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Abstract

The Hodrick–Prescott filter is often applied to economic series as part of the study of busi-
ness cycles. Its properties have most frequently been explored through the development of
essentially asymptotic results which are practically relevant only some distance from series
endpoints. Our concern here is with the most recent observations, as policy-makers will often
require an assessment of whether, and by how much, an economic variable is ‘‘above trend’’.
We show that if such an issue is important, an easily implemented adjustment to the filter is
desirable.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The statistical properties of the Hodrick–Prescott (HP) filter proposed by Hodrick
and Prescott (1997) have been extensively analysed by, for example, King and
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Rebelo (1993) and Ehlgen (1998), from the viewpoint of optimal signal extraction
and it is now well known that the HP filter yields an optimal decomposition of a time
series into orthogonal components that can be regarded as ‘‘trend’’ and ‘‘cycle’’ if the
time series is generated by a particular type of data generating process. This optimal-
ity result is based on application of the filter to an infinitely long time series, though
for all practical purposes it applies also to the estimation of components at the centre
of a moderately long series. However, our concern in this paper is with cyclical com-
ponents estimation for the most recent time periods, which will be of most interest,
for example, to policy makers. Results on HP optimality do not apply here, and in-
deed the filter is demonstrably suboptimal. This suboptimality has been noted in the
literature (see Baxter and King, 1995; Apel et al., 1996; St-Amant and van Norden,
1997). In this paper, we explore the extent of that suboptimality of the HP filter at
time series endpoints through extensive Monte Carlo simulations.

The paper is organised as follows. In Section 2, we demonstrate a fact which has
not been widely understood in the literature, that the HP filter provides optimal esti-
mators of components that could be viewed as ‘‘growth’’ and ‘‘cyclical’’ for any I(1)
or I(2) generating model, whatever value is chosen for the smoothing parameter used
in the HP filter. Based on the results in Section 2, we choose some particular I(1) and
I(2) models for our analysis in the subsequent sections. In Section 3, we assume that
there exists a ‘‘true’’ cyclical component, and that the purpose of the filter is to esti-
mate that component. We further take the standpoint that the true component is the
one for which HP yields optimal estimates at the series centre, and go on to assess the
quality of the most recent HP figures as estimates of the most recent values of that
component. The consequences of HP filtering at time series endpoints can be ex-
plored without overt recourse to the concept of ‘‘true’’ components; that is, through
the notion of endpoint revisions as in Kaiser and Maravall (1999). Our simulation
studies in Section 4 confirm the finding of Kaiser and Maravall (1999) that the use
of forecast-augmented series in the HP filter can reduce the revision errors of most
recent cyclical components. In addition, we find that the degree of suboptimality
of the HP filter and the size of reduction of the revision errors depend on what value
is used for the smoothing parameter of the HP filter. Finally, Section 5 concludes.
2. Some technical issues

Given a series of observations yt (t = 1,2, . . . ,T) on a time series, the HP filter is
an additive decomposition yt ¼ ygt þ yct where y

g
t is identified as a growth (trend) com-

ponent and yct as a cyclical component. Hodrick and Prescott estimate the growth
component as ŷgt through solution of the constrained minimisation problem

min
½ygt �

T
t¼1

XT
t¼1

ðyt � ygt Þ
2 þ k

XT�1

t¼2

ðygtþ1 � ygt Þ � ðygt � ygt�1Þ
� �2

; k > 0; ð1Þ

where the parameter k controls the smoothness of the estimated growth component.
Hodrick and Prescott (1997) proposed, on somewhat subjective grounds, a
value k = 1600 for quarterly data. However, it is desirable to adjust this value when
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observations of different frequencies are subject to the filter. Backus and Kehoe
(1992) suggested an adjustment of the value by multiplying the standard value of
1600 with the square of the frequency of observations relative to quarterly data.
For example, the relative frequency is 3 for monthly data and 1/4 for annual data.
Hence, the corresponding values of the smoothing parameter is k = 100 and
14,400 for annual data and monthly data, respectively. This suggestion has been also
used in commercial packages such as EVIEW. We shall use these values throughout
the paper. With regard to the choice of the smoothing parameter, it is worth noting
that, in research that has gone largely unnoticed in this field, Akaike (1980), while
further allowing a seasonal component in the decomposition, proposed precisely
the HP approach together with a data-dependent Bayesian procedure for the choice
of k.

Apart from the choice of k, the structure of the HP filter is identical for all time
series. In that sense, one might say that it is not intended to provide ‘‘optimal’’ cycli-
cal component estimates ŷct ¼ ðyt � ŷgt Þ for specific time series. Usually, results on the
HP filter in the literature apply to infinitely long series, or in practical terms relate to
the midpoints, but not the endpoints, of series of practically interesting length. In
subsequent sections we shall be interested in endpoint issues, but here we review
the asymptotic optimality results and demonstrate a fact that the HP filter can be
regarded as ‘‘optimal’’ at the midpoints for any I(1) or I(2).

King and Rebelo (1993) and Ehlgen (1998) analysed the HP filter in this frame-
work. It can be shown that the estimated cyclical component is provided by the sym-
metric two-sided filter

ŷct ¼ HðLÞyt; HðLÞ ¼ ð1� LÞ2ð1� L�1Þ2

k�1 þ ð1� LÞ2ð1� L�1Þ2
; ð2Þ

where L is the lag operator. The HP filter is optimal, in expected squared error sense,
for data generating processes of the form

ð1� LÞ2ygt ¼ AðLÞet; yct ¼ AðLÞut;

AðLÞ ¼
X1
j¼0

ajLj;
X1
j¼0

a2j < 1;
ð3Þ

where et and ut are mutually stochastically uncorrelated white noise processes, so
that

EðetusÞ ¼ 0; 8t; s; ð4Þ

and where their variance ratio is

k ¼ ðru=reÞ2 ð5Þ

where k is the value of the smoothness parameter used in (1). It is generally agreed
that a great many economic time series are integrated of order d = 1 or 2. There is
some controversy as to which one is typically the more appropriate as shown in
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Granger (1997) and Harvey (1997), but there is scant support for higher values.
Hence, we shall restrict attention to such generating models with d = 1 or 2 for yt.

Since yt is the sum of the individual components, it follows from (3) that

ð1� LÞ2yt ¼ AðLÞet þ ð1� LÞ2AðLÞut ¼ AðLÞ½et þ ð1� LÞ2ut�
¼ AðLÞð1� c1L� c2L

2Þgt ð6Þ

where gt is white noise, whose variance along with the parameters ci depends through
(5) on the smoothness parameter k. For example, solving the usual autocovariance
equalities and imposing the invertibility condition on 1 � c1L � c2L

2 yields

c1 ¼ 1:56; c2 ¼ �0:64; r2
g ¼ 1:57r2

u; ð7Þ

c1 ¼ 1:78; c2 ¼ �0:80; r2
g ¼ 1:25r2

u; ð8Þ

c1 ¼ 1:87; c2 ¼ �0:88; r2
g ¼ 1:14r2

u; ð9Þ

for annual (k = 100), quarterly (k = 1600), and monthly (k = 14,400) frequencies
respectively. Consider first the case where yt is I(2), with stationary autoregressive
operator /(L) of order p and invertible moving average operator h(L) of order q

in its generating model. Then in (6) set

AðLÞ ¼ hðLÞ
/ðLÞð1� c1L� c2L

2Þ
ð10Þ

so that

/ðLÞð1� LÞ2yt ¼ hðLÞgt: ð11Þ
Since there is no restriction, other than stationarity and invertibility, on the param-
eterisations /(L) and h(L), the implication is that, whatever the choice of k, an opti-
mal HP decomposition of the form (3) exists. Given r2

g and k, the variances r2
u and r2

g

as well as the coefficients ci are determined simultaneously from (5) and (6). It fol-
lows from (11), (10), and (3) that in general, if the data generating process for yt
is ARIMA(p, 2,q), that for ygt is ARIMA(p + 2,2,q) and that for yct is stationary
ARMA(p + 2,q).

Now let yt be I(1), with stationary autoregressive operator /(L) and invertible
moving average operator h(L), and in (6) set

AðLÞ ¼ hðLÞð1� LÞ
/ðLÞð1� c1L� c2L

2Þ
ð12Þ

which is permissible as (3) does not preclude a unit moving average root in A(L).
Then

/ðLÞð1� LÞyt ¼ hðLÞgt ð13Þ
and it immediately follows that if the process represented by (13) is ARIMA(p, 1,q),
that for ygt is ARIMA(p + 2,1,q) and that for yct is stationary ARMA(p + 2,q + 1)
with a unit moving average root. Of course, in such conclusions for either I(2) or
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I(1) processes, the possibility exists of pathological cases where cancelling factors in
the autoregressive and moving average operators generate lower dimensional gener-
ating models for the components series. For example, suppose h(L) = 1 � c1L �
c2L

2 in (10). Then, the factors in the autoregressive and moving average operators
in ygt and yct are cancelled, which leads to the case where yt is more heavily parame-
terised than the components series (ygt and yct ). More precisely, in this case, the pro-
cess of yt is ARIMA(p, 2,2) while those of ygt and yct are ARIMA(p, 2,0) and
ARIMA(p, 0,0) respectively.
3. Estimation of recent cyclical components

In this section, our concern is with the most recent HP cyclical component esti-
mates in a series of finite length. Suppose that a time series is generated by the pro-
cess (3), so that implicitly yct is the cyclical component estimated by the filter. That
estimate will be optimal at the centre of a ‘‘long’’ series. However, towards the series
endpoints components estimates will in general be inefficient. That conclusion is eas-
ily seen in the present context. The filter (2) is symmetric two-sided, but of course
such a filter is not directly applicable towards the end-points, and does not of neces-
sity correspond to the solution of (1). However, as follows directly from results of
Burman (1980), optimal components estimates follow from augmenting a given ser-
ies yt with optimal forecasts (and optimal backcasts if interest is also in the earliest
values), and applying the filter to the augmented series. Here, we view the filter as an
attempt to estimate the quantity yct of (3), assess the suboptimality of the HP esti-
mates of the most recent time periods, and demonstrate how the inefficiency can
be improved by using a forecast-based augmentation to the filter.

Let the time series yt be generated through (3), so that at the ‘‘centre’’ of a long
series the HP filter optimally estimates the cyclical component yct . We shall explore
in detail the case where A(L) is a first order autoregressive operator (1 � aL)�1,
jaj < 1, or a first-order moving average operator (1 � bL), jbj < 1. As follows from
(6) the generating processes for yt in these cases are, respectively

ð1� aLÞð1� LÞ2yt ¼ ð1� c1L� c2L
2Þgt ð14Þ

and

ð1� LÞ2yt ¼ ð1� bLÞð1� c1L� c2L
2Þgt ð15Þ

where the ci depend on k of (5). In the simulations that follow, we set k = 100, 1600,
or 14,400, and, without loss of generality, r2

u ¼ 1. Also, in these simulations, the
white noise processes et and ut were taken to be independent Gaussian. The usual
HP components estimate ŷct then follows directly from yt (t = 1,2, . . . ,T).

Each generated series was augmented byH minimum mean squared error-optimal
forecasts, giving series ~yt ðt ¼ 1; 2; . . . ; T þ HÞ where ~yt ¼ yt ðt ¼ 1; 2; . . . ; T Þ, and the
remaining elements of ~yt are forecasts based on yT�j (j = 0,1,2, . . .) and (14) or (15)
in the usual way. A detailed discussion on how to generate the forecasts
~yt ðt ¼ T þ 1; . . . ; T þ HÞ is provided in Appendix A. Estimation results are more
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or less invariant to T, provided that the sample size is moderately large, and in our
simulations we set its value at 100. The theoretical conclusion on forecast-augmen-
tation strictly requires forecasts infinitely far ahead. However, the weights given by
the filter to distant forecasts become negligible. After some experimentation with
both real and generated data, we found it sufficient to fix H = 28 (corresponding
to seven years of quarterly data). We denote by b~yct the estimated cyclical components
obtained by applying the HP filter to ~yt ðt ¼ 1; 2; . . . ; T þ HÞ.

In our experiments, cyclical components are of course known quantities, given by
(3) with A(L) = (1 � aL)�1 or A(L) = (1 � bL), and in our simulations directly gen-
erated from these processes, so it is straightforward to assess the precision of their
estimation. We measured this through the standard deviation of estimation error,

that is (ycT�j � ŷcT�j) for the standard HP filter and (ycT�j � d~ycT�j) for the filter applied

to the forecast-augmented series, estimated through 5000 replications. These esti-
mates are denoted s and sf, respectively. The latter, of course, estimates the error
standard deviation of optimal estimates of yct of (3). Results for the AR(1) and
MA(1) representations of A(L) are given respectively in Tables 1 and 2 for estimation
of the cyclical components ycT�j (j = 0,1,2,10) where Tables 1(a), 2(a) are for
k = 100, Tables 1(b), 2(b) for k = 1600 and Tables 1(c), 2(c) for k = 14,400. The esti-
mates based on forecast-augmentation are squared error-optimal, and the results of
these tables demonstrate the general suboptimality of the HP filter as an estimator of
recent cyclical components when that filter is known to provide optimal estimates
of such components at a series ‘‘centre’’. The degree of that suboptimality strongly
depends on both the values of the model parameters and the values of the smoothing
parameter k. When the typical quarterly value k = 1600 is used, the suboptimality of
the HP filter is most visible in Table 1(b) for low negative a and in Table 2(b) for high
positive b, both of which correspond to substantial negative first autocorrelation in
the ‘‘true’’ cyclical component of (3). For the AR(1) case, the suboptimality of the
HP filter at the series endpoints becomes more pronounced for the annual frequency
(k = 100) and less for the monthly frequency (k = 14,400). On the other hand, when
A(L) = (1 � bL), the degree of suboptimality does not change much across various
values of k. As is to be expected, the relative efficiency of the standard HP estimators
gradually increases with increasing distance from the series endpoints. By the stage
that the observation of interest is ten values from the series end, standard HP is vir-
tually fully efficient in all cases.

The actual values of s are worth investigating. For the most recent observations,
these estimation error standard deviations are far from negligible compared to the
standard deviation of the cyclical component yct . The standard deviation of yct isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� a2Þ�1
q

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� b2Þ

q
for A(L) = (1 � aL)�1 and A(L) = (1 � bL), respec-

tively. We tabulate these values for comparison purpose in columns 2–3 (under
the headings of DGP1 and DGP2) of Table 5 for the considered values of a and
b. The fact that the actual values of s are not proportional to the standard deviation
of yct indicates that the behaviour of the trend component ygt may play a dominant
role in the composite series yt and may have a larger effect on the size of s than
the cyclical component. When A(L) = (1 � aL)�1, ygt follows an ARIMA(1,2,0)



Table 1
Standard deviations of estimators of recent cyclical components in generating processes (3) for which HP
is theoretically optimal: (a) A(L) = (1 � aL)�1, k = 100; (b) A(L) = (1 � aL)�1, k = 1600 and (c)
A(L) = (1 � aL)�1, k = 14,400

Observation T T � 1 T � 2 T � 10

a s sf/s s sf/s s sf/s s sf/s

Panel (a)

�0.9 0.56 0.64 0.43 0.67 0.33 0.72 0.19 0.99
�0.8 0.46 0.79 0.36 0.81 0.29 0.85 0.20 0.99
�0.7 0.45 0.87 0.36 0.88 0.29 0.91 0.20 0.99
�0.6 0.45 0.92 0.36 0.93 0.29 0.95 0.22 1.00
�0.5 0.45 0.95 0.37 0.95 0.30 0.96 0.23 1.00
�0.4 0.47 0.97 0.38 0.97 0.32 0.98 0.25 1.00
�0.3 0.50 0.98 0.40 0.98 0.34 0.99 0.27 1.00
�0.2 0.53 0.99 0.43 0.99 0.35 1.00 0.29 1.00
�0.1 0.56 1.00 0.45 1.00 0.38 1.00 0.31 1.00
0 0.60 1.00 0.49 1.00 0.42 1.00 0.34 1.00
0.1 0.65 1.00 0.53 1.00 0.45 1.00 0.38 1.00
0.2 0.71 0.99 0.58 0.99 0.50 1.00 0.42 1.00
0.3 0.80 0.99 0.65 0.99 0.56 0.99 0.48 1.00
0.4 0.90 0.97 0.73 0.98 0.63 0.99 0.55 1.00
0.5 1.03 0.95 0.84 0.97 0.72 0.98 0.64 1.00
0.6 1.23 0.92 1.01 0.94 0.87 0.97 0.78 1.00
0.7 1.47 0.90 1.21 0.93 1.07 0.97 1.00 1.00
0.8 1.90 0.86 1.58 0.91 1.41 0.96 1.32 1.00
0.9 2.88 0.80 2.42 0.90 2.18 0.96 2.04 0.99

Panel (b)

�0.9 0.34 0.74 0.30 0.74 0.27 0.75 0.13 0.97
�0.8 0.30 0.86 0.27 0.87 0.24 0.87 0.14 0.99
�0.7 0.30 0.93 0.27 0.93 0.24 0.93 0.14 1.00
�0.6 0.31 0.95 0.28 0.95 0.25 0.95 0.15 1.00
�0.5 0.32 0.97 0.29 0.97 0.26 0.97 0.16 1.00
�0.4 0.34 0.98 0.30 0.98 0.27 0.98 0.17 1.00
�0.3 0.36 0.99 0.32 0.99 0.29 0.99 0.19 1.00
�0.2 0.38 1.00 0.34 1.00 0.31 1.00 0.20 1.00
�0.1 0.41 1.00 0.37 1.00 0.33 1.00 0.22 1.00
0 0.45 1.00 0.40 1.00 0.36 1.00 0.24 1.00
0.1 0.49 1.00 0.44 1.00 0.40 1.00 0.27 1.00
0.2 0.55 0.99 0.49 0.99 0.44 1.00 0.30 1.00
0.3 0.62 0.99 0.56 0.99 0.50 0.99 0.34 1.00
0.4 0.70 0.98 0.63 0.99 0.56 0.99 0.40 1.00
0.5 0.82 0.97 0.73 0.98 0.66 0.98 0.48 1.00
0.6 1.01 0.95 0.90 0.95 0.82 0.96 0.59 1.00
0.7 1.26 0.93 1.14 0.93 1.03 0.94 0.78 1.00
0.8 1.71 0.89 1.54 0.90 1.40 0.92 1.08 1.00
0.9 2.83 0.81 2.55 0.84 2.33 0.87 1.82 1.00

Panel (c)

�0.9 0.23 0.82 0.22 0.82 0.20 0.82 0.12 0.89
�0.8 0.22 0.91 0.20 0.92 0.19 0.92 0.12 0.96
�0.7 0.22 0.96 0.21 0.96 0.19 0.96 0.12 0.98
�0.6 0.23 0.97 0.22 0.97 0.20 0.97 0.13 0.98

(continued on next page)
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Table 1 (continued)

Observation T T � 1 T � 2 T � 10

a s sf/s s sf/s s sf/s s sf/s

�0.5 0.24 0.98 0.23 0.98 0.21 0.98 0.14 0.99
�0.4 0.26 0.99 0.24 0.99 0.23 0.99 0.15 1.00
�0.3 0.27 1.00 0.26 1.00 0.24 1.00 0.16 1.00
�0.2 0.30 1.00 0.28 1.00 0.26 1.00 0.17 1.00
�0.1 0.32 1.00 0.30 1.00 0.28 1.00 0.19 1.00
0 0.35 1.00 0.33 1.00 0.31 1.00 0.21 1.00
0.1 0.38 1.00 0.36 1.00 0.34 1.00 0.23 1.00
0.2 0.42 1.00 0.40 1.00 0.37 1.00 0.26 1.00
0.3 0.49 1.00 0.45 1.00 0.43 1.00 0.29 1.00
0.4 0.56 1.00 0.52 1.00 0.49 1.00 0.34 1.00
0.5 0.66 0.99 0.62 0.99 0.58 0.99 0.40 0.99
0.6 0.82 0.97 0.77 0.97 0.72 0.97 0.50 0.99
0.7 1.06 0.95 1.00 0.95 0.94 0.95 0.66 0.98
0.8 1.48 0.92 1.39 0.92 1.31 0.92 0.94 0.98
0.9 2.60 0.85 2.44 0.86 2.29 0.86 1.65 0.97
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given by ð1� aLÞð1� LÞ2ygt ¼ et. Hence, as a approaches 1, ygt becomes I(3), which
can explain why the values of s are so large for high positive a in Table 1(a)–(c).
On the other hand, when A(L) = (1 � bL), the trend component follows and ARI-

MA(0,2,1) process given by ð1� LÞ2ygt ¼ ð1� bLÞet. As b ! 1, ygt becomes I(1) while,
as b ! �1, ygt behaves more like a sum of two perfectly correlated I(2) processes (in
fact, in the limit, we have ygt ¼

Pt
s¼1

Ps
k¼1ek þ

Pt
s¼1

Ps
k¼1ek�1). Hence, it is not sur-

prising to have large estimation error variance for low negative b in Table 2(a)–
(c). As Tables 1 and 2 show, in the above mentioned cases, the values of s are
disturbingly large. The implication must be that, even if the components decompo-
sition (3), implied by HP filter optimality, is viewed as ‘‘reasonable’’, estimation of
such a decomposition can be quite imprecise.

Taken together, the results of Tables 1 and 2 demonstrate that, while suboptimal-
ity of the HP estimators at or near the endpoints of a series is a priori obvious, even
in cases where HP is theoretically optimal at the series centre, the extent of that sub-
optimality can be serious. It must be concluded that there is no generating process
for which HP yields optimal estimators of the cyclical component at all time periods,
though it is clear from the tables that in some cases it comes close to doing so.
4. Revision of most recent cyclical components

In Section 2, we noted that, although it was not specifically developed with that
purpose in mind, for any I(1) or I(2) process yt, the HP estimated cyclical component
could be viewed as an optimal estimator, in squared-error-loss sense, of a ‘‘true’’
cyclical component defined in a specific way. In Section 3 we saw that the HP esti-
mators of the most recent values could be far from optimal. In this section we shall
examine what is essentially the same issue from a somewhat different perspective,
superficially abandoning the notion of a ‘‘true’’ component.



Table 2
Standard deviations of estimators of recent cyclical components in generating processes (3) for which HP
is theoretically optimal: (a) A(L) = (1 � bL), k = 100; Panel (b) A(L) = (1 � bL), k = 1600; and Panel (c)
A(L) = (l � bL), k = 14,400

Observation T T � 1 T � 2 T � 10

b s sf/s s sf/s s sf/s s sf/s

Panel (a)

�0.9 1.08 0.96 0.88 0.97 0.75 0.98 0.64 1.00
�0.8 1.00 0.96 0.82 0.97 0.51 0.98 0.60 1.00
�0.7 0.97 0.97 0.80 0.97 0.68 0.98 0.57 1.00
�0.6 0.92 0.97 0.75 0.98 0.64 0.99 0.54 1.00
�0.5 0.86 0.98 0.70 0.98 0.60 0.99 0.50 1.00
�0.4 0.80 0.99 0.65 0.99 0.56 0.99 0.47 1.00
�0.3 0.75 0.99 0.62 0.99 0.53 0.99 0.44 1.00
�0.2 0.71 1.00 0.57 1.00 0.48 1.00 0.41 1.00
�0.1 0.65 1.00 0.53 1.00 0.45 1.00 0.37 1.00
0 0.60 1.00 0.49 1.00 0.42 1.00 0.34 1.00
0.1 0.56 1.00 0.45 1.00 0.38 1.00 0.31 1.00
0.2 0.51 0.99 0.41 1.00 0.34 1.00 0.28 1.00
0.3 0.48 0.97 0.38 0.97 0.32 0.98 0.25 1.00
0.4 0.44 0.95 0.35 0.96 0.29 0.97 0.22 1.00
0.5 0.41 0.92 0.32 0.93 0.56 0.94 0.19 1.00
0.6 0.39 0.84 0.31 0.86 0.24 0.89 0.16 0.99
0.7 0.39 0.76 0.30 0.79 0.23 0.83 0.14 0.99
0.8 0.38 0.67 0.29 0.70 0.22 0.76 0.12 0.98
0.9 0.39 0.57 0.29 0.62 0.22 0.69 0.11 0.98

Panel (b)

�0.9 0.83 0.99 0.74 0.99 0.67 0.99 0.46 1.00
�0.8 0.78 0.99 0.70 0.99 0.63 0.99 0.44 1.00
�0.7 0.75 0.99 0.67 0.99 0.61 0.99 0.41 1.00
�0.6 0.70 0.99 0.63 0.99 0.57 0.99 0.38 1.00
�0.5 0.66 0.99 0.59 0.99 0.53 1.00 0.36 1.00
�0.4 0.61 1.00 0.55 1.00 0.50 1.00 0.34 1.00
�0.3 0.57 1.00 0.52 1.00 0.46 1.00 0.32 1.00
�0.2 0.53 1.00 0.48 1.00 0.43 1.00 0.29 1.00
�0.1 0.49 1.00 0.44 1.00 0.40 1.00 0.27 1.00
0 0.45 1.00 0.41 1.00 0.37 1.00 0.25 1.00
0.1 0.41 1.00 0.37 1.00 0.33 1.00 0.22 1.00
0.2 0.37 1.00 0.33 1.00 0.30 1.00 0.19 1.00
0.3 0.34 0.99 0.30 0.99 0.27 0.99 0.17 1.00
0.4 0.30 0.97 0.27 0.97 0.24 0.97 0.15 1.00
0.5 0.27 0.94 0.24 0.94 0.21 0.94 0.13 1.00
0.6 0.24 0.88 0.22 0.88 0.19 0.89 0.10 0.99
0.7 0.22 0.78 0.20 0.79 0.17 0.80 0.08 0.98
0.8 0.21 0.65 0.19 0.66 0.16 0.68 0.06 0.96
0.9 0.21 0.50 0.18 0.51 0.16 0.53 0.05 0.91

Panel (c)

�0.9 0.65 0.99 0.61 0.99 0.57 0.99 0.39 1.00
�0.8 0.62 0.99 0.58 0.99 0.55 0.99 0.37 1.00
�0.7 0.59 0.99 0.55 0.99 0.52 0.99 0.34 1.00
�0.6 0.55 1.00 0.52 1.00 0.49 1.00 0.33 1.00

(continued on next page)
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Table 2 (continued)

Observation T T � 1 T � 2 T � 10

a s sf/s s sf/s s sf/s s sf/s

�0.5 0.52 1.00 0.48 1.00 0.45 1.00 0.30 1.00
�0.4 0.48 1.00 0.45 1.00 0.42 1.00 0.29 1.00
�0.3 0.45 1.00 0.42 1.00 0.39 1.00 0.27 1.00
�0.2 0.42 1.00 0.39 1.00 0.37 1.00 0.25 1.00
�0.1 0.38 1.00 0.36 1.00 0.34 1.00 0.22 1.00
0 0.35 1.00 0.33 1.00 0.31 1.00 0.21 1.00
0.1 0.31 1.00 0.29 1.00 0.28 1.00 0.19 1.00
0.2 0.28 1.00 0.26 1.00 0.25 1.00 0.17 1.00
0.3 0.25 0.99 0.24 0.99 0.22 0.99 0.15 0.99
0.4 0.22 0.98 0.21 0.98 0.20 0.98 0.13 0.99
0.5 0.19 0.97 0.18 0.97 0.17 0.96 0.11 0.98
0.6 0.17 0.91 0.16 0.91 0.15 0.91 0.09 0.95
0.7 0.15 0.83 0.14 0.83 0.13 0.86 0.08 0.90
0.8 0.13 0.69 0.12 0.69 0.11 0.69 0.06 0.79
0.9 0.12 0.51 0.12 0.51 0.11 0.51 0.06 0.61
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Consider again a time series yt (t = 1,2, . . . , T) and let ŷct ðt ¼ 1; 2; . . . ; T Þ be the
HP cyclical component, following in the usual way through (1): specifically, we con-
centrate on the most recent of these ŷcT . Suppose now that H time periods have
elapsed, so the analyst now has access to yt (t = 1,2, . . . , T + H). The analyst could
then pass this entire extended series through the HP filter, obtaining a new estimate
ŷc�T of the cyclical component at time T, revising the original estimate by an amount
(ŷc�T � ŷcT ). Of course, some revision of this sort would be inevitable, but it seems rea-
sonable to take the view that one would like it to be as small as possible—that is, the
standard deviation s of the revision should ideally be no larger than is necessary. The
issue of revision size can be directly explored in terms of the generating process for a
given series yt, without recourse to explicit specification of components generating
models. We do so here for two types of I(1) processes—the ARIMA(1,1,0) model

ð1� /LÞð1� LÞyt ¼ gt; j / j< 1; ð16Þ
and the ARIMA(0,1,1) model

ð1� LÞyt ¼ ð1� hLÞgt; j h j< 1: ð17Þ
We generated series of T observations from these processes with gt independent

Gaussian with mean 0 and variance r2
g ¼ 1, and applied the HP filter. Generation

was continued for H subsequent observations and the filter was also applied to
the extended series so that revisions could be calculated: their standard deviations
were estimated through 5000 replications. The result is virtually invariant to T, pro-
vided that number is moderately large: here we took T = 100. The quantity H is cho-
sen sufficiently large for the revision process to ‘‘settle down’’. As in the previous
section, we found H = 28 to be sufficient.

In fact, the HP filter is easily modified to yield smaller revisions. Define the fore-
cast-augmented series ~yt (t ¼ 1; 2; . . . ; T þ H ) precisely as in the previous section and
apply the full HP filter to the complete series ~yt, taking the estimated cyclical com-
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ponent at time T, c~ycT , as an alternative estimator of the time T cyclical component. It
should be emphasised that c~ycT , depends only on data available at time T—that is, on
yT�j (j P 0). For the two models of our study, forecasts can be obtained directly
from (16) and (17), employing the same methodology discussed in Appendix A. It
is quite clear that such an approach minimises revision standard deviation. The esti-
mated quantity is simply ŷc�T , which is precisely the same linear function of yt

(t = 1,2, . . . , T + H) as is c~ycT of the forecast augmented series ~yt (t = 1,2, . . . , T +
H). But since those forecasts in ~yt are minimum mean squared error, so must bec~ycT for the corresponding linear function of yt (t = 1,2, . . . , T + H). We estimated
in our simulations sf, the standard deviation of revisions (ŷc�T �c~ycT ) of the estimated
time T cyclical components when this forecast-augmented approach is used in con-
junction with the HP filter, calculating the ratios sf/s. Simulation results for the gen-
erating processes (16) and (17) are given respectively in Tables 3 and 4 for a range of
parameter values. When yt is generated by (16), it can be shown that yct follows an
ARMA(3,1) process given by ð1� /LÞð1� c1L� c2LÞyct ¼ ð1� LÞut. Similarly, when
yt follows (17), the process for yct is ARMA(2,2) given by ð1� c1L� c2LÞyct ¼ ð1� LÞ
ð1� hLÞut. The standard deviation of yct in each case can be calculated using the ex-
act formulae for the theoretical autocovariance of general ARMA(p,q) models in
McLeod (1975). The standard deviation depends on the smoothing parameter k
through c1 and c2. The actual values for the considered cases are provided in columns
4–6 (under the heading of DGP3) for the ARMA(3,1) case and 7–9 (under the head-
ing of DGP4) for the ARMA(2,2) case in Table 5. The behaviour of the cyclical
Table 3
Standard deviations of revisions of most recent HP cyclical components when (1 � /L)(1 � L)yt = et

k 100 1600 14,400

/ s sf/s s sf/s s sf/s

�0.9 0.49 0.79 0.65 0.79 0.82 0.74
�0.8 0.49 0.83 0.67 0.79 0.86 0.74
�0.7 0.50 0.85 0.72 0.79 0.93 0.73
�0.6 0.54 0.84 0.76 0.79 0.98 0.73
�0.5 0.56 0.84 0.81 0.78 1.04 0.73
�0.4 0.58 0.84 0.87 0.78 1.12 0.73
�0.3 0.64 0.84 0.95 0.78 1.20 0.73
�0.2 0.69 0.82 1.01 0.77 1.29 0.72
�0.1 0.74 0.80 1.10 0.76 1.40 0.71
0 0.80 0.79 1.20 0.75 1.53 0.70
0.1 0.88 0.79 1.32 0.75 1.72 0.70
0.2 0.97 0.77 1.49 0.73 1.94 0.69
0.3 1.08 0.74 1.69 0.72 2.21 0.68
0.4 1.24 0.72 1.97 0.69 2.54 0.67
0.5 1.42 0.70 2.35 0.68 3.08 0.65
0.6 1.65 0.67 2.83 0.65 3.84 0.63
0.7 1.92 0.62 3.50 0.61 4.85 0.60
0.8 2.27 0.58 4.69 0.56 6.94 0.55
0.9 2.72 0.52 6.57 0.49 11.03 0.48



Table 4
Standard deviations of revisions of most recent HP cyclical components when (1 � L)yt = (1 � hL)et

k 100 1600 14,400

/ s sf/s s sf/s s sf/s

�0.9 1.47 0.71 2.27 0.71 2.94 0.68
�0.8 1.39 0.71 2.13 0.71 2.78 0.68
�0.7 1.31 0.73 2.05 0.71 2.67 0.68
�0.6 1.28 0.73 1.98 0.72 2.50 0.68
�0.5 1.19 0.74 1.80 0.72 2.33 0.68
�0.4 1.08 0.75 1.69 0.72 2.18 0.69
�0.3 1.04 0.77 1.57 0.75 2.01 0.70
�0.2 0.96 0.77 1.45 0.75 1.85 0.70
�0.1 0.88 0.78 1.32 0.75 1.70 0.70
0 0.80 0.79 1.20 0.75 1.53 0.70
0.1 0.73 0.83 1.08 0.78 1.40 0.72
0.2 0.67 0.83 0.97 0.78 1.25 0.72
0.3 0.60 0.83 0.86 0.79 1.10 0.73
0.4 0.54 0.84 0.75 0.79 0.93 0.74
0.5 0.49 0.84 0.65 0.81 0.80 0.76
0.6 0.44 0.84 0.54 0.84 0.66 0.77
0.7 0.40 0.79 0.44 0.83 0.50 0.80
0.8 0.38 0.72 0.36 0.82 0.37 0.82
0.9 0.37 0.63 0.30 0.72 0.26 0.78

Table 5
Standard deviations of HP cyclical components for various DGP�s: /ðLÞyct ¼ hðLÞet

DGP1 DGP2 DGP3 DGP4

100 1600 14,400 100 1600 14,400

�0.9 2.29 1.35 1.27 1.39 1.55 1.79 2.69 3.64
�0.8 1.67 1.28 1.01 1.17 1.38 1.70 2.55 3.45
�0.7 1.40 1.22 0.92 1.12 1.35 1.61 2.41 3.26
�0.6 1.25 1.17 0.89 1.11 1.38 1.52 2.27 3.07
�0.5 1.15 1.12 0.89 1.14 1.43 1.43 2.14 2.88
�0.4 1.09 1.08 0.90 1.18 1.50 1.35 2.00 2.70
�0.3 1.05 1.04 0.92 1.23 1.58 1.27 1.87 2.51
�0.2 1.02 1.02 0.95 1.30 1.69 1.19 1.74 2.33
�0.1 1.01 1.00 1.00 1.39 1.82 1.12 1.62 2.15
0 1.00 1.00 1.06 1.50 1.98 1.06 1.50 1.98
0.1 1.01 1.00 1.13 1.63 2.17 1.00 1.38 1.81
0.2 1.02 1.02 1.21 1.79 2.41 0.95 1.28 1.64
0.3 1.05 1.04 1.31 1.99 2.71 0.90 1.18 1.49
0.4 1.09 1.08 1.44 2.24 3.10 0.87 1.09 1.34
0.5 1.15 1.12 1.60 2.58 3.63 0.85 1.02 1.21
0.6 1.25 1.17 1.79 3.03 4.38 0.85 0.97 1.10
0.7 1.40 1.22 2.04 3.67 5.52 0.86 0.94 1.02
0.8 1.67 1.28 2.35 4.61 7.42 0.88 0.93 0.97
0.9 2.29 1.35 2.74 6.07 11.13 0.91 0.94 0.96

DGP1: /(L) = 1 � aL and h(L) = 1; DGP2: /(L) = 1 and h(L) = 1 � bL; DGP3: /(L) = (1 � /L)
(1 � c1L � c2L) and h(L) = 1 � L; and DGP4: /(L) = (1 � c1L � c2L) and h(L) = (1 � L)(1 � hL).
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component yct is highly sensitive to the values of /, h and k. As / ! 1 and h ! �1,
the cyclical component becomes more volatile.

It can be seen from Tables 3 and 4 that, compared with the standard deviation of
the cyclical component yct , the revision standard deviations s for the usual HP cyclical
component can be very large for all values of k, particularly when first differences of
the series are positively autocorrelated (i.e. / close to 1 and h close to �1). Given
that the behaviour of the cyclical component yct becomes more volatile for such val-
ues, it is expected that revision standard deviations increase as / ! 1 and h ! �1. It
is, however, important to note that the relative size of s (compared to the standard
deviation of yct ) is also increasing in such cases. This phenomenon can be somewhat
mitigated if the filter is applied to the forecast-augmented series, which will generally
lead to reductions of at least 20%, and in some cases much more, in these revision
standard deviations. When yt is follows ARIMA(1,1,0), larger reductions are gener-
ally achieved for higher frequency values of k regardless of the values of / as shown
in Table 3. This observation is also applied to the ARIMA(0,1,1) case (Table 4) ex-
cept the large positive values (h = 0.7, 0.8 and 0.9) of the MA coefficient. The results
in this section confirm and strengthen the finding of Kaiser and Maravall (1999) by
showing the suboptimality of the HP filter at time series endpoints for various data
generating processes and for various values of the smoothing parameters.
5. Conclusions

The Hodrick–Prescott filter is often applied to individual economic time series as
an initial step in real business cycle analyses. The filter generates cyclical compo-
nents, which are then subjected to further analysis. Although the view is implicitly
taken that actual time series are made up of the sum of growth and cyclical compo-
nents, little attention is paid to either the structures of or relationship between those
components. In particular, the HP filter was not developed to optimally estimate spe-
cific unobserved components, but rather is presented as an intuitively plausible trans-
formation. Whether or why this should be so is not our concern.

In Section 2 we note that, whatever the intention, the HP filter does optimally esti-
mate a particular components decomposition, and one might take the view that,
inadvertently or otherwise, that is precisely the decomposition that is being estimated
when the filter is applied. As we have noted, a number of previous authors have ana-
lysed HP from this viewpoint. However, the optimality conclusion strictly applies to
infinitely long time series, or from a practical viewpoint to the midpoints of series of
typical length. It does not apply at or close to series endpoints. Since the most recent
cyclical components might be viewed by practitioners as of most interest, it seems
reasonable to analyse the performance of the HP filter here.

At the endpoints the filter is demonstrably suboptimal, and it is easy to construct a
modification whose performance is superior from two different, but closely related,
perspectives. We examined those in turn in Sections 3 and 4. In Section 3, the ‘‘true’’
cyclical component was taken to be that implied by the optimality results of Section 2,
and the estimation of the most recent values of this component was analysed. It might
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be objected that HP was not explicitly developed as a components estimator, and
moreover that the optimal decompositions of Section 2 are not unique, since they im-
pose orthogonality of the trend and cycle, though there is no particular reason to view
such a restriction as plausible. In Section 4, we view the filter�s output at the series
endpoints in terms of revisions—that is, changes to initial components estimates that
would inevitably occur as new data became available. It seems reasonable to argue
that, on average, the magnitude of such revisions should be as small as possible.

The results of Sections 3 and 4 demonstrate, for specific special model cases, the
non-trivial suboptimality of the usual HP filter from both perspectives at series end-
points. Moreover, it is seen that, from each perspective, a simple easily applied rem-
edy generating significant improvements is readily available. The suboptimality of
the HP filter at time series endpoints and our forecast-augmentation method can
be of great interest to policy makers; especially, central bank economists who like
to measure the current output gap as precisely as possible. Research on the practical
implementation of our method to estimate the current output gap for the G-7 coun-
tries is ongoing.
Appendix A.

In this section we explain how to generate the forecasts ~yt ðt ¼ T þ 1; . . . ; T þ HÞ
used in Section 3. We consider the AR(1) case only since a similar procedure has been
used for the MA(1) case. If A(L) = (1 � aL)�1, then yt follows an ARIMA(1,2,2)
process:

ð1� aLÞð1� LÞ2yt ¼ ð1� c1L� c2LÞgt;
which can be expressed as an AR(1) representation as follows:

yt ¼
X1
i¼1

piyt�i þ gt

where p1 = 2 + a � c1, p2 = �(1 + 2a) + c1p1 � c2, p3 = a + c1p2 + c2p1 and
pj = c1pj�1 + c2pj�2 for j P 4. The recursive formula for pj is truncated at T since
there are only T observations available in the generation of the forecast ~yTþ1. Using
the AR(T) approximation, the optimal point forecasts ~yt ðt ¼ T þ 1; . . . ; T þ HÞ is
given by

~yTþj ¼ e01A
jY T ðA:1Þ

where YT = (yT,yT�1, . . . , y2 ,y1)
0, A ¼ p0

IT�10ðT�1Þ�1

� �
, p = (p1,p2, . . . , pT) 0 and e1 is

a T · 1 vector with one in the first element and zeros elsewhere.

Hence, ~yTþj is a linear function of YT as

~yTþj ¼
XT
i¼1

hjiyT�iþ1

where hji determined by (A.1).
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