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Abstract

In this study, we propose a novel nonlinear ensemble forecasting model integrating generalized linear auto-
regression (GLAR) with artificial neural networks (ANN) in order to obtain accurate prediction results and ame-
liorate forecasting performances. We compare the new model’s performance with the two individual forecasting
models—GLAR and ANN—as well as with the hybrid model and the linear combination models. Empirical results
obtained reveal that the prediction using the nonlinear ensemble model is generally better than those obtained using
the other models presented in this study in terms of the same evaluation measurements. Our findings reveal that the
nonlinear ensemble model proposed here can be used as an alternative forecasting tool for exchange rates to achieve
greater forecasting accuracy and improve prediction quality further.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Exchange rate modeling and forecasting has been a common research stream in the last few decades.
Over this time, the research stream has gained momentum with the advancement of computer
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technologies, which have made many elaborate computation methods available and practical. However,
it is not easy to predict exchange rates due to their high volatility and noise. But the difficulty in fore-
casting exchange rates is usually attributed to the limitation of many conventional forecasting models;
this has encouraged academic researchers and business practitioners to develop more predictable fore-
casting models. As a result models using artificial intelligence such as artificial neural network (ANN)
techniques have been recognized as more useful than conventional statistical forecasting models. Liter-
ature documenting the research shows this is quite diverse and involves different architectural designs.
Some examples are presented. De Matos[1] compared the strength of a multilayer feed-forward network
(MLFN) with that of a recurrent network based on the forecasting of Japanese yen futures. Kuan and
Liu [2] provided a comparative evaluation of the performance of MLFN and a recurrent network on the
prediction of an array of commonly traded exchange rates. Hsu et al.[3] developed a clustering neural
network model to predict the direction of movements in the USD/DEM exchange rate. Their experimen-
tal results suggested that their proposed model achieved better forecasting performance relative to other
indicators.

Similarly, Tenti [4] applied recurrent neural network models to forecast exchange rates. Shazly and
Shazly[5] designed a hybrid model combining neural networks and genetic training to the 3-month
spot rate of exchange for four currencies: the British pound, the German mark, the Japanese yen and
the Swiss franc. The experimental results reported revealed that the networks’ forecasts outperformed
predictions made by both the forward and futures rates in terms of accuracy and correctness. In a more
recent study by Leung et al.[6], the forecasting accuracy of MLFN was compared with the general
regression neural network (GRNN). The study showed that the GRNN possessed a greater forecast-
ing strength relative to MLFN with respect to a variety of currency exchanges. Zhang and Berardi[7]
adopted a different approach. Instead of using single network architecture, their research investigated
the use of ensemble methods in exchange rate forecasting. Essentially, the study proposed using sys-
tematic and serial partitioning methods to build ensemble models consisting of different neural network
structures. Results indicated that the ensemble network could consistently outperform a single network
design.

Recently, more hybrid forecasting models have been developed that integrate neural network tech-
niques with many conventional and burgeoning forecasting methods such as econometrical models
and time series models to improve prediction accuracy. There are a few examples in the existing lit-
erature combining neural network forecasting models with conventional time series forecasting tech-
niques, especially auto-regression integrated moving average (ARIMA). Wedding II and Cios[8] con-
structed a combination model incorporating radial basis function neural networks (RBFNN) and the
univariant Box-Jenkins (UBJ) model to predict the Wolfer Sunspot, West German monthly unemploy-
ment figures and the number of monthly housing starts; the experiments proved that the hybrid model
for time series forecasting is capable of giving significantly better results. Luxhoj et al.[9] presented
a hybrid econometric and ANN approach for sales forecasting and obtained good prediction perfor-
mance. Likewise, Voort et al.[10] introduced a hybrid method called KARIMA using a Kohonen self-
organizing map and ARIMA method to predict short-term traffic flow, and obtained relatively better
results.

In the same way, Tseng et al.[11] proposed using a hybrid model (SARIMABP) that combines the
seasonal ARIMA (SARIMA) model and the back-propagation (BP) neural network model to predict
seasonal time series data. The experimental results showed that SARIMABP was superior to the SARIMA
model, to the back-propagation model with deseasonalized data, and to the back-propagation model with
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differenced data for the test cases of machinery production time series and soft drink time series. The
values of the MSE, MAE and MAPE were all the lowest for the SARIMABP model. The SARIMABP
also outperformed other models in terms of overall proposed criteria including MSE, MAE, MAPE and
turning points forecasts. For the machinery production time series, the SARIMABP model remained
stable even when the number of historical data was reduced from 60 to 36. Zhang[12] proposed a hybrid
methodology that combined both ARIMA and ANN models taking advantage of the unique strengths of
these models in linear and nonlinear modeling for time series forecasting. Empirical results with real data
sets indicated that the hybrid model could provide an effective way to improve the forecasting accuracy
achieved by either of the models used separately.

In their pioneering work on combined forecasts[13,14], Bates and Granger showed that a linear
combination of forecasts would give a smaller error variance than any of the individual methods. Since
then, the studies on this topic (i.e. combined forecasts) have expanded dramatically. Makridakis et al.[15]
claimed that using a hybrid model or combining several models has become common practice in improving
forecasting accuracy ever since the well-known M-competition in which a combination of forecasts from
more than one model often leads to improved forecasting performance. Likewise, Pelikan et al.[16] and
Ginzburg and Horn[17] proposed combining several feed-forward neural networks to improve time series
forecasting accuracy. In 1989, Clemen[18] provided a comprehensive review and annotated bibliography
in this area. The basic idea of the model combination in forecasting is to use each model’s unique feature
to capture different patterns in the data. Both theoretical and empirical findings suggest that combining
different methods can be an effective and efficient way to improve forecast performances.

However, we find that there are two main problems in the existing hybrid models and combined models
mentioned above. In this literature, both the hybrid forecasting models and combined forecasting models
are limited to linear combination form. A linear combination approach is not necessarily appropriate
for all the circumstances (Problem I). Furthermore, it is not easy to determine the number of individual
forecasting models. It is well known to us that not all circumstances are satisfied with the rule of “the more,
the best”. Thus, it is necessary to choose an appropriate method to determine the number of individual
models for combining forecasting (Problem II).

In view of the first problem (i.e. linear combination drawback) a nonlinear ensemble forecasting model
utilizing the ANN technique is introduced in this paper. The fact that we use “ensemble” rather than
“combined” is based on semantics. According to the American Heritage Dictionary[19], “ensemble” is
defined as “a unit or group of complementary parts that contribute to a single effect”, while “combine”
is “to bring into a state of unity; or merge”. In fact, the nonlinear ensemble model is equivalent to the
nonlinear combination model in the general sense. But the word “ensemble” is preferable to “combined”
from the semantic point of view.

In view of the second problem (i.e. determining the number of individual models for combining
forecasting), the principal component analysis (PCA) technique is introduced. We use the PCA technique
to choose the number of individual forecasting models.

Considering the previous two main problems, this study proposes a novel nonlinear ensemble fore-
casting model for exchange rate forecasting. This model utilizes the ANN technique and PCA technique,
integrates GLAR withANN models, and takes full advantage of hybrid methods and combined techniques.
The proposed novel nonlinear ensemble model is the PCA&ANN-based nonlinear ensemble forecasting
approach, which integrates GLAR andANN models as well as the single hybrid methodology. The aims of
this study are two-fold: (1) to show how to predict exchange rates using the proposed nonlinear ensemble
model and (2) to display how various methods compare in their accuracy in forecasting foreign exchange
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rates. In view of the two aims, this study mainly describes the building process of the proposed nonlinear
ensemble model and the application of the nonlinear ensemble forecasting approach in foreign exchange
rate forecasting between the US dollar and three other major currencies—German marks, British pound
and Japanese yen—incorporating GLAR and ANN, while comparing forecasting performance with all
kinds of evaluation criteria.

The rest of the study is organized as follows. The next section describes the model building process in
detail. In order to verify the effectiveness and efficiency of the proposed model, empirical analysis of the
three main currencies’exchange rates is reported in Section 3. The conclusions are contained in Section 4.

2. Model building processes

In this section, we mainly describe the model building process step by step and in detail. First we
present the GLAR and ANN modeling processes briefly. Then a hybrid forecasting method and combined
forecasting methodologies are introduced with the aid of existing literature. Finally, based on previous
works, a nonlinear ensemble model is proposed and three forecasting evaluation criteria are presented.

2.1. Generalized linear auto-regression (GLAR) model

The generalized linear auto-regression (GLAR) model, first introduced by Shephard[20], is equivalent
to a system of reduced form equations relating each endogenous variable to lag endogenous (predeter-
mined) and pertinent exogenous variables. That is, in a GLAR model, the future value of a variable is
assumed to be a linear function of several past observations and random errors. Generally, the form of
the GLAR model is given in the following.

yt = � + C(L)yt−1 +D(L)xt−1 + �t , (1)

whereyt and�t are the actual value of endogenous variables and random disturbance at timet, xt−1 is
the actual value of related exogenous variables,� is a constant term,C(L) andD(L) are thepth andqth
order lag polynomial of endogenous variable and exogenous variables respectively in the lag operatorL,
such thatC(L) = C0 − C1L − C2L

2 − · · · − CpL
P andD(L) = D0 − D1L − D2L

2 − · · · − DqL
q .

L denotes the lag operator, e.g.,Lyt = yt−1, L
2yt = yt−2 and so on, and random disturbances,�t are

assumed to be independently and identically distributed with a mean of zero and a constant variance of
�2, i.e. �t ∼ IID(0, �2).

Actually, the GLAR is a special form of vector auto-regression (VAR) model[21] by comparison.
The difference between GLAR and VAR is only in the representation of variables. That is, the former
is a form of individual variable and the latter is the vector form. Similarly, the fact that we choose the
GLAR model rather than autoregressive integrated moving average (ARIMA) model[22] is based on the
following idea: the ARIMA model does not contain the term of exogenous variables(xt ) and thus cannot
capture the effect of other external factors. Furthermore, adding an explanatory variable may strengthen
the model’s forecasting capability. Therefore, from this paper’s perspective, because foreign exchange
rates are often affected by many factors and all variables are time series, it seems that the GLAR model
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is simpler and easier to understand than the VAR model and ARIMA model, and hence the GLAR model
is preferable to VAR and ARIMA.

Based on earlier works[20,23,24], the GLAR model involves the following five-step iterative proce-
dures:

(a) Stationary test of time series, such as unit root test;
(b) Identification of the GLAR structure, i.e. the model order is determined;
(c) Estimation of the unknown parameters;
(d) Model checks and diagnostics;
(e) Forecast future outcomes based on the known data.

This five-step model building process is typically repeated several times until a satisfactory model is
finally selected. The final model selected can then be used for prediction purposes.

The advantage of GLAR is that it is capable of receiving external information from exogenous variables.
For example, the foreign exchange rate is often influenced by many external factors (e.g. exports, inflation
and interest rate, etc.) besides the effect of formation mechanism of itself. Furthermore, the GLAR model
fits the linear characteristic of time series well. The disadvantage of the GLAR is that it cannot capture
nonlinear patterns of financial time series if nonlinearity exists.

2.2. Artificial neural network (ANN) model

In this study, one of the widely used ANN models, the back-propagation neural network (BPNN), is
used for time series forecasting[12,25–28]. Usually, the BPNN model consists of an input layer, an output
layer and one or more intervening layers also referred to as hidden layers. The hidden layers can capture
the nonlinear relationship between variables. Each layer consists of multiple neurons that are connected to
neurons in adjacent layers. Since these networks contain many interacting nonlinear neurons in multiple
layers, the networks can capture relatively complex phenomena. ANNs are already one of the models that
is able to approximate various nonlinearities in the data series.

A neural network can be trained by the historical data of a time series in order to capture the nonlinear
characteristics of the specific time series. The model parameters (connection weights and node biases)
will be adjusted iteratively by a process of minimizing the forecasting errors. For time series forecasting,
the final computational form of the ANN model is as

yt = a0 +
q∑

j=1

wjf

(
aj +

p∑
i=1

wijyt−i

)
+ �t , (2)

whereaj (j = 0,1,2, . . . , q) is a bias on thejth unit, andwij (i = 1,2, . . . , p; j = 1,2, . . . , q) is the
connection weight between layers of the model,f (·) is the transfer function of the hidden layer,p is the
number of input nodes andq is the number of hidden nodes. Actually, the ANN model in (2) performs
a nonlinear functional mapping from the past observation(yt−1, yt−2, . . . , yt−p) to the future valueyt ,
i.e.,

yt = �(yt−1, yt−2, . . . , yt−p, v)+ �t , (3)
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wherev is a vector of all parameters and� is a function determined by the network structure and connection
weights. Thus, in some senses, the ANN model is equivalent to a nonlinear autoregressive (NAR) model.

It is worth noting that in this paper the ANN model is the typical back-propagation neural network;
however, the core-training algorithm is not the gradient descent rule, but the Levenberg–Marquardt rule,
as this algorithm can increase the network’s training speed. The Levenberg–Marquardt rule is a kind of
quick algorithm in which the network’s matrix of weights is updated based on the Jacobian matrix,J,
collecting the partial derivatives of the network errorewith respect to the weights. In other words, the
matrix�W collecting the corrections of the weights in matrixW is computed according to

�W = (J T J + �I )−1J T e. (4)

Here� is a constant. If� is sufficiently large, the previous algorithm is similar to the gradient descent
algorithm; if � is equal to zero, the previous rule will be a Gauss–Newton algorithm. The advantage of
the Levenberg–Marquardt algorithm lies in the fact that the Hessian matrix is not needed; moreover using
the Levenberg–Marquardt algorithm can accelerate the network’s training speed, save training time and
achieve better training results simultaneously.

The processes for developing the back-propagation neural network model are as follows (these are as
proposed by Ginzburg and Horn[17]):

(a) normalize the learning set;
(b) decide the architecture and parameters: i.e., learning rate, momentum, and architecture. There are no

criteria in deciding the parameters other than a trial-and-error basis;
(c) initialize all weights randomly;
(d) Training, where the stopping criterion is either the number of iterations reached or when the total

sum of squares of error is lower than a predetermined value;
(e) choose the network with the minimum error (i.e., model selection criterion);
(f) forecast future outcome.

Readers interested in a more detailed introduction toANN modeling are referred to the related literature
[17,25–28].

The major advantage of ANN models is their flexible nonlinear modeling capability. They can capture
the nonlinear characteristics of time series well. However, using ANN to model linear problems may
produce mixed results[12,29,30]. Therefore, we can conclude that the relationship between GLAR and
ANN is complementary. To take full advantage of the individual strengths of two models, it is necessary
to integrate the GLAR and ANN models, as mentioned earlier.

2.3. The hybrid methodology integrated GLAR with ANN

In real life, a time series forecasting problem such as exchange rate prediction is far from simple due
to high volatility, complexity, irregularity and noisy market environment. Furthermore, real-world time
series are rarely pure linear or nonlinear. They often contain both linear and nonlinear patterns. If this
is the case, there is no omnipotent model that is suitable for all kinds of time series data. Although both
GLAR and ANN models have achieved success in their own linear or nonlinear domains, neither GLAR
nor ANN can adequately model and predict time series since the linear models cannot deal with nonlinear
relationships while the ANN model alone is not able to handle both linear and nonlinear patterns equally
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well [12]. On the other hand, as previously mentioned, for time series forecasting the relationship between
GLAR and ANN is complementary. GLAR is a class of linear models that can capture time series’ linear
characteristics, while ANN models trained by back-propagation with hidden layers are a class of general
function approximators capable of modeling nonlinearity and which can capture nonlinear patterns in
time series. Commixing the two models may yield a robust method, and more satisfactory forecasting
results may be obtained by incorporating a time series model and anANN model. Therefore, we propose a
hybrid model integrating GLAR and ANN for exchange rate forecasting. In view of the works of[12,31],
the proposed hybrid model is a two-phase forecasting procedure, which incorporating GLAR model with
ANN model in an adaptive (sequential) manner. The motivation of hybrid methodology is to create a
synergy effect that further improves the prediction power.

In the first phase, a GLAR model is used to fit the linear component of time series, which is assumed to
be{yt , t=1,2, . . .}, and generate a series of forecasts, which is defined as{L̂t }. However, since some time
series, such as exchange rates, often contain more complex patterns than those of linear regression models
in the practical application, it is not enough to fit only a linear component for a time series. Hence, we
also need to discover the nonlinear relationship of the time series in order to improve prediction accuracy.
By comparing the actual valueyt of the time series and forecast valueL̂t of the linear component, we
can obtain a series of nonlinear components, which is assumed to be{et }. That is,

et = yt − L̂t . (5)

Thus, a nonlinear time series is obtained. The next step is how to fit the nonlinear component of series.
In the second phase of the hybrid methodology, a neural network model is used to model the above

nonlinear time series. By training the ANN model using previously generated nonlinear time series as
inputs, the trained ANN model is then used to generate a series of forecasts of nonlinear components of
time series, defined by{N̂t }.

In order to obtain the synergetic forecast results, the final forecasting results, defined by{ŷt }, are
calculated as

ŷt = L̂t + N̂t . (6)

In summary, the proposed hybrid methodology consists of two phases or four steps. In the first step, a
GLAR model should be identified and the corresponding parameters should be estimated, i.e., a GLAR
model is constructed. In the second step, the nonlinear components are computed from the GLAR model.
In the third step, a neural network model is developed to model the nonlinear components. In the final
step, the combined forecast results are obtained from Eq. (6).

Theoretically speaking, the hybrid model presented here is still a class of single forecasting model.
However, many studies reveal that combining several different forecasts can further improve prediction
performances[13–16,32–34]. In the following, we introduce the combined forecasting model briefly and
then point out some problems with them.

2.4. The combined forecasting model

The idea of using a combined forecasting model is not new. Since the pioneering works of Reid[13] and
of Bates and Granger[14], a variety of studies have been conducted which showed that a combination of
forecasts often outperforms the forecasts obtained from a single method. The main problem of combined
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forecasts can be described as follows. Suppose there aren forecasts such aŝy1(t), ŷ2(t), . . . , ŷn(t). The
question is how to combine (ensemble) these different forecasts into a single forecastŷ(t), which is
assumed to be a more accurate forecast. The general form of the model for such a combined forecast can
be defined as

ŷ(t)=
n∑
i=1

wiŷi(t), (7)

wherewi denotes the assigned weight ofŷ(t), and in general the sum of the weights is equal to 1, i.e.∑
i wi = 1. In some situations the weights may have negative values and the sum of them may be greater

than one[34].
There are a variety of methods available to determine the weights used in the combined forecasts. First

of all, the equal weights (EW) method, which uses an arithmetic average of the individual forecasts, is a
relatively easy and robust method. In this method,

wi = 1

n
, (8)

wheren is the number of forecasts. However, since the weights in the combination are so unstable,
in practice a simple average may not be the best technique to use[33]. Moreover, research indicates
that this weighted method has not always performed well empirically[34]. A new method, called the
minimum-error (ME) method, is introduced in this paper.

The ME method is an approach that minimizes the forecasting errors when combining individual
forecasts into a single forecast. We propose a new solution for this method using linear programming
(LP). Its principle and computational process are as follows.

Set the sum of absolute forecasting error
(
i.e.,

∑
i ei(t) at time t

)
as

Q=
n∑
i=1

|ei(t)| =
n∑
i=1

|wi(t)(ŷi(t)− yi(t))| (t = 1,2, . . . , N). (9)

That is,Q is the objective function of LP. In order to eliminate the absolute sign of objective function,
assume that

ui(t)=|ei(t)| + ei(t)

2
=
{
ei(t), ei(t)�0

0, ei(t)<0
, vi(t)= |ei(t)| − ei(t)

2

=
{

0, ei(t)�0
−ei(t), ei(t)<0

· · · (10)

Note that the aim of introducingui(t)andvi(t) is to transform the absolute sign of the objective function
so as to be consistent with the standard form of linear programming. Clearly,|ei(t)| = ui(t) + vi(t),
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ei(t) = ui(t) − vi(t). Based on the above specification we can construct the linear programming model
as follows:

(LP)




MinQ=
n∑
i=1

(ui(t)+ vi(t)),

n∑
i=1

[ŷi(t)− yi(t)]wi(t)− ui(t)+ vi(t)= 0,

n∑
i=1

wi(t)= 1,

wi(t)�0, ui(t)�0, vi(t)�0, i = 1,2, . . . , n, t = 1,2, . . . , N,

(11)

wherei denotes the number of individual forecasting models, andt represents the forecasting periods.
In Equation group (11), the aim of assumingwi�0 is to make every forecast method contribute to

the combined forecasting results. The ME method is equivalent to a simple dynamic linear programming
problem; thus, the optimal solutions are solved by the simplex algorithm. In fact, the ME method is
equivalent to a time-variant weight combination methodology.

However, there are two main problems in existing combined forecasting approaches. One is the number
of individual forecasts. Theoretical proof of[35] shows that the total forecasting errors of combined
forecasts does not necessarily decrease with an increase of the number of individual forecasting models.
If this is the case, there are redundant or repeated (even noisy) information among the individual forecasts.
Furthermore, the redundant information often directly impacts on the effectiveness of the combined
forecasting method. It is therefore necessary to eliminate some individual forecasts that are not required.
In other words, key problem of combined forecasts is to determine a reasonable number of individual
forecasts. The other problem is that the relationships among individual forecasts are determined in a linear
manner.The two methods mentioned above and many other weighted methods[33] are all developed under
linear consideration. A combined forecast should merge the individual forecasts according to the natural
relationships existing between the individual forecasts, including but not limited to linear relationships.
Because a linear combination of existing information cannot represent the relationship among individual
forecasting models in some situations, it is necessary to introduce nonlinear combination methodology in
the combined forecasts. Subsequently, we set out to solve the two problems in the following subsection.

2.5. The nonlinear ensemble (NE) forecasting model

In view of the two main problems outlined in the previous subsection, a novel nonlinear ensemble
model is proposed. The following is the process of building the proposed model for the two problems.

In the first problem, the question we face is how to extract effective information that reflects substantial
characteristics of series from all selected individual forecasts and how to eliminate redundant information.
The PCA technique (see[36,37]) is used as an alternative tool to solve the problems. The PCA technique,
an effective feature extraction method, is widely used in signal processing, statistics and neural computing.
The basic idea in PCA is to find the components(s1, s2, . . . , sp) that can explain the maximum amount
of variance possible byp linearly transformed components from data vector withq dimensions. The
mathematical technique used in PCA is called eigenanalysis. In addition, the basic goal in PCA is to reduce
the dimension of the data. Thus, one usually choosesp�q. Indeed, it can be proven that the representation
given by PCA is an optimal linear dimension reduction technique in the mean-square sense[36]. Such
a reduction in dimension has important benefits. First, the computation of the subsequent processing
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is reduced. Second, noise may be reduced and the meaningful underlying information identified. The
following presents the PCA process for combined forecasting.

Assuming that there aren individual forecasting models in the combined forecasts and that every
forecasting model containsm forecasting results, then forecasting matrix (Y) can represented as

Y =



y11 y12 · · · y1m
y21 y22 · · · y2m
...

...
. . .

...

yn1 yn2 · · · ynm


 , (12)

whereyij is thejth forecasting value with theith forecasting model.
Next, we deal with the forecasting matrix using the PCA technique. First, eigenvalues(�1, �2, . . . , �n),

and corresponding eigenvectorsA= (a1, a2, . . . , an) can be solved from the forecasting matrix. Then the
new principal components are calculated as

Zi = aT
i Y (i = 1,2, . . . , n). (13)

Subsequently, we choosem (m = n) principal components from existingn components. If this is the
case, the saved information content is judged by

� = (�1 + �2 + · · · + �m)/(�1 + �2 + · · · + �n). (14)

If � is sufficiently large (e.g.,�>0.8), enough information has been saved after the feature extraction
process of PCA. Thus, re-combining the new information can further improve the prediction performance
of combined forecasts.

For further explanation, a simple example is presented. Assuming that we predict the GBP/USD ex-
change rate using three different forecasting methods (such as GLAR, ANN and ARIMA) and obtain
eight forecasts for every method, the corresponding forecasting matrix is shown below.

Original forecasting matrix:

Y =
[0.6723 0.6599 0.6474 0.6349 0.6224 0.6099 0.5974 0.5848

0.6712 0.6586 0.6471 0.6356 0.6251 0.6155 0.6064 0.5982
0.6697 0.6566 0.6436 0.6310 0.6186 0.6064 0.5946 0.5829

]
.

Before using combined forecasting methodology, the PCA is performed. Accordingly, its eigenvalues
and eigenvectors are computed as

� =
(0.1762E − 01

0.1288E − 04
0.9019E − 08

)
, A=

(−0.5806 0.5390 0.6102
0.8084 0.2928 0.5106
0.0966 −0.7898 0.6058

)
.

According to the previous computation process, the new forecasting matrix (or new principal compo-
nents) can be as

New forecasting matrix:

Y ′ =
[0.0734 0.0514 0.0301 0.0089 0.0115 0.0315 0.0510 0.0699

0.0019 0.0002 0.0006 0.0014 0.0014 0.0008 0.0003 0.0020
0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

]
.

From the information presented in the new forecasting matrix, we can find and conclude that the third
row belongs to redundancy and should be eliminated, indicating that the third individual forecasting
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model provides repeated information and cannot improve combined forecasting performance: thus this
forecasting method should be removed from the combined forecasts. Therefore, the reasonable number
of individual forecasting methods is determined. Of course, the value of� should be calculated for
judgment if the new forecasting matrix is not obvious. In this example,� = (0.1762E− 01+ 0.1288E−
04)/(0.1762E − 01+ 0.1288E − 04+ 0.9019E − 08)= 0.999999489. This also shows that the former
two methods contain enough information to combine forecasts.

In the case of the second problem, we propose a nonlinear ensemble forecasting model as a remedy.
The detailed model is presented as follows.

A nonlinear ensemble forecasting model can be viewed as nonlinear information processing system
which can be represented as

y = f (I1, I2, . . . , In), (15)

wheref (·) is a nonlinear function andIi denotes the information provided by individual forecasting
models. If individual forecasting model can provide an individual forecastŷi , then Eq. (15) can be
represented as

ŷ = f (ŷ1, ŷ2, . . . , ŷn). (16)

Determining the functionf (·) is quite challenging. In this study, ANN is employed to realize nonlinear
mapping. The ability of back-propagation neural networks to represent nonlinear models has been tested
by previous work.

In fact, the ANN training is a process of searching for optimal weights. That is, this training process
made the sum of the square errors minimal, i.e.,

Min[(y − ŷ)(y − ŷ)T] (17)

or

Min{[y − f (ŷ1, ŷ2, . . . , ŷn)][y − f (ŷ1, ŷ2, . . . , ŷn)]T}. (18)

By solving the earlier two problems of linear combination models, a PCA&ANN-based nonlinear
ensemble model is generated for nonlinear combining forecasting.

To summarize, the proposed nonlinear ensemble model consists of four stages. Generally speaking, in
the first stage we construct an original forecasting matrix according to the selected individual forecasts.
In the second stage, the PCA technique is used to deal with the original forecasting matrix and a new
forecasting matrix is obtained. In the third stage, based upon the judgments of PCA results, the number
of individual forecasting models is determined. And in the final stage, an ANN model is developed to
ensemble different individual forecasts, meantime the corresponding forecasting results are obtained.

After completing the proposed nonlinear ensemble model, we want to know whether the proposed
model indeed improves forecasting accuracy or not. In this study, we use an individual GLAR model,
an individual ANN model, the hybrid model, the linear combination models, and the PCA&ANN-based
nonlinear ensemble model to predict exchange rates so as to compare forecasting performance. The basic
flow diagram is shown inFig. 1.
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Fig. 1. A flow diagram of the combined and nonlinear ensemble forecast.

2.6. Forecasting evaluation criteria

As Weigend[38] argued, a measure normally used to evaluate and compare the predictive power of the
model is the normalized mean squared error (NMSE) (this was used to evaluate entries in the Santa Fe
Time Series Competition). GivenNpairs of the actual values (or targets,yt ) and predicted values(ŷt ), the
NMSE which normalizes theMSEby dividing it through the variance of respective series can be defined
as

NMSE=
∑N

t=1(yt − ŷt )
2∑N

t=1(yt − ȳt )
2

= 1

�2 · 1

N
·

N∑
t=1

(yt − ŷt )
2, (19)

where�2 is the estimated variance of the data andȳt the mean.
Clearly, accuracy is one of the most important criteria for forecasting models—the others being the

cost savings and profit earnings generated from improved decisions. From the business point of view,
the latter is more important than the former. For business practitioners, the aim of forecasting is to
support or improve decisions so as to make more money. Thus profits or returns are more important
than conventional fit measurements. But in exchange rate forecasting, improved decisions often depend
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on correct forecasting directions or turning points between the actual and predicted values,yt and ŷt ,
respectively, in the testing set with respect to directional change of exchange rate movement (expressed in
percentages). The ability to forecast movement direction or turning points can be measured by a statistic
developed by Yao and Tan[39]. Directional change statistics(Dstat) can be expressed as

Dstat= 1

N

N∑
t=1

at × 100%, (20)

whereat = 1 if (yt+1 − yt )(ŷt+1 − yt )�0, andat = 0 otherwise.
However, the real aim of forecasting is to obtain profits based on prediction results. Here the annual

return rate is introduced as another evaluation criterion. Without considering the friction costs, the annual
return rate is calculated according to the compound interest principle.

R =
((

M

S

)12/N

− 1

)
× 100, (21)

whereR is the annual return rate,M is the amount of the money obtained on the last month of testing,S
is the amount of the money used for trading on the first month of testing, andN is the number of months
in the testing periods. It is worth noting that the computation ofR is based on the trading strategy in the
following:

If (ŷt+1 − yt )>0, then “ buy”, else “ sell”, (22)

whereyt is the actual value at timet, ŷt+1, is the prediction at timet + 1. That is, we use the difference
between the predicted value and the actual value to guide trading.

We want to use the latter two statistics as the main evaluation criteria because the normalizedMSE
measure predictions only in terms of levels. Hence, it is more reasonable to chooseDstatand annual return
rate (R) as the measurements of forecast evaluation. Of course, NMSE is also taken into consideration in
terms of a comparison of levels.

3. Empirical analysis

3.1. Data description

The foreign exchange data used in this paper are monthly and are obtained from Pacific Exchange
Rate Service (http://fx.sauder.ubc.ca/), provided by Professor Werner Antweiler, University of British
Columbia, Vancouver, Canada. They consist of the US dollar exchange rate against each of the currencies
(DEM, GBP and JPY) studied in this paper. We take monthly data from January 1971 to December
2000 as in-sample (training periods) data sets (360 observations including 24 samples for validation).
We also take the data from January 2001 to December 2003 as out-of-sample (testing periods) data sets
(36 observations) which is used to evaluate the good or bad performance of prediction based on some
evaluation measurement. For exogenous variables’ consideration of GLAR, we can choose exports, infla-
tion rate, interest rates and other factors related to exchange rates as exogenous variables. Unfortunately,

http://fx.sauder.ubc.ca/
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Fig. 2. A graphical comparison of DEM rate prediction results using different models (2001:01–2003:12).

monthly inflation rate and interest rate data is hard to obtain. Therefore, we only choose “exports” as the
exogenous variable for the GLAR model. The monthly export data in this paper is taken directly from the
CD-ROM of International Financial Statistics of IMF. In addition, all the evaluations in this paper (with
the exception of specifications) are based on the whole testing sets. In order to save space, the original
data are not listed here, and detailed data can be obtained from the website or from the authors.

3.2. Empirical results

In this study, all GLAR models are implemented via the Eviews software package, which is produced
by Quantitative Micro Software Corporation. The individual ANN model, the linear combination model
with minimum-error method and nonlinear ensemble model are built using the Matlab software package,
which is produced by Mathworks Laboratory Corporation. The single hybrid methodology involves the
GLAR and ANN models and thus it use both the software packages. The ANN models use trial and error
to determine the network architecture of 4-4-1 by minimizing the forecasting error with the exception of
specifications. According to the idea shown inFig. 1, the single GLAR model, the single ANN model, the
single hybrid model, and the linear combination model with equal weights method, the linear combination
model with minimum-error method, and the PCA&ANN-based nonlinear ensemble model are used to
predict the exchange rates of three main currencies for comparison. For space reasons the computational
processes are omitted but can be obtained from the authors if required.

Figs. 2–4give graphical representations of the forecasting results for exchange rates of the three main
currencies using different models.Tables 1–3show the forecasting performance of different models from
different perspectives. From the graphs and tables, we can generally see that the forecasting results are
very promising for all currencies under study either where the measurement of forecasting performance
is goodness of fit such as NMSE (refer toTable 1) or where the forecasting performance criterion isDstat
(refer toTable 2).

In detail,Fig. 2shows the comparison for the DEM rate of the nonlinear ensemble forecasting results
versus the forecast results of individual models, the hybrid model, and linear combination model. Simi-
larly, it can be seen fromFig. 3that forecast accuracy for the GBP rate has significantly improved using
the nonlinear ensemble forecasting models.Fig. 4provides the comparison of the JPY prediction results
using different models. The results indicate that the nonlinear ensemble forecasting model performs better
than the other models presented here.
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Table 1
A comparison of NMSE between different methods for the three main currencies

Methods Currencies

DEM GBP JPY

NMSE Rank NMSE Rank NMSE Rank

GLAR 0.0453 5 0.0737 4 0.4207 6
ANN 0.0433 4 0.1031 6 0.1982 3
Hybrid 0.0459 6 0.0758 5 0.3854 5
EW 0.0319 3 0.0469 3 0.2573 4
ME 0.0143 1 0.0410 2 0.1505 2
NE 0.0156 2 0.0357 1 0.1391 1

GLAR: generalized linear auto-regression; ANN: artificial neural network; EW: equal weights;
ME: minimum error; NE: nonlinear ensemble; NMSE: normalized mean square error.

Subsequently, the forecasting performance comparisons of various models for the three main currencies
via NMSE,Dstat and return rate (R) are reported inTables 1–3, respectively. Generally speaking, these
tables provide comparisons of NMSE,Dstat andR between these different methods, indicating that the
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Table 2
A comparison ofDstat between different methods for the three main currencies

Methods Currencies

DEM GBP JPY

Dstat (%) Rank Dstat (%) Rank Dstat (%) Rank

GLAR 58.33 6 58.33 6 47.22 6
ANN 63.89 4 69.44 3 63.89 4
Hybrid 61.11 5 61.11 5 66.67 3
EW 69.44 3 66.67 4 58.33 5
ME 80.56 2 77.78 2 72.22 2
NE 83.33 1 86.11 1 75.00 1

GLAR: generalized linear auto-regression; ANN: artificial neural network; EW: equal weights;
ME: minimum error; NE: nonlinear ensemble;Dstat: directional statistics.

Table 3
A comparison of annual return rate (R) between different methods for the three main currencies

Methods Currencies

DEM GBP JPY

R (%) Rank R (%) Rank R (%) Rank

GLAR 5.89 6 5.14 6 −1.76 6
ANN 7.53 4 8.69 3 6.23 4
Hybrid 7.38 5 6.47 5 7.58 3
EW 8.65 3 7.53 4 5.68 5
ME 11.87 2 10.56 2 9.34 2
NE 15.54 1 14.85 1 16.49 1

GLAR: generalized linear auto-regression; ANN: artificial neural network; EW: equal weights;
ME: minimum error; NE: nonlinear ensemble;R: annual return rate.

prediction performance of the nonlinear ensemble forecasting model is better than those of other models
including these empirical analyses for the three main currencies.

Focusing on the NMSE indicator, the nonlinear ensemble model performs the best in all but the DEM
case, followed by the linear combination model with ME method and EW method and other individual
models. To summarize, the nonlinear ensemble model and the linear combination model with ME method
outperform the other different models presented here in terms of NMSE. Interestingly, the NMSEs of
the hybrid methodology are not better than those of the individual GLAR and ANN models. This result
differs from that of Zhang[12]. This could be because the GLAR is different from ARIMA, or because
the ANN architecture designs may differ.

However, the low NMSE does not necessarily mean that there is a high hit rate of forecasting direction
for foreign exchange movement direction prediction. Thus, theDstat comparison is necessary. Focusing
on Dstat of Table 2, we find the nonlinear ensemble model also performs much better than the other
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models according to the rank; furthermore, from the business practitioners’ point of view,Dstat is more
important than NMSE because the former is an important decision criterion. With reference toTable 2,
the differences between the different models are very significant. For example, for the GBP test case,
theDstat for the individual GLAR model is 58.33%, for the individual ANN model it is 69.44%, and
for the single hybrid modelDstat is only 61.11%; while for the nonlinear ensemble forecasting model,
Dstat reaches 86.11%. For the linear combination model with EW method and the hybrid method, the
rank of forecasting accuracy is always in the middle for any of the test currencies. The main cause of this
phenomenon is that the bad performance of the individual models has an important effect on the holistic
forecast efficiency. Similarly, the individual ANN can model nonlinear time series such as exchange rate
series well, and theDstat rank is also in the middle for any of the test currencies. In the same way, we also
notice that theDstat ranking for GLAR is the last. The main reason is that the high noise, nonlinearity
and complex factors are contained in foreign exchange series, and unfortunately the GLAR is a class of
linear model.

In terms of the return or profit criterion, the empirical results show that the proposed nonlinear ensemble
model could be applied to future forecasting. Compared with the other models presented in this paper,
the nonlinear ensemble forecasting model performs the best. Likewise, we find that the rank ofTable 3is
the similar to that ofTable 2. It is not hard to understand such a rationale that right forecasting direction
often leads to high return rates. As shown inTable 3, for the DEM test case the best return rate for the
nonlinear ensemble model is 15.54%. Similarly, in the JPY test case, the annual return rate for GLAR is
−1.76%, the rate for the ANN model is 6.23%, the rate for the hybrid model is 7.58%, and the rate for
the linear combination model with ME method is also 9.34%; however the return rate for the nonlinear
ensemble model reaches 16.49% per year.

From the experiments presented in this study we can draw the following conclusions. (i) The experi-
mental results show that the nonlinear ensemble forecasting model is superior to the individual GLAR
model, the individual ANN model, the single hybrid model as well as the linear combination models
with EW and ME methods for the test cases of three main currencies in terms of the measurement of
directional change statistics (Dstat) and annual return rate (R), as can be seen fromTables 2and3. Like-
wise, the nonlinear ensemble model and the linear combination model with ME method also outperform
other models in terms of goodness-of-fit or NMSE, as can be seen fromFigs. 2–4 andTable 1. (ii) The
nonlinear ensemble forecasts are able to improve forecasting accuracy significantly—in other words, the
performance of the nonlinear ensemble forecasting model is better than those of other forecasting models
in terms of NMSE,Dstat andR. This leads to the third conclusion. (iii) The nonlinear ensemble model
can be used as an alternative tool for exchange rate forecasting to obtain greater forecasting accuracy and
improve the prediction quality further in view of empirical results.

4. Conclusions

This study proposes using a nonlinear ensemble forecasting model that combines the time series
GLAR model, the ANN model and the hybrid model to predict foreign exchange rates. In terms of
the empirical results, we find that across different forecasting models for the test cases of three main
currencies—German marks, British pounds and Japanese yen—on the basis of different criteria, the
nonlinear ensemble model performs the best. In the nonlinear ensemble model test cases, the NMSE is
the lowest and theDstatandR is the highest, indicating that the nonlinear ensemble forecasting model can
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be used as a viable alternative solution for exchange rate prediction for financial managers and business
practitioners.
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