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Time series forecasting with neural network
ensembles: an application for exchange rate
prediction
GP Zhang1* and VL Berardi2
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This paper investigates the use of neural network combining methods to improve time series forecasting performance of
the traditional single keep-the-best (KTB) model. The ensemble methods are applied to the dif®cult problem of exchange
rate forecasting. Two general approaches to combining neural networks are proposed and examined in predicting the
exchange rate between the British pound and US dollar. Speci®cally, we propose to use systematic and serial partitioning
methods to build neural network ensembles for time series forecasting. It is found that the basic ensemble approach
created with non-varying network architectures trained using different initial random weights is not effective in
improving the accuracy of prediction while ensemble models consisting of different neural network structures can
consistently outperform predictions of the single `best' network. Results also show that neural ensembles based on
different partitions of the data are more effective than those developed with the full training data in out-of-sample
forecasting. Moreover, reducing correlation among forecasts made by the ensemble members by utilizing data
partitioning techniques is the key to success for the neural ensemble models. Although our ensemble methods show
considerable advantages over the traditional KTB approach, they do not have signi®cant improvement compared to the
widely used random walk model in exchange rate forecasting.
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Introduction

Arti®cial neural networks have been widely used as a

promising alternative approach to time series forecasting.

A large number of successful applications have established

the role of neural networks in time series modelling and

forecasting. Neural networks are data-driven, self-adaptive

nonlinear methods that do not require speci®c assumptions

about the underlying model. Instead of ®tting the data with

a pre-speci®ed model form, neural networks let the data

itself serve as direct evidence to support the model's

estimation of the underlying generation process. This

nonparametric feature makes them quite ¯exible in model-

ling real-world phenomena where observations are gener-

ally available but the theoretical relationship is not known

or testable. It also distinguishes neural network models

from traditional linear models and other parametric

nonlinear approaches, which are often limited in scope

when handling nonlinear or nonstandard problems.

The most popular neural networks used in forecasting are

the single multi-layer feedforward model or multi-layer

perceptron (MLP). Although it has been shown theoreti-

cally that the MLP has a universal functional approximat-

ing capability and can approximate any nonlinear function

with arbitrary accuracy, no universal guideline exists in

choosing the appropriate model structure for practical

applications. Thus, a trial-and-error approach or cross-

validation experiment is often adopted to help ®nd the

`best' model. Typically a large number of neural network

models are considered. The one with the best performance

in the validation set is chosen as the winner, and the others

are discarded.

There are several limitations with this keep-the-best

(KTB) approach in choosing a neural network model.

First, the network ultimately selected may not be the true

optimal model because of a large number of factors that

could affect neural network training and model selection.

These factors include network architecture, activation func-

tions, training algorithm, and data normalization. Different

choices of these factors can lead to alternative models

being selected. Second, neural networks are data driven

methods. Alternative data sampling from a stationary

process can have a signi®cant effect on individual model

selection and prediction. This impact may be magni®ed if

the process parameters evolve or shift over time. As a

result, the ®nal KTB model may over®t the speci®c sample
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data, limiting its generalization ability to the unseen future

data. Finally, by discarding many network models, useful

information contained in these models as well as the efforts

in training are wasted.

In this paper we investigate the potential of combining

multiple neural network models for time series forecasting.

Our purpose is to show that, by appropriately combining

different neural forecasters, forecasting performance of the

individual network can be improved. The combination of

several models to form an ensemble of networks can be an

effective way to overcome the problems associated with the

keep-the-best single network model. In particular, it can

alleviate the model selection problem typically encountered

in neural network applications. With the ensemble of neural

networks, it is no longer an issue to select one particular

network model with the `best' predictive ability. Rather,

results from multiple models are combined to make fore-

casts. By solving the same problem using multiple

networks, model selection bias and prediction error can

be reduced.1,2 In addition, the ensemble method is more

likely to produce stable forecasts and less likely to make

catastrophic predictions than any single network used in

isolation. Another advantage of the neural network ensem-

ble is that it often requires little additional effort due to the

trial-and-error nature in the neural network model building

process.

Ensembles represent a natural extension of common

neural network practice that undoubtedly owes its roots

to earlier works using conventional forecasting tools.

Combining several models to improve the forecasting

accuracy has been extensively studied in the traditional

forecasting literature. Clemen3 provided a comprehensive

review and annotated bibliography in this area. The basic

idea of model combination is to use each model's unique

feature to capture different patterns in the data. The ef®cacy

of forecast combination has been established both theore-

tically and empirically. In the well-known M-competition,4

most conventional forecasting models are tested using more

than 1000 real-time series and the combination of forecasts

from more than one model often leads to improved fore-

casting performance. Because much of the research effort

into neural ensemble performance has concentrated on

classi®cation problems to date, this study aims to provide

some evidence on the effectiveness of forecasting combi-

nation using neural networks as well as to provide some

guidelines to forming neural ensembles for time series

applications.

One time series application that is notoriously dif®cult to

predict is that of exchange rates. The ®eld has long been

dominated by the ef®cient market hypothesis, which postu-

lates that current prices re¯ect all relevant knowledge and

information about the markets and therefore future returns

are essentially unpredictable. Under this assumption, the

best theoretical model for exchange rate prediction is the

random walk. Mixed empirical results, however, have been

reported with regard to the ability of various linear and

nonlinear models in outperforming the random walk

model.5±11

Several researchers have applied neural networks in

forecasting foreign exchange rates. For example, Kuan

and Liu12 examined the out-of-sample forecasting ability

of neural networks on ®ve exchange rates against the US

dollar, including the British pound, the Canadian dollar, the

German mark, the Japanese yen, and the Swiss franc. For

the British pound and Japanese yen, they demonstrated that

neural networks had signi®cant market timing ability

and=or achieve signi®cantly lower out-of-sample MSE

than the random walk model across three testing periods.

For the other three exchange rate series, neural networks

were not shown superior in forecasting performance. Their

results also showed that different network models

performed quite differently in out-of-sample forecasting.

Borisov and Pavlov13 applied neural networks to forecast

the Russian ruble exchange rate. Both neural networks and

exponential smoothing models were used to predict the

exchange rates. Although a backpropagation-based neural

network performed well in all cases, they found that, if the

data set contained some extreme values, exponential

smoothing was the preferred method. On the other hand,

if the amount of noise in the series was limited, then a

window-based neural network method should be used. In

forecasting the US dollar=German mark exchange rate,

Hann and Steurer14 compared neural network models

with linear monetary models. Out-of-sample results

showed that, for weekly data, neural networks were much

better than linear models and the naive prediction of a

random walk model with regard to Theil's U measure, the

hit rate, the annualized returns and the Sharpe ratio.

However, if monthly data were used, neural networks did

not show much improvement over linear models. Zhang and

Hutchinson15 reported the experience of forecasting the tick-

by-tick Swiss franc vs US dollar exchange rate time series

with neural networks. Using different sections of the

data set, they found mixed results for neural networks in

comparison with those from the random walk model.

It is important to note that all of these studies, and many

others, used a single neural network model in modelling

and predicting exchange rates. As the data-dependent

neural networks tend to be more `unstable' than the tradi-

tional parametric models, the performance of the KTB

approach can vary dramatically with different models and

data. Random variations resulting from data partitioning or

subtle shifts in the parameters of the time series generating

process can have a large impact on the learning and

generalization capability of a single neural network

model. These may be the reasons that neural networks

perform differently for different exchange rate series and

different time frequencies with different data partitions in

the reported ®ndings. Neural network ensembles seem

promising for improving predictions over the KTB
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approach because they do not solely rely on the perfor-

mance of a single neural network model.

In addition to providing insights in the application of

ensemble methods to exchange rate forecasting, our major

contribution of this paper is to develop novel methods to

form neural network ensembles. We also evaluate many

other principled combining methods and recommend the

best ways to construct neural ensembles for time series

forecasting. To date, there has been a high level of research

activities in applying neural ensemble methods for classi-

®cation problems with very few in time series forecasting.

We believe that the methodology developed in this paper

will be useful for general applications of time series

prediction.

The remainder of the paper is organized as follows. In

the next section, the theory underlying neural network

ensembles is reviewed and general approaches to improv-

ing basic ensemble performance are discussed. In the

section that follows, the research methodology is covered.

This includes description of the data and a detailed discus-

sion of the neural network ensemble designs employed. The

®nal two sections contain the experimental results and

conclusions.

The neural network ensemble

Because of their nonparametric nature, neural networks are

generally able to ®t the training or in-sample data very well.

While this learning capability is desirable, it does not come

without price. Namely, neural networks may become too

dependent on the speci®c data upon which the model is

built. This is the notorious over®tting problem. It occurs

when a predictive model based upon in-sample data has

poor generalization to unseen or out-of-sample data.

Obviously this is undesirable for many forecasting

problems.

This learning and generalization scheme is well studied

under the concept of bias and variance tradeoff.16 A model

that is very complex or ¯exible tends to have small model

bias but large model variance while a model that is

relatively simple or in¯exible may have a large bias but a

small variance. Model bias re¯ects the learning ability of a

neural network model to approximate the underlying data

generating function. On the other hand, model variance

measures the generalization capability of the trained model

to the unseen future data with regard to the lack of stability

of predictions from models developed from training data

sets. Both bias and variance are important because they

both contribute to the overall estimation and prediction

error. However, with a given data set, it may not be

possible to improve both bias and variance simultaneously

because the effect to reduce the bias (or variance) is likely

to increase the variance (or bias). Hence tradeoff between

bias and variance is often necessary to build a useful model

that is able to predict accurately and reliably.

Currently there is no simple, effective way to build and

select a neural network model. The most commonly used

approach employs the cross-validation. That is, a number of

different network architectures are ®rst trained with a

portion of the dataÐa training sampleÐthen the general-

ization or forecasting performance is monitored using

another validation sample that is withheld before the

training starts. The neural network with the best validation

sample result is selected as the ®nal prediction model,

whose performance can be further tested through a third

portion of the data called a test sample. Although this

method can be effective in dealing with the over®tting

problem, the model selected is still likely to under-perform

in that it may not be the best model that will predict well

for the future. Data randomness, limited sample size, data

splitting, and instability in the parameters of the time series

generating process can all attribute to poor generalization.

In addition, because of the nonlinear optimization nature in

neural network training, the parameter estimation cannot be

guaranteed optimal in building a network model.

Combining multiple networks can be an effective way to

overcome or reduce the over®tting problem as well as the

drawbacks related to the traditional keep-the-best (KTB)

single model selection approach. Instead of seeking one

best solution to a problem, multiple alternative solutions

are found and then combined in a systematic manner to

make predictions. The main motivation for the neural

ensemble method is to improve the generalization and

prediction ability. Due to the inherent randomness in the

training data, we are often willing to tradeoff some bias for

low variance because a useful prediction model is the one

that should perform well for out-of-sample data. This is

especially important with neural networks given their direct

reliance on the data for determining the model form. That

combining different models can reduce variance of out-

of-sample forecasting and therefore improve forecasting

accuracy is also recognized in the traditional forecasting

literature.3,17

Although neural network ensemble can be an effective

method in reducing model variance and improving neural

network forecasting performance, the effectiveness of the

ensemble model may be limited if the errors generated by

different component models are correlated.15 Hence it is

often advantageous to include different models in an

ensemble that can generate independent forecasts for the

future values.

Neural ensemble models can be formed in many differ-

ent manners. One general approach to creating ensemble

members is to hold the training data constant and to vary

different factors=parameters of neural networks. For exam-

ple, ensemble components can be networks trained with

different initial random weights, networks trained with

different algorithms, networks with different architectures

that may include varying number of input and=or hidden

nodes, or even networks with different types. Another
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broad approach is combining networks trained with differ-

ent sample data. It is intuitive that networks built from

different training samples are more likely to have less

dependent prediction errors than those trained on the

same data. Therefore, modifying training data to create

the individual network components would be possibly a

valuable approach to ensemble composition.

Although simple averaging is the most popular method

for combining networks, weighted averaging methods and

nonlinear combining methods can also be used. By means

of weighted average, relative importance of the individual

models can be accounted for. Different weighting schemes

have been proposed and studied.15,18,19 with no consensus

on the best way to assign weights.

Research methodology

Data

Weekly exchange rate data between the British pound (BP)

and the US dollar (USD) from 1976 to 1994 are used in this

study for detailed examination. Daily data are obtained

from DataStream International. The time series is compiled

from daily rates by taking the closing rates on Wednesday

as the representative rates of that week to avoid potential

biases caused by the weekend effect. If a particular

Wednesday happens to be a nontrading day, then either

Tuesday or Thursday closing rates will be retained. In

summary, a total of 978 data points is obtained in the

data series. Figure 1 plots the exchange rate series.

To investigate the effectiveness of neural network

ensembles, the total available data are divided into three

parts for training, validation and test. Data from 1976 to

1990 with 782 observations are used for model building

and the next 104 observations in 1991 and 1992 are used

for the validation purpose. The out-of-sample period

consists of the last 92 points.

Design of neural network ensemble

Multilayer feedforward neural network models are the most

popular network paradigm for forecasting applications and

are the focus of this paper. Compared to traditional statis-

tical forecasting models, neural networks have more factors

to be determined. Those factors related to neural network

model architecture include the number of input variables,

the number of hidden layers and hidden nodes, the number

of output nodes, the activation functions for hidden and

output nodes, and the training algorithm and process.20 We

are interested in one-step-ahead forecasts as in several

previous studies.21 Hence a single output node is employed.

Because a single hidden-layer network has been shown

both theoretically and empirically capable of modelling any

type of functional relationship, it is exclusively used in our

study. The activation functions used for all hidden nodes

are the logistic function while the identity function is

employed in the output layer. Node biases are used in

both hidden and output layers.

The number of input nodes is perhaps the most critical

parameter since it corresponds to the number of past lagged

observations used to capture the underlying pattern of the

time series. Since there is no theoretical result suggesting

the best number of lags for a nonlinear forecasting problem,

we will experimentally vary this parameter with 5 levels

from 1±5. Another important factor is the number of hidden

nodes, which empowers neural networks with the nonlinear

modelling capability. However, it has been shown that the

in-sample ®t and the out-of-sample forecasting ability of

neural networks are not very sensitive to the number of

hidden nodes.22 Therefore, we use three levels of hidden

nodes of 2, 4; and 8 to experiment with in this study.

Figure 1 British pound vs US dollar exchange rate.
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The most popular algorithm for training neural networks

is the back-propagation method (Backprop).23 Backprop is

a ®rst-order optimization method based on the steepest

descent algorithm that requires a step size (or learning rate)

to be speci®ed. Because of the instability problem in the

steepest descent algorithm, often a more robust training

approach such as quasi-Newton, scaled conjugate gradient,

Levenberg±Marquardt, and generalized reduced gradient is

used. In this study, we use a training algorithm based on the

scaled conjugate gradient.

As mentioned in the previous section, there are many

different ways to build a neural network ensemble. While

theoretical results indicate that, if properly constructed and

employed, neural network ensembles can generalize better

than any individual model used separately, they do not

provide general guidelines about the selection of different

models in the ensemble. This study evaluates the effective-

ness of several methods of creating an ensemble in predict-

ing the exchange rates. First, we combine neural networks

trained with different initial random weights but with the

same data. Since neural network training entails a nonlinear

optimization problem, and the global optimal solution is

not guaranteed by any of the currently available algorithms,

a particular training run can be quite sensitive to the initial

conditions of the weights in a network. That is, the neural

network trained with different starting weights may be

stuck with different local minima, each of which can

have quite different forecasting performance.

Hence, using different starting weights to train a neural

network and then keeping the best (KTB) network is a

common practice to reduce the local minima effect.

Combining results from different initial random weights

seems to be a natural and ef®cient way to improve the

performance of individual network because it makes use of

all the information (local minima) and efforts used in the

network training process. For each of the neural network

structure, 50 different initial weights are randomly gener-

ated to start the training process. Then the prediction results

generated from these 50 trained networks with the same

architecture are combined in the ensemble.

The second approach considered combines different

neural network architectures within an ensemble. This is

also a potential method in improving neural network

performance with little extra computational effort. Because

of the lack of effective model selection approaches, an

individual neural forecaster is often selected via a trial and

error method. That is, several different network architec-

tures are typically trained on the training sample with their

prediction performances evaluated on a separate validation

sample. The best network in terms of the validation result is

selected to be the ®nal model for forecasting. Due to the

randomness in the total available data and the splitting of

the data into several parts of training and validation, the

selected model may not be the best one for future use.

Hence combining different models potentially could be an

effective way to relieve the single model selection problem

inherent in neural network applications. In this study,

network architectures with different input and hidden

nodes are used to form the ensemble. A total of 15 neural

network structures with ®ve levels of input lags and three

levels of hidden nodes are trained with the same training

data and then the results are combined either across all

hidden nodes or across all input nodes.

Note that while in this second approach the neural

ensemble models are created with varying neural network

factors, both approaches utilize the ®xed training data set.

Networks trained on different sample data can also be used

to form neural ensembles. Here we propose two data-

partitioning schemes (partition ensembles) for time series

applications in order to reduce the harmful correlation

among predictions from member networks in the ensemble.

The ®rst scheme is called the systematic partition.

Depending on the input lags used in the neural network,

original time series data are partitioned into several subsam-

ples. For a k-lag network structure, the whole training set is

divided into k subsets of approximately same size. In this

scheme, k data partitions with distinctive target values and

input vectors are created from the original data set. Each

data partition consists of k-lag input vectors systematically

selected from all k-lag input vectors throughout the original

training sample. An illustration of the data partitioning for

3-lag ensemble networks is presented in Table 1. The

columns represent the data partition presented to each

ensemble member while the composite ensemble is trained

on the entire original training data set. Because one-step-

ahead forecasting is considered, the next period value

relative to the input vector is used as the current target.

Note that with the systematic sampling scheme, the impact

of the ensemble correlation effect is emphasized since

different training samples with both non-overlapping input

Table 1 Illustration of the systematic data sampling with 3-lag input vectors

Subsample 1 Subsample 2 Subsample 3

Case Inputs Target Inputs Target Inputs Target

1 x1;1 � �x1; x2; x3� y1;1 � x4 x1;2 � �x2; x3; x4� y1;2 � x5 x1;3 � �x3; x4; x5� y1;3 � x6

2 x2;1 � �x4; x5; x6� y2;1 � x7 x2;2 � �x5; x6; x7� y2;2 � x8 x2;3 � �x6; x7; x8� y2;3 � x9..
. ..

. ..
. ..

. ..
. ..

. ..
.

t=3 xt=3;1 � �xtÿ5; xtÿ4; xtÿ3� yt=3;1 � xtÿ2 xt=3;2 � �xtÿ4; xtÿ3; xtÿ2� yt=3;2 � xtÿ1 xt=3;3 � �xtÿ3; xtÿ2; xtÿ1� yt=3;3 � xt
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vectors and target sets are used in building individual

component networks in the ensemble. On the other hand,

the ensemble as a whole sees fully overlapped patterns of

the training data, which is important from a theoretical time

series perspective. The systematic partitioning method in a

sense, therefore balances ensemble methodology concerns

with time series considerations.

The second data partitioning approach, called serial

partitioning, divides the training time series into k mutually

exclusive subsamples upon which k individual neural

networks are built. These models are then combined to

create a single ensemble forecaster. For example, if three

partitions are used, then based on the chronological time

sequence, the whole training set is partitioned into three

disjoint subsamples of approximately the same size. The

resulting ensemble in this case consists of three members.

The ®rst member is trained on the earliest one-third of the

time series data, the second one is presented the middle-

third of the data, and the last is trained on the most recent

third of the data. Unlike in the systematic sampling scheme,

serial ensemble members are presented fully overlapped and

non-interrupted data. This is an important characteristic for

time series modelling with regard to the development of the

individual ensemble members. In addition, it is hoped that

the effect of possible changes in the time series may be more

effectively smoothed out as a result of the serial ensemble

modelling approach.

Results

This section discusses the empirical results of the effec-

tiveness of ensemble methods. The mean squared error

(MSE) and the mean absolute error (MAE) are used to

gauge the performance of the neural network models.

Table 2 reports the detailed results of the ensemble

method for the training, validation and test sets using 50

different initial random weights. The results from the

traditional keep-the-best (KTB) method are also listed for

comparisons. With KTB, the neural network with the best

training result among 50 training processes is selected and

used for the prediction. It is generally observed that, as the

neural network becomes more complex as the number of

lags and=or the number of hidden nodes increase, training

set MSE and MAE of the KTB method decrease while error

measures in the validation set decrease ®rst and then

increase. This is the typical over®tting effect in neural

network modelling, which often causes dif®culty in model

selection. On the other hand, no signi®cant pattern in

results is observed for the ensemble method because the

averaging effect limits the impact of over®tting. Overall,

from Table 2, we ®nd that the basic ensembles formed by

simply using different initial weights are not able to

outperform the KTB method for all three samples across

the 15 different neural network architectures.
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The results of ensemble models created with different

neural network architectures are given in Table 3. Two

different combining schemes are considered. The ®rst

combines results from networks with the same number of

input lags but different hidden nodes (ensemble across

hidden) while the second uses the networks with different

input nodes but the same number of hidden nodes (ensem-

ble across lag). The average performance measures across

different lags or hidden nodes for the KTB method are also

reported for comparisons. Although the differences

between the ensemble and KTB are relatively small, the

ensemble method consistently gives better performance not

only in the test sample, but also in both training and

validation samples. It is important to note that, compared

to results of ensembles across different hidden nodes, the

ensembles across different lags have generally much better

performance improvement than the KTB method. For

example, from the test results in Table 3(c), we ®nd that

on average, the ensemble across hidden notes is 0.055%

better in terms of MSE and 0.012% better in terms of MAE

than KTB. However, these percentages are 0.20% on MSE

and 0.053% on MAE, respectively, when comparing the

basic ensemble across input nodes with the KTB method.

Given the dif®culty in exchange rate forecasting, these

consistent albeit small performance improvements are

encouraging.

As discussed earlier, the combining approach works

better if individual predictions from members in an ensem-

ble are less dependent. Given the apparent autocorrelations

of time series data, the predictions from neural networks

built from the same data are often highly correlated, which

reduces the effectiveness of the ensemble method. Indeed,

if the combination uses the same structured-network trained

with different random initial weights, the correlation effect

can be even stronger. Another problem with the random

weight ensemble is that some of the initial weights may

lead into `bad' local minima. Therefore by averaging, the

overall performance of the ensemble could be worse than

the KTB model that uses the `best' local minima solution to

predict. Using different neural network architectures in the

ensemble can reduce some of this correlation problem. The

results from Table 3 clearly show that by combining

Table 3 (a) Training results of ensemble with different architectures. (b) Validation results of
ensemble with different architectures. (c) Test results of ensemble with different architectures

Ensemble KTB

Ensemble across hidden MSE MAE MSE MAE

(a)
Lag 1 0.0006490 0.0188782 0.0006491 0.0188801
Lag 2 0.0006487 0.0188942 0.0006489 0.0188960
Lag 3 0.0006465 0.0188442 0.0006469 0.0188525
Lag 4 0.0006425 0.0186814 0.0006430 0.0186938
Lag 5 0.0006412 0.0186705 0.0006424 0.0186944
Across lag
2 hidden 0.0006447 0.0188026 0.0006469 0.0188409
4 hidden 0.0006440 0.0187621 0.0006459 0.0187939
8 hidden 0.0006435 0.0187391 0.0006454 0.0187753

(b)
Lag 1 0.0014458 0.0268223 0.0014458 0.0267634
Lag 2 0.0014442 0.0267774 0.0014443 0.0267774
Lag 3 0.0014446 0.0267103 0.0014449 0.0267123
Lag 4 0.0014626 0.0267801 0.0014635 0.0267811
Lag 5 0.0014601 0.0268219 0.0014612 0.0268269
Across lag
2 hidden 0.0014516 0.0267636 0.0014544 0.0267834
4 hidden 0.0014466 0.0267111 0.0014489 0.0267515
8 hidden 0.0014493 0.0267378 0.0014526 0.0267817

(c)
Lag 1 0.0003768 0.0150555 0.0003769 0.0150589
Lag 2 0.0003773 0.0151693 0.0003774 0.0151693
Lag 3 0.0003786 0.0151638 0.0003789 0.0151659
Lag 4 0.0003794 0.0151789 0.0003798 0.0151805
Lag 5 0.0003826 0.0152323 0.0003837 0.0152626
Across lag
2 hidden 0.0003792 0.0152143 0.0003804 0.0152216
4 hidden 0.0003782 0.0151468 0.0003786 0.0151520
8 hidden 0.0003783 0.0151171 0.0003789 0.0151287
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different models either with different hidden nodes or with

different input nodes, the ensembles are able to perform

better than the KTB approach on the average. Furthermore,

since the number of input nodes determines, to a large

extent, the autocorrelation structure of the time series, it

seems obvious that the predictions from networks with

different numbers of hidden nodes but the same number

of lags should have higher correlation than those with

different input lags but the same hidden nodes. This may

explain why the combination of networks with different

input nodes is more effective than the ensemble with

different hidden nodes.

Seeking to reduce the harmful correlation effect among

ensemble members further, we created partition ensembles

with different training data, as discussed in the last section.

With these disjoint training samples, individual member

networks should exhibit much less correlation. Notice that

since only a portion of the data is used for the individual

ensemble member development, each individual member

may not predict well as those trained on the entire data set.

However, the ensemble as a whole should have the bene®t of

reduced correlation and increased modelling power. To see

the effect of using only one portion of the data to develop

the ensemble, we ®rst investigate the basic ensemble

approach of using 50 random weight initializations to

generate the individual ensemble members trained on a

single systematic portion of the training data. This method

eliminates all training data overlap, which may be important

in reducing ensemble correlation due to training on many

similar data points. The ensemble validation and test results

using only the ®rst portion of data in column 1 of Table 1

are reported in Table 4. It shows that when only a portion of

the total available sample data is used to develop both the

individual ensemble members and the overall ensemble,

they are, in general, not as effective as the KTB model.

Similar results are obtained using other portions (columns)

of the systematic sample.

Next we consider the performance of the individual

serial ensemble members. The whole training data is parti-

tioned into three sub-samples, each with approximately one-

third of the original training series. The ®rst ensemble

member is trained on the earliest 260 observations in the

time series, the second member on the next 261 data points,

while the third on the last 261 data points. With each

subsample, the 15 different neural architectures mentioned

earlier are applied. Figure 2 illustrates the performance of

the three individual serial partition ensemble members

using the ratios of MSE of the serial ensemble members

to the basic ensemble. It is clear that the individual ensemble

members perform worse than the basic ensemble formed

with the full training sample as the ratio is consistently

above one. Note also that the variability among different

network architectures is much higher in the ®rst partition

than in partitions 2 and 3. This suggests that ensembles with

older data (such as partition 1) have worse forecasting

performance than ensembles with more recent data (such

as partitions 2 and 3). Examining Figure 1 reveals that

almost all observations in the ®rst subsample are above the

level of the test sample, while the averages of the second and

third sample are closer to the average level of the test

sample. Figure 1 also suggests that some change in the

time series generating process parameters may be present.

While the individual ensemble members show decreased

performance relative to the basic ensemble approach and

KTB method, attention is now turned to evaluating the

performance of the overall partition ensembles. Results of

the complete ensembles based on partitions of the training

data are presented in Tables 5 and 6. The systematic

Table 4 The effect of single systematic partition of training data on ensemble

Validation Test

Ensemble KTB Ensemble KTB

Lag Hidden MSE MAE MSE MAE MSE MAE MSE MAE

1 2 0.0014607 0.0266757 0.0014442 0.0266700 0.0003812 0.0153665 0.0003761 0.0149920
1 4 0.0014533 0.0268277 0.0014471 0.0267961 0.0003785 0.0152271 0.0003775 0.0150958
1 8 0.0014525 0.0267409 0.0014462 0.0268241 0.0003789 0.0151690 0.0003770 0.0150890
2 2 0.0014583 0.0270137 0.0014470 0.0267879 0.0003949 0.0157477 0.0003781 0.0152016
2 4 0.0014484 0.0269478 0.0014442 0.0267670 0.0003871 0.0155470 0.0003772 0.0151629
2 8 0.0014465 0.0268448 0.0014417 0.0267774 0.0003857 0.0154914 0.0003769 0.0151435
3 2 0.0014697 0.0271265 0.0014429 0.0266883 0.0003758 0.0151277 0.0003783 0.0152229
3 4 0.0014671 0.0270691 0.0014439 0.0267205 0.0003745 0.0150053 0.0003791 0.0151255
3 8 0.0014712 0.0269950 0.0014480 0.0267281 0.0003757 0.0149880 0.0003793 0.0151492
4 2 0.0014848 0.0271231 0.0014684 0.0268775 0.0003828 0.0152889 0.0003830 0.0153133
4 4 0.0014735 0.0268471 0.0014548 0.0267533 0.0003796 0.0150929 0.0003772 0.0150808
4 8 0.0014944 0.0269939 0.0014673 0.0267126 0.0003851 0.0152165 0.0003791 0.0151473
5 2 0.0016189 0.0271401 0.0014694 0.0268935 0.0004089 0.0158738 0.0003867 0.0153783
5 4 0.0015783 0.0268482 0.0014545 0.0267208 0.0004019 0.0175125 0.0003821 0.0152951
5 8 0.0015841 0.0269127 0.0014598 0.0268665 0.0004040 0.0156809 0.0003822 0.0151145
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ensemble method, which combines neural networks

constructed on the systematically partitioned samples, is

compared with the serial ensemble method, which is based

on the networks with three serial partitioned samples. Table

5 reports the results with ensemble networks trained with

different initial weights. Several observations can be made

from Table 5. First, in nearly all cases, both systematic and

serial ensembles have lower overall forecasting errors than

the basic ensemble in Table 2. This holds true in both

validation and test samples. Hence ensemble models

created with individual members trained on different

portions of the data can be more effective in forecasting

than an ensemble trained on the same data. Secondly, the

serial ensemble performed much better than the systematic

ensemble. This may be attributed to the fact that the serial

ensemble model uses non-interrupted, yet overlapping,

training patterns in model building while disjoint, non-

overlapping training patterns are used in developing the

systematic ensemble model. For time series modelling, it

is perhaps more important to have continuous training

patterns in the training data set in order to better capture

the autocorrelated data generating process. The serial

partitioning of the training data may decorrelate ensemble

predictions and thus lead to the observed performance

improvement. Thirdly, using validation MSE as the

model selection criterion, the best model with the serial

ensemble has 3 lags and 8 hidden nodes while for the

systematic ensemble, it has 2 lags and 4 hidden nodes.

Compared to the best model with the basic ensemble (also

3 lags and 8 hidden nodes) in Table 2, the models selected

utilizing the partition ensemble approaches can signi®-

cantly outperform that with the basic ensemble on both

MSE and MAE in out-of-sample forecasting.

Table 6 shows the validation and test results of both

systematic and serial ensembles using different neural

network architectures. We ®nd that the serial ensemble

Figure 2 The effect of single serial partition data on ensemble: test set MSE comparisons.

Table 5 Comparison between systematic ensemble and serial ensemble with different initial weights

Validation Test

Systematic ensemble Serial ensemble Systematic ensemble Serial ensemble

Lag Hidden MSE MAE MSE MAE MSE MAE MSE MAE

1 2 0.0014607 0.0266757 0.0014282 0.0266346 0.0003812 0.0153665 0.0003776 0.0149010
1 4 0.0011453 0.0268277 0.0014273 0.0268184 0.0003785 0.0152271 0.0003756 0.0148804
1 8 0.0011453 0.0267409 0.0014309 0.0268890 0.0003789 0.0151690 0.0003770 0.0151058
2 2 0.0011441 0.0267556 0.0014294 0.0268042 0.0003781 0.0152038 0.0003772 0.0148838
2 4 0.0011435 0.0267154 0.0014260 0.0267932 0.0003777 0.0151130 0.0003761 0.0149001
2 8 0.0014379 0.0267320 0.0014285 0.0268865 0.0003778 0.0151642 0.0003757 0.0149925
3 2 0.0014398 0.0266119 0.0014236 0.0267395 0.0003775 0.0152056 0.0003811 0.0149363
3 4 0.0014363 0.0265637 0.0014286 0.0268343 0.0003792 0.0151950 0.0003753 0.0148618
3 8 0.0014474 0.0266173 0.0014203 0.0267992 0.0003815 0.0153111 0.0003757 0.0149892
4 2 0.0014710 0.0268427 0.0014291 0.0268362 0.0003801 0.0152041 0.0003836 0.0150390
4 4 0.0014633 0.0267260 0.0014423 0.0270462 0.0003814 0.0152628 0.0003809 0.0149934
4 8 0.0014609 0.0267706 0.0014301 0.0269375 0.0003818 0.0152372 0.0003786 0.0148919
5 2 0.0014665 0.0269102 0.0014257 0.0267586 0.0003826 0.0151210 0.0003940 0.0150489
5 4 0.0014825 0.0270198 0.0014327 0.0269357 0.0003846 0.0152266 0.0003785 0.0149271
5 8 0.0014746 0.0269748 0.0014217 0.0267758 0.0003831 0.0151919 0.0003916 0.0154576
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model performs about the same as the systematic ensemble.

In particular, both test MSE and MAE now indicate that, by

combining networks with different input nodes or different

hidden nodes, the forecasting ability of the systematic

ensemble method can be signi®cantly improved. Not only

does this partition ensemble approach outperform the basic

ensemble, but it also has better average forecasting perfor-

mance than the KTB method (see Tables 3(b) and (c)).

To this point, only the forecasting performance of

various neural network ensemble methods relative to the

single best neural network predictor has been conducted.

To assess the statistical signi®cance between neural

networks and the traditional random walk benchmark as

well as the market timing ability of the ensembles, we

employ the Diebold and Mariano24 (DM) test and the

Pesaran and Timmermann25 (PT) test. In the DM test,

only the squared loss function is presented as using the

absolute error loss function yields similar results. The KTB

method and the best ensemble approach, the serial partition

ensemble, are each compared to the random walk model for

both the validation and test sets.

Table 7 reports the results from the Diebold±Mariano

test. Several observations are noted. First, when compared

to the random walk predictions, the serial ensemble

performs better than the KTB in nearly every case. In

fact, the serial ensemble shows a consistent mild to moder-

ate signi®cance with a median P-value of 0.1607 in the

validation sample while the median P-value for the KTB

is 0.4052. This improvement of the serial ensemble

compared to the KTB also carries over to the test sample.

Second, although serial ensembles outperform the random

walk model with some signi®cance in the validation set, the

signi®cant difference is not seen between these two models

in the test sample. The degradation in the signi®cance of

Table 6 Comparison between systematic ensemble and serial ensemble with different architectures

Validation Test

Systematic ensemble Serial ensemble Systematic ensemble Serial ensemble
Ensemble across
hidden MSE MAE MSE MAE MSE MAE MSE MAE

Lag 1 0.0014458 0.0268223 0.0014288 0.0267807 0.0003768 0.015 0555 0.0003767 0.0149624
Lag 2 0.0014382 0.0267335 0.0014280 0.0268280 0.0003771 0.0151523 0.0003763 0.0149029
Lag 3 0.0014410 0.026 5952 0.0014242 0.0267910 0.0003782 0.0152372 0.0003774 0.0149291
Lag 4 0.0014648 0.0267870 0.0014338 0.0269400 0.0003770 0.0152315 0.0003810 0.0149748
Lag 5 0.0014742 0.0269683 0.0014267 0.0268234 0.0003822 0.0151711 0.0003880 0.0151445

Across lag
2 hidden 0.0014485 0.0267177 0.0014272 0.0267546 0.0003779 0.0151316 0.0003827 0.0149618
4 hidden 0.0014489 0.0267070 0.0014314 0.0268856 0.0003781 0.0151718 0.0003773 0.0149126
8 hidden 0.0014497 0.0267124 0.0014263 0.0268576 0.0003776 0.0151945 0.0003797 0.014 2074

Table 7 Diebold and Mariano test for predictive signi®cance relative to random walk model

Validation Test

KTB Serial ensemble KTB Serial ensemble

Lag Hidden Statistic P-value Statistic P-value Statistic P-value Statistic P-value

1 2 ÿ0.9142 0.1803 ÿ1.0030 0.1579 0.1811 0.5719 0.1766 0.5701
1 4 ÿ1.0875 0.1384 ÿ0.9916 0.1607 0.5356 0.7039 0.0411 0.5164
1 8 ÿ1.0142 0.1552 ÿ1.0473 0.1475 0.4235 0.6640 0.4305 0.6666
2 2 ÿ0.2399 0.4052 ÿ0.9860 0.1621 0.5585 0.7117 0.1455 0.5578
2 4 ÿ0.4538 0.3250 ÿ1.0375 0.1498 0.4566 0.6760 0.0928 0.5370
2 8 ÿ0.6420 0.2604 ÿ1.0105 0.1561 0.3931 0.6529 0.1012 0.5403
3 2 ÿ0.5087 0.3055 ÿ1.0783 0.1404 0.5466 0.7077 0.3461 0.6354
3 4 ÿ0.4652 0.3209 ÿ0.9697 0.1661 0.8411 0.7999 0.0128 0.5051
3 8 ÿ0.1525 0.4394 ÿ1.1431 0.1265 1.0151 0.8450 0.1134 0.5451
4 2 0.8900 0.8133 ÿ0.7586 0.2240 1.2566 0.8956 0.5035 0.6927
4 4 0.2472 0.5976 ÿ0.2891 0.3863 0.4098 0.6590 0.3797 0.6479
4 8 0.6056 0.7276 ÿ0.6792 0.2485 0.8252 0.7954 0.3116 0.6223
5 2 0.6515 0.7426 ÿ0.9263 0.1771 1.3059 0.9042 0.7779 0.7817
5 4 0.1677 0.5666 ÿ0.7221 0.2351 1.5126 0.9348 0.2428 0.5959
5 8 0.3984 0.6548 ÿ1.0234 0.1531 0.7824 0.7830 1.0700 0.8577
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both the KTB and ensemble models relative to the random

walk in the test set is clear judging by the P-values.

Although it may not be surprising to obtain results that do

not meet statistical signi®cance thresholds in out-of-sample

forecasting comparison given the dif®culty suggested in the

literature, a further look at the data may reveal why there is

such an apparent shift in signi®cance between the validation

and test sets in this particular application. In Figure 1, we

notice that the pattern of the time series appears changed in

the test set timeframe relative to that in the training and

validation time periods. The exchange rate series is quite

stable during the test set time period, which is the most

favorable environment for the no change forecasting of the

random walk model. Nevertheless, it is encouraging to ®nd

that the serial ensemble consistently provides a better

buffering prediction model than the KTB method does

against possible changes in the time series generating

process or its parameters. Finally, we ®nd that the DM

statistic and the associated P-value for the serial ensemble

are much less variable than those for the KTB across all 15

neural network architectures for both validation and test

sets. This conforms to the theoretical expectation of the

ensemble development that improvement in generalization

capability results primarily from a decrease in the variance

component of overall prediction error.

Table 8 contains the results of the Pesaran and Timmer-

mann test for signi®cance in market timing ability. The PT

test evaluates a model's ability to correctly predict

increases or decreases in the exchange rates. The ef®cacy

of both the KTB and the serial ensemble methods for

market timing is less clear than that for the DM test. This

may be because the neural networks were not speci®cally

designed to identify changes in the direction of the

exchange rates. Neural network market timing performance

might be improved by training on the ®rst-order differences

in the series rather than the exchange rates. In this way, the

targets in the training phase will include both positive and

negative values, thereby emphasizing the importance of

market timing ability.

Conclusions

Neural network ensembles can be an effective approach to

improving neural network performance over a single `best'

network model. Although neural ensembles have been

studied and applied for pattern classi®cation problems,

few applications have been reported in forecasting applica-

tions. This paper presents a detailed investigation of the

effectiveness of neural network ensembles for exchange

rate forecasting. Results show that by appropriately

combining different neural networks, forecasting accuracy

of individual networks can be largely improved. Although

our ensemble methods show considerable advantages over

the traditional KTB approach, they do not have signi®cant

improvement compared to the widely used random walk

model in exchange rate forecasting.

In this study, several strategies to form the neural

ensemble models are investigated. These include neural

networks trained with different initial random weights,

networks with different architectures, and networks trained

with different data. Our results show that different

approaches to forming ensembles for time series forecast-

ing have quite different effects on the forecasting results.

Neural network ensembles created by simply varying the

starting random weights are not as competent as the

traditional keep-the-best (KTB) model. Therefore this

method of ensemble forecasting may not be effective for

time series forecasting problems. On the other hand,

Table 8 Persaran and Timmerman test for signi®cance of market timing ability

Validation Test

KTB Serial ensemble KTB Serial ensemble

Lag Hidden Statistic P-value Statistic P-value Statistic P-value Statistic P-value

1 2 0.1911 0.5758 0.0423 0.5169 ÿ0.8756 0.1906 ÿ0.8756 0.1906
1 4 0.1118 0.5445 0.0423 0.5169 ÿ0.8756 0.1906 ÿ0.8756 0.1906
1 8 ÿ0.0136 0.4946 0.1962 0.5778 ÿ0.8756 0.1906 2.2425 0.9875
2 2 0.1024 0.5408 0.0423 0.5169 ÿ0.2612 0.3970 ÿ0.8756 0.1906
2 4 0.2823 0.6111 0.0423 0.5169 2.1711 0.9850 ÿ0.8756 0.1906
2 8 ÿ0.1255 0.4501 ÿ0.7319 0.2321 1.4767 0.9301 0.1019 0.5406
3 2 1.1903 0.8830 0.5922 0.7231 1.3490 0.9113 ÿ0.8756 0.1906
3 4 1.1903 0.8830 ÿ0.5076 0.3059 0.7379 0.7697 ÿ0.8756 0.1906
3 8 0.5588 0.7119 0.2847 0.6121 0.1829 0.5726 ÿ0.8756 0.1906
4 2 ÿ0.6650 0.2530 ÿ0.0774 0.4692 0.1044 0.5416 ÿ0.8756 0.1906
4 4 ÿ0.4429 0.3289 ÿ0.5808 0.2807 0.7818 0.7828 ÿ0.8756 0.1906
4 8 ÿ0.4429 0.3289 ÿ0.6166 0.2687 1.7965 0.9638 ÿ1.2453 0.1065
5 2 1.4595 0.9278 ÿ0.0202 0.4919 ÿ1.1683 0.1213 ÿ0.8756 0.1906
5 4 0.8394 0.7994 0.4259 0.6649 ÿ0.7183 0.2363 ÿ0.8756 0.1906
5 8 0.4830 0.6855 ÿ0.9311 0.1759 0.7818 0.7828 ÿ0.8756 0.1906
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ensemble models created with different neural network

structures consistently perform well in a variety of situa-

tions and, hence, appear to be a preferred way to improve

forecasting performance. Furthermore, the results indicate

that it is more bene®cial to include networks with different

numbers of lags in an ensemble than to include models with

different numbers of hidden nodes. This conclusion

matches the expectation that it is the number of lags in

the neural network model that largely determines the

autocorrelation structure of a time series.

Theoretical work in neural network ensembles has

concluded that they work better if different models in the

ensemble disagree with each other strongly.15,26 That is, if

all models in the ensemble are independent of each other or

the prediction errors are uncorrelated, then using the

ensemble method can improve forecasting accuracy signif-

icantly. Moreover, if the negative covariance can be created

among individual forecasts, the ensemble's improvement

on performance can be even more signi®cant.27 To reduce

the correlation effect, we have proposed and evaluated two

ensemble models based on different data partitioning

methods. The systematic ensemble is formed by networks

built on non-overlapping systematic subsamples from the

original training series while the serial ensemble is

constructed by networks developed on chronologically

separated subsamples. Empirical ®ndings from this study

indicate that partition ensembles based on different samples

can signi®cantly outperform the basic ensemble based on

the same training sample. Moreover, the serial ensemble

model appears to be a more promising approach in time

series forecasting applications as demonstrated in this

exchange rate example.

Accurate forecast of the exchange rate movement is of

fundamental importance to multinational ®rms and port-

folio managers in managing a major risk inherent in inter-

national transactions and thereby enabling better strategic

and cross-border investment decisions. On the other hand,

exchange rate forecasting is a dif®cult problem as numer-

ous empirical studies suggest. Previous neural network

research has yielded mixed ®ndings on the out-of-sample

predictability of the exchange rate. One of the possible

reasons for the inconclusive results is the variability asso-

ciated with the single KTB approach most commonly used

in the literature. Although the purpose of this paper is

primarily to demonstrate the effectiveness of the ensemble

approach over the KTB practice, a comparison with the

benchmark random walk model is included for complete-

ness. The results indeed show that the partition ensemble

models have a consistent and signi®cant improvement over

the single KTB modelling approach. The ensemble results

also show moderately signi®cant improvement over the

random walk model in the validation sample that degrades

in the test sample period. In the paper it is shown that this

may result from a possible shift in the time series and that

the stable pattern observed in this particular situation highly

favours the no-change prediction of the random walk model

over other prediction methods. Nevertheless, it is demon-

strated that ensembles can be more robust against possible

pattern changes in a time series and hence able to provide

more reliable forecasts in a wider array of forecasting

situations than the commonly used KTB approach.

Although this study evaluates several potential ensemble

models for exchange rate forecasting, many other ensemble

methods can be considered. For example, one potential

method is based on bootstrapping samples randomly gener-

ated from the original whole training time series. While

computationally expensive, ensemble models based on

bootstrapping samples may provide further insights and

evidence on the effectiveness of ensemble method for out-

of-sample forecasting. Research efforts should also be

devoted to the methods that can further reduce the correla-

tion effect in combining neural networks and to quantifying

the impact that shifts in the data generation parameters

have on the various approaches. Simulation and

experimental design methodology should prove useful

and necessary in these endeavours.
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