On the Performance of Heuristics for Broadcast Scheduling in Ad-Hoc TDMA Networks

Clayton W. Commander* Sergiy I. Butenko†
Panos M. Pardalos*

In the Broadcast Scheduling Problem (BSP), a finite set of stations are to be scheduled in a time division multiple access (TDMA) frame. In a TDMA frame, time is divided into slots of equal length. Messages from the stations are transmitted within these slots. However, unconstrained message transmission can result in a collision of messages, rendering them useless. Therefore, the objective of the BSP is to provide a collision-free broadcast schedule which minimizes the total frame length and maximizes the slot utilization within the frame. Such a schedule will minimize the overall system delay.

In this talk, we present the BSP as a NP-Hard combinatorial problem and compare the performance of several heuristics for the problem. These algorithms include sequential vertex coloring, mean field annealing, a mixed neural-genetic algorithm, and GRASP which was implemented by the current authors. We discuss applications and report numerical results from tests on over 60 networks of varying size and densities.

*Center for Applied Optimization, Department of Industrial and Systems Engineering, University of Florida. 303 Weil Hall, Gainesville, FL 32611. Emails: {clayton8,pardalos}@ufl.edu
†Department of Industrial Engineering, Texas A&M University. 236E Zachry Engineering Research Center, College Station, TX 77840-3131. Email: butenko@tamu.edu