Limits and Continuity

Sequence - function from positive integers to real numbers; e.g., \(x_n = n+1, \ n = 1, 2, \ldots \)
Limit - sequence has a limit if it converges to a real number \(L \)
\[
\lim_{n \to \infty} x_n = L
\]
Example - \(x_n = 1/n; \lim_{n \to \infty} x_n = 0 \)

Rigorous Definition
\(f(x) \) has limit (or tends to) \(A \) as \(x \) tends to \(a \), and write \(\lim_{x \to a} f(x) = A \), if for each number \(\varepsilon > 0 \)
there exists a number \(\delta > 0 \) such that \(|f(x) - A| < \varepsilon \) for every \(x \) with \(0 < |x - a| < \delta \)
In English - \(\lim_{x \to a} f(x) = A \) means that we can make \(f(x) \) as close to \(A \) as we want for all \(x \)
sufficiently close to (but not equal to) \(a \)
Using It - if asked to use the definition to prove a limit exists, you first assume any \(\varepsilon > 0 \) and
solve \(|f(x) - A| < \varepsilon \) for \(x \). Then use \(0 < |x - a| < \delta \) to get a value for \(\delta \) in terms of \(\varepsilon \).

Theorems
1) If a sequence \(\{x_n\} \) is non-decreasing (\(\forall \ n \ x_{n+1} \geq x_n \)) and bounded from above (\(\exists L \) s.t. \(L \geq x_n \ \forall \ n \)), then the sequence \(\{x_n\} \) must converge

2) If a sequence \(\{x_n\} \) is non-increasing (\(\forall \ n \ x_{n+1} \leq x_n \)) and bounded from below (\(\exists L \) s.t. \(L \leq x_n \ \forall \ n \)), then the sequence \(\{x_n\} \) must converge

3) If a sequence is not monotonic, but has bounds, then the sequence may not converge, but it has convergent subsequences

 Example: \(x_n = 1 \) when \(n \) is even and -1 when \(n \) is odd; can't find a \(\delta \) to satisfy definition for \(\varepsilon < 1 \), but the subsequences are bounded at 1 and -1

 3a) if all the subsequences have the same limit, then the sequence has a limit

 Example: \(x_n = 1/n \) when \(n \) is even and -1/n when \(n \) is odd; converges to 0

4) If a sequence is not bounded, it will diverge (but can't say a sequence that is bounded necessarily converges... see #3)
Rules for Limits
If \(\lim_{x \to a} f(x) = A \) and \(\lim_{x \to a} g(x) = B \), then

a) \(\lim_{x \to a} A = A \)
b) \(\lim_{x \to a} (f(x) \pm g(x)) = A \pm B \)
c) \(\lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B \)
d) \(\lim_{x \to a} (f(x) / g(x)) = A / B \) (if \(B \neq 0 \))
e) \(\lim_{x \to a} (f(x))^{pq} = A^{pq} \) (if \(A^{pq} \) is defined)
f) If functions \(f \) and \(g \) are equal for all \(x \) close to \(a \) (but not necessarily at \(x = a \)), then
\[\lim_{x \to a} f(x) = \lim_{x \to a} g(x) \] whenever either limit exists.

Special Cases
Don't Exist - vertically asymptotic functions (\(\pm \infty \))
One-Sided - value depends on which side you approach the limit from
Infinite Limits - horizontally asymptotic functions

Vector Notation
\[x = (x_1, x_2, \ldots, x_k) \]
Sequence of vectors - converge when \(|L - x_n| \) gets smaller

- Euclidean Distance - \(d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \ldots} \)
- Taxi Distance - \(d(x,y) = |x_1 - y_1| + |x_2 - y_2| + \ldots \)
- ??? Distance - \(d(x,y) = \max(|x_1 - y_1|, |x_2 - y_2|, \ldots) \)

Neighborhood
Neighborhood of \(x \) is a region around that point with certain distance, \(\mathcal{K}(x, \varepsilon) = \{ y : d(x,y) < \varepsilon \} \)
i.e., a circle centered on \(x \) with radius \(\varepsilon \)

Limit Point - number \(x \) is a limit point of a set \(S \) if every \(\varepsilon \) neighborhood of \(x \) contains a point of \(S \)
other than \(x \)

Finite sets never have limit points

Interior Point - \(x \) is interior to \(S \) if \(\exists \varepsilon > 0 \), such that if \(y \in \mathcal{K}(x, \varepsilon) \) then \(y \in S \) (i.e., \(\mathcal{K}(x, \varepsilon) \subset S \))

Every interior point is a limit point, but not the other way around

Open Set - \(S \) is an open set if every element is an interior point

Closed Set - a set is closed if it contains all of its limit points (points on border are limit points of open sets even though the points aren't in the set)

Special Cases - only two sets can be both open and closed at the same time (\(\emptyset \) and \(U \))
If \(S \) is open, then \(S^c \) is closed

Limits of Functions (using neighborhoods)
\(f(x) \) has limit \(L \) at \(a \) if for each number \(\varepsilon > 0 \) there exists a number \(\delta > 0 \) such that if \(x \in \mathcal{K}(a, \delta) \) then \(f(x) \in \mathcal{K}(L, \varepsilon) \)
Continuity
Continuous - graph of the function has no breaks; formal definition:
\(f \) is continuous at \(x = a \) if \(\lim_{x \to a} f(x) = f(a) \)

Conditions:
1) function \(f \) must be defined at \(x = a \)
2) the limit of \(f(x) \) as \(x \) tends to \(a \) must exist
3) this limit must be exactly equal to \(f(a) \)

If only condition 1 isn't satisfied, it is a “removable” discontinuity

Some continuous functions
\(f(x) = c \) (a constant)
\(f(x) = x \)

Polynomials (they’re a sum of continuous functions)
\(R(x) = P(x)/Q(x) \) (where \(P(x) \) and \(Q(x) \) are polynomials and \(Q(x) \neq 0 \))

Intermediate Value Theorem
Let \(f \) be a continuous function for all \(x \). Let \(f(x_0) = a \) and \(f(y_0) = b \) where \(a < b \), then for any \(c \) between \(a \) and \(b \), \(\exists \ x \) between \(x_0 \) and \(y_0 \) such that \(f(x) = c \)

Proof 1 (outline) -
a) Create two sequences by if \(f[(x_0 + y_0)/2] < c \) then
\(x_1 = (x_0 + y_0)/2 \), else \(y_1 = \)

b) Show the sequences converge at \(c \)

Proof 2 (outline) -
a) Define \(A = \{ x : f(x) \geq c \ \text{and} \ x_0 \leq x \leq y_0 \} \) and \(B = \{ x : f(x) \leq c \ \text{and} \ x_0 \leq x \leq y_0 \} \)
b) Show \(A \) and \(B \) are closed sets
c) Show \(A \cap B \neq \emptyset \)
d) \(\exists \ x \in A \cap B \ldots f(x) \leq c \) and \(f(x) \geq c \) so \(f(x) = c \)

Properties of Continuous Functions
If \(f \) and \(g \) are continuous at \(a \), then
a) \(f + g \) and \(f - g \) are continuous at \(a \)
b) \(f \cdot g \) and \(f/g \) (if \(g(a) \neq 0 \)) are continuous at \(a \)
c) \([f(x)]^{p/q} \) is continuous at \(a \) if \([f(x)]^{p/q} \) is defined

d) \(f(g(x)) \) is continuous at \(a \) if both \(f(x) \) and \(g(x) \) are continuous at \(a \) (composites)

Limits of Continuous Functions
Just plug in value rather than taking the limit

Continuity and Differentiability
If \(f \) is differentiable at \(x = a \), then \(f \) is continuous at \(x = a \)