM \downarrow \); end result is \(i \uparrow \), but it's a 1 time \(\Delta i \) and it's not that significant based on real world experience (e.g., $400B deficit right now and \(\pi = 2\% \))

Printing - running the numbers shows very high inflation in first period (32%) and then inflation stays at 10% every year after; considering $60B is such a small % of GDP, it seems odd that inflation would be so high

Money-Balance Tax - effect of inflationary finance is basically a tax on money-balances; people essentially have less money because of inflation;

Money Raised - \(\Delta M/P = \) effective amount of money raised by printing \(\Delta M \)

Tax - multiply \(\Delta M/P \) by \(M/M \) to get \((\Delta M/M)(M/P) \); the "inflation tax rate is \(\Delta M/M \) and the "tax base" (i.e., real money balances) is \(M/P \)

Good - no forms to fill out; people can't evade it

Bad - money balances are low (compared to income tax based on \(Y \)) so the "tax" (i.e., inflation) has to be high; people can avoid it by not holding cash (which makes money balances even lower, raising inflation, causing more avoidance... etc.)

Avoidance - people can't evade the tax if they hold money, but they can avoid it by not holding money; if \(\Delta M/M \uparrow \), then \(M/P \downarrow \)

Maximize Tax Revenue - in order to find maximum of Laffer Curve, we need to know the demand for money \((M/P) \)

Demand for Money - Cagan figured out demand for money for Germany...
Functional Form - \(\ln(M/P) = \alpha_0 - \alpha_1 i \), this wouldn't work in Germany because credit markets collapsed; the opportunity cost of money was the decrease in value (i.e., inflation), so Cagan used \(\ln(M/P) = \alpha_0 - \alpha_1 \pi^e \)

Adaptive Expectations - model for estimating expected inflation: \(\pi^e = \beta \pi_t + (1 - \beta) \pi_{t-1} \), so this period's expectation of next period's inflation is a weighted average of this period's inflation (\(\pi_t \)) and last period's expectation of this period's inflation (\(\pi_{t-1} \))

Results - Cagan computed for various values of \(\beta \) (0, 0.1, 0.2, etc... no computers back then); best fit was \(\beta = 0.2 \) resulting in \(\alpha = 5.46 \) (\(R^2 = 0.992 \))

Max Tax Revenue - revenue = \(\pi \cdot M/P = \pi(m_0\pi^{\alpha_0}) \Rightarrow \pi^e = 1/\alpha = 0.183 \) (per month!) with max revenue of 5.7M; note: Germany was trying to raise more than this at 20% inflation and increased to 40%... revenue dropped from 3.1M to 1.9M; they should've printed less money to get inflation down and real revenue from printing less money would've been more

More Phillips Curves

(Trying to explain effect of unexpected inflation)

Lucas - "Some International Evidence on Output Inflation Tradeoffs"; tried to explain why some countries experience swings in prices (\(\pi \)) and other in output (\(Y \)) in response to demand shocks (\(\Delta x \))

Aggregate Demand Shock - demand changes for all goods (up or down); people spend less (or more) on everything... tend to be temporary

Relative Demand Shock - people aren't spending less or more overall, but less or more in a specific industry (e.g., less beer and more wine)... tend to be permanent

Problem - Lucas argued that in the short-run, firms can't tell the difference between an aggregate demand shock and a relative demand shock; their response to a demand shock depends on the country's stability; more stable economies (i.e., more predictable \(Y \)) tend to mistake aggregate demand shocks for relative demand shocks; they change output first so shock is evidenced in output (which affects unemployment); firm's in countries were \(Y \) is unpredictable uses prices first to deal with shocks

Result - stable economies have flatter Phillips Curve (i.e., slopes different)... this should be testable which is what Lucas did

Model - \(Y_t = \text{constant} + \alpha \Delta x_t + \beta Y_{t-1} \) (\(\Delta x \) is demand shock)

- **U.S.** - \(\alpha = 0.91 \)... 91% of demand shock goes to increased output
- **Argentina** - \(\alpha = 0.01 \)... only 1% of demand shock goes to output

Ball, Mankiw & Romer - "The New Keynesian Economics and the Output-Inflation Tradeoff"; alternative explanation for swings in prices vs. output

Menu Costs - costly for firms to change prices so firms respond slowly to shocks; they rather change output than prices so inflation looks more like a step function

Actual Prices - tend to fall below ideal prices, then firms adjust by looking at \(\pi^e \); they overshoot because they know they won't adjust prices again for a while

Unexpected Inflation - if \(\pi \neq \pi^e \) there are problems

- \(\pi > \pi^e \) - prices higher than anticipated so firm is undercharging; sales skyrocket and output increases; firm has to hire more workers (\(u \downarrow \))
\[\pi < \pi' \] - prices lower than anticipated so firm is overcharging; sales plummet and output falls; firm has to fire workers \((u^\uparrow)\)

Note: This is same conclusion as Fischer with labor contracts, just different reasoning

"Cheaper" Menu Costs - firms would change prices more often; in that case firm adjusts prices quicker to \(P\) adjusts rather than \(u\)... i.e., don't deviate from \(u\) as much and return quicker... that means Phillips Curve is steeper

Testing Theory - collected time-series data to get money demand:

<table>
<thead>
<tr>
<th>Country</th>
<th>(\sigma)</th>
<th>(\pi)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>0.02</td>
<td>0.04</td>
<td>0.61</td>
</tr>
<tr>
<td>Italy</td>
<td>0.06</td>
<td>0.08</td>
<td>0.20</td>
</tr>
<tr>
<td>Argentina</td>
<td>0.42</td>
<td>0.54</td>
<td>-0.005</td>
</tr>
</tbody>
</table>

Notes: \(\sigma\) = standard deviation of \(\Delta x\) (demand shock); \(\alpha\) = coefficient for money demand (similar to Cagan's model)

Cross-Section - next used cross-section of data to look at relationship of \(\alpha\) (Lucas expected \(\sigma^\uparrow \Rightarrow \alpha^\downarrow\))

Version 1 - \(\alpha = \text{constant} - 4.2\sigma + 7.5\sigma^2\)

\[R^2 = 0.24 \]

\[(1.5) \quad (4.1) \]

Version 2 - \(\alpha = \text{constant} - 4.2\pi + 7.1\pi^2\)

\[R^2 = 0.34 \]

\[(1.1) \quad (2.1) \]

Result - could argue second version is better (i.e., inflation is better fit than unpredictable demand... somewhat supports menu costs (Ball, Mankiw, Romer) over shock theory (Lucas)