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Abstract

Many researchers have argued that combining many models for forecasting gives better estimates than single time series models. For

example, a hybrid architecture comprising an autoregressive integrated moving average model (ARIMA) and a neural network is a well-

known technique that has recently been shown to give better forecasts by taking advantage of each model’s capabilities. However, this

assumption carries the danger of underestimating the relationship between the model’s linear and non-linear components, particularly by

assuming that individual forecasting techniques are appropriate, say, for modeling the residuals. In this paper, we show that such

combinations do not necessarily outperform individual forecasts. On the contrary, we show that the combined forecast can underperform

significantly compared to its constituents’ performances. We demonstrate this using nine data sets, autoregressive linear and time-delay

neural network models.
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1. Introduction

Research in time series forecasting argues that predictive

performance improves in combined models (Bishop, 1994;

Clemen, 1989; Hansen & Nelson, 2003; Hibbert, Pedreira,

& Souza, 2000; Terui & van Dijk, 2002; Tseng et al., 2002;

Weigend et al., 1995; Zhang, 2003; Zhang and Qi, 2005).

The motivation for combining models comes from the

assumption that either one cannot identify the true data

generating process (Terui & van Dijk, 2002) or that a single

model may not be sufficient to identify all the characteristics

of the time series (Zhang, 2003). For example, a time series

may exhibit both linear and non-linear patterns during the

same time interval. In such cases, neither a linear nor non-

linear model is able to model both components

simultaneously.

Using a hybrid technique that decomposes a time series

into its linear and non-linear form has recently been shown

to be successful for single models (Zhang, 2003; Zhang &

Qi, 2005). In particular, it has been argued that for seasonal

time series, the seasonal component is first required to be
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removed by a linear model, such as a seasonal auto-

regressive process, before any further analysis takes place

(Nelson, Hill, Remus, & O’Connor, 1999; Tseng et al.,

2002; Virili & Freisleben, 2000; Zhang and Qi, 2005).

However, this assumption carries the danger of under-

estimating the relationship between the components as there

may not be any additive association between the linear and

non-linear elements. In addition, one cannot guarantee that

the residuals of the linear component may comprise valid

non-linear patterns. Nevertheless, a single component is

able to model such seasonal series if the modeling procedure

is carried out properly. In this paper, we present a

comparison of the performance of these approaches,

expanding upon our preliminary work (Taskaya-Temizel

& Ahmad, 2005)1.

In Section 2 we first discuss the hybrid techniques

designed for time series analysis. In Section 3 we present

single models to analyze seasonal time series. Section 4

describes the experimental model design, whilst Section 5

details the experiments and results. Finally, we conclude

this work and discuss our future work in Section 6.
Neural Networks 18 (2005) 781–789
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1 An abbreviated version of some portions of this article appeared in

Taskaya-Temizel and Ahmad (2005), as part of the IJCNN 2005 conference

proceedings, published under the IEEE copyright.
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2. Model combination techniques

There are a range of combination techniques that can be

applied to forecasting that attempt to overcome the

deficiencies of single models. The difference between

these combination techniques can be described using

terminology developed for the classification and neural

network literature (Sharkey, 2002). Here we focus upon

cooperative ensembles and more general cooperative and

competitive architectures.

In an ensemble architecture, the aim is to reduce the risk

of using an inappropriate model by combining several to

reduce the risk of failure. Typically this is done because the

underlying process cannot easily be determined (Hibon &

Evgeniou, 2005). Ensemble architectures comprise several

redundant models designed for the same function, where the

diversity of the components is thought important (Brown,

Wyatt, Harris, & Yao, 2005). An overall forecast is

produced by combining the models’ outputs, say by an

average or majority vote. Ensemble models can be

homogeneous, such as using differently configured neural

networks (all multi-layer perceptrons) (Zhang & Berardi,

2001), or heterogeneous, such as with both linear and non-

linear models (Terui & van Dijk, 2002; Wichard &

Ogorzalek, 2004). However, these architectures do not

always lead to better estimates when compared to single

models. For example, it has been shown that combined

forecasts do not necessarily dominate for all series;

sometimes a linear model still produces better results

(Terui & van Dijk, 2002).

In a cooperative modular combination, the aim is to fuse

models to build a complete picture from a number of partial

solutions (Sharkey, 2002). The assumption is that a model

may not be sufficient to represent the complete behavior of a

time series, for example if the time series exhibits both

linear and non-linear features, neither linear models nor

non-linear models alone are capable. A good exemplar are

models that fuse ARIMA with neural networks. An ARIMA

process combines three different processes comprising an

autoregressive (AR) function regressed on past values of the

process, moving average (MA) function regressed on a

purely random process with mean zero and variance st
2, and

an integrated (I) part to make the data series stationary by

differencing. In such hybrids, whilst the neural network

model deals with non-linearity, the ARIMA model deals

with the non-stationary linear component (Tseng et al.,

2002; Zhang, 2003; Zhang & Qi, 2005). Such models are

generally constructed in a sequential manner, with the

ARIMA model first applied to the original time series, and

then its residuals modeled using neural networks.

Different hybrids of ARIMA and neural networks have

also been constructed. For example, ARIMA parameters

have been used as a window to build a neural network

architecture (Hansen & Nelson, 2003), whereas neural

networks have also been trained with past observations,

comprising the original data and ARMA forecasts
(Hibbert et al., 2000). However, it is typically assumed

that the residuals of a linear component are always going

to include valid non-linear patterns that can be modeled

using neural networks (Zhang, 2003; Zhang & Qi, 2005).

Such assumptions are likely to lead to unwanted

degeneration of performance if the opposite situation

occurs.

In a competitive architecture the aim is to build

appropriate modules to represent different parts of the

time series, and to be able to switch control to the most

appropriate. For example, a time series may exhibit non-

linear behavior generally, but this may change to linearity

depending on the input conditions. Early work on threshold

autoregressive models (TAR) used two different linear AR

processes, each of which change control among themselves

according to the input values (Tong, 1990). An alternative is

a mixture density model (Bishop, 1994), also known as non-

linear gated expert (Weigend et al., 1995), which comprises

neural networks integrated with a feedforward gating

network. Mixture models have been also extended to

comprise Gaussian AR components (Wong & Li, 2000),

which work in-situ and are often homogeneous. Whilst each

mixture network learns to specialize on different probability

density functions of the targets, the gating network learns to

switch to the appropriate component based on the input

(Jacobs, Jordan, Nowlan, & Hinton, 1991). Such models are

thought superior because they can model general con-

ditional densities (Bishop, 1994), whereas conventional

neural network approaches approximate the conditional

average of the target data by minimizing the sum-of-squares

error function. The major drawback of such architectures is

that there may be unwanted effects if control is switched to a

less well-performing module, thus causing overall perform-

ance degeneration.
3. Models for seasonal time series

Many conventional statistical techniques decompose a

time series into trends, seasonalities, cycles and irregular

fluctuations. Such decomposition facilitates forecasting by

providing insights regarding the nature of the time series.

The decomposition process comes from the idea that

economic theories that are relevant in the long run are

different to the theory one wishes to apply in the short run

(Harvey, 1997).

Cyclic patterns are oscillations that generally have a

fixed period. Seasonality is regarded as a special case of

cycles whose periods are calendar fixed. In economic data,

there is increasing evidence that business cycles are not

symmetric (Chatfield, 2004). Asymmetric cyclic behaviors

in the economy can be explained as the rate of change in

recession, being different to the rate of change in emerging

from recession. Well-known data sets such as the sunspot

and Canadian lynx series (Rao & Sabr, 1984) show evidence
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of asymmetric cycles, with such behavior difficult to model

with linear techniques.

If the cyclic patterns are not of direct interest, one can

remove them by seasonal differencing conditional on the

stochastic variation present in the data. Trend and

seasonality removal processes are referred as pre-whitening

methods. If the cyclic patterns are of interest, one can apply

seasonal models. In the case of cycles that are symmetric,

linear AR model variants can be employed, whereas a time

series that exhibits multiplicative seasonality can be

transformed into additive form using functional trans-

formations such as logarithms (Box & Cox, 1996).

Non-linear models (Kantz & Schreiber, 1999) can also be

used to explain, and give forecasts for, data exhibiting

regular cyclic behaviors and are an alternative to the use of

harmonic components, especially if the behavior is

asymmetric (Chatfield, 2004). However, a linear AR

model can be applied to a non-linear time series such as

to the sunspot data set if the time series is short (Rao & Sabr,

1984). Some empirical results show that linear models

dominate in the short run and non-linear models perform

well in the long run (Terui & van Dijk, 2002). Moreover,

some results show that seasonal series cannot be modeled

successfully with neural networks (Nelson et al., 1999;

Tseng et al., 2002; Zhang & Qi, 2005). However, no

significant attention has been shown to model selection for

neural networks and preprocessing in these results.
4. Model details

In this paper, our main aim is to investigate whether the

performance of hybrid models shows consistent improve-

ment over single models. For this purpose, we compute

linear AR, neural network and ARIMA neural network

hybrid models, constructed using a range of parameters to

determine the best architecture. Our main goal is to evaluate

the use of hybrid models and to achieve this, we set out to

answer the following questions:

(A) How important is preprocessing for neural networks?

How does detrending affect the performance?

(B) Are neural networks able to model seasonality? If they

are, how can we construct optimal architectures?

(C) Compared to linear autoregressive models, how

successful are neural networks?

(D) Are ARIMA neural network hybrids better than single

models?

In this section, we present details of the models used to

answer these questions.

4.1. Neural network design

Temporal data can be modeled using neural networks in

two ways. The first way is to provide recurrent connections
from output nodes to the preceding layer (Elman, 1990).

The second way is to provide buffers on the output of the

nodes (see Haykin (1999) for a detailed survey on neural

networks for temporal data modeling). A time-delay neural

network (TDNN) is a well-known exemplar for the latter

models that has been employed throughout our experiments.

In a TDNN, each layer is connected to its preceding layer’s

buffered output, and is therefore able to relate current input

to past values (Waibel, Hanazawa, Hinton, Shikano, &

Lang, 1989). A subset of the TDNN architecture is the input

delayed neural networks (IDNN), in which the memories are

only provided in the input layer (Clouse, Giles, & Home,

1997). Their simplicity of implementation has made them

widely used in time series analysis (Tseng et al., 2002;

Weigend et al., 1995; Zhang, 2003; Zhang & Berardi, 2001;

Zhang & Qi, 2005).

The activation function for node i at time t of a TDNN is:

yiðtÞ Z f
XM
jZ1

XT

dZ0

wijðt KdÞyjðt KdÞ

 !
(1)

where yi(t) is the output of node i at time t, wij(t) is the

connection weight between node i and j at time t, T is the

number of tapped delays, M is the number of nodes

connected to node i from preceding layer, and f is the

activation function, typically the logistic sigmoid. In this

paper, we consider the case when we have tapped delays in

the input layer only.

We consider TDNN configurations of 2i:2j:1, where

1%i, j%16 and i, j2ZC. Each configuration was tested with

30 different random initial conditions to provide an average

root mean square error (RMSE) on the test data. Here we

focus on RMSE only for model comparison, rather than

using other error criteria. Details of the training procedure

used can be found in Taskaya-Temizel and Ahmad (2005).

Note that the neural networks are trained on normalized data

formed using the z-score of the original data.

4.2. Linear autoregressive process design

A linear AR process has been employed throughout the

experiments. A process Xt is said to be an AR process of

order p if:

Xt Z m Ca1ðXtK1 KmÞC. CapðXtKp KmÞCZt (2)

where a are the AR parameters, m is the mean of the series

and Zt is a random process with mean 0 and variance s2
z .

As a model selection criterion, we employed Akaike’s

Information Criterion (AIC), which takes into account the

number of parameters fitted. AIC chooses the best fit, as

measured by the likelihood function subject to a penalty

term (Chatfield, 2004). However, as AIC is biased for small

samples, we preferred the bias-corrected version of AICC

(Hurvich, Simonoff, & Tsai, 1998):

AICCp ZK2 lnðŝ2
pÞC2p C2pðp C1Þ=ðT Kp K1Þ (3)



Table 1

Data sets used in experiments

Data sets Start date Data points

USBC retail 01/1992 120
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where T is the sample size, ŝ2
pZ ðT KpK1ÞK1

PT
tZp 3̂2

t and

3̂t are the model residuals. The AICC value was calculated

for orders between 1 and 20. Then the lowest value was

selected among the results.
USBC hardware 01/1992 120

USBC clothing 01/1992 120

USBC furniture 01/1992 120

USBC bookstore 01/1992 120

FR durable goods 01/1947 660

FR fuels 01/1947 576

FR consumer goods 01/1970 384

FR total production 01/1947 660

The second column shows the start date of the data series. The last column

shows the total number of data points in the data sets.
4.3. Autoregressive and neural network hybrid design

A hybrid model comprising a linear and a non-linear

component has been employed in the experiments (Zhang,

2003):

yt Z Lt CNt (4)

where Lt is the linear AR component and Nt is the non-linear

component. First, we model the linear part by fitting an AR

function to the data series. Then, the residuals are modeled

using neural networks. Let r be the residual of the linear

component, then:

rt Z yt K L̂t (5)

where L̂t is the estimate of the linear AR component. For

non-linear patterns, we use neural networks:

r̂t Z f ðrtK1; rtK2;.; rtKqÞ (6)

where q is the number of input delays and f is the non-linear

function. So the combined forecast will be

yt Z L̂t C r̂t C3t (7)

where 3t is the error of the combined model. Since linear AR

models cannot model non-linearity, we assume that the

residuals of the linear component will contain non-linear

patterns, which a non-linear component, such as a neural

network, should be able to model. In this way, the hybrid

model is exploiting the strength of both components.
Table 2

TDNN mean and standard deviation RMSE for testing data sets

preprocessed with differencing and trend fitting

Data sets Differencing Trend fitting

USBC retail 1446.77G457.84 2177.04G542.28

USBC hardware 73.26G20.99 111.06G31.30

USBC clothing 1148.58G427.17 848.59G207.98

USBC furniture 279.91G44.20 285.97G24.09

USBC bookstore 224.86G36.97 296.08G38.18

FR durable goods 4.31G0.53 7.83G1.27

FR fuels 2.28G0.30 2.51G0.54

FR consumer goods 1.80G0.22 2.58G0.52

FR total production 1.95G0.19 3.42G1.42
5. Experiments and results

In this section, we describe the experiments and results

undertaken to answer the questions set in Section 4. We

selected nine monthly time series as used by Zhang and Qi

(2005) for the experiments. Monthly series were selected as

they exhibit stronger seasonality than that of quarterly time

series. None of the series are seasonally adjusted, but do

comprise trends (see Table 1). All data series end at

December 2001. The last 12 values have been reserved for

testing, the preceding 12 values for validation, whilst the

rest are used for training. This low number of test and

validation samples was selected because of the small size of

the data sets. It is recognized that this is less than ideal, but is

used for comparison with Zhang and Qi (2005), as is one-

step-ahead forecasting.
5.1. Experiment 1: How does detrending affect

the performance of neural networks?

Although neural networks are said to be universal

approximators, they have certain limitations. It has been

shown that neural networks are not able to model a time

series containing trend, since non-linear transfer functions,

such as the logistic sigmoid, constrain the model to the input

range values (Cottrell, Girard, Girard, Mangeas, & Muller,

1995). Therefore, it is important to eliminate trend before

training, where ideally a stationary time series that has

constant mean and variance should be used for modeling.

Non-stationarity in the mean attributed to trend can be

removed either by differencing (stochastic trends) or

polynomial fitting (deterministic trends). However, there

is no successful method that determines which detrending

method is suitable for a given series (Zhang & Qi, 2005).

Although the importance of detrending is known for neural

networks, this has yet to be fully investigated. The

forecasting ability of neural networks can be helpful in

understanding whether differencing or trend fitting can be

more appropriate in order to make the time series stationary

in the mean.

In the literature, both detrending techniques have been

applied regardless of observing their performances on

testing data sets. For example, whilst Virili and Freisleben

(2000) adopted differencing, Zhang and Qi (2005)

employed trend fitting. Table 2 shows the TDNN testing
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data set RMSE when trained using data preprocessed with

differencing or first order polynomial trend fitting, as per

Zhang and Qi (2005). The mean result is shown based on

training 256 different TDNN architectures for 30 trials, each

starting with different random initial conditions. Eight out of

nine data sets preprocessed with differencing performed

significantly better than with trend fitting. However, we can

conclude that one should consider both detrending

techniques for modeling with neural networks and choose

the best-performing from the results because this will

typically depend upon the data set. For the nine data sets,

differencing appears to give better results, and hence we use

this in the subsequent experiments.

For neural networks, preprocessing helps to make the

data have a constant mean and variance. One should expect

good forecasts if the data set has been properly adjusted

according to the nature of the series before training. The

experiments indicate that the trends in the data sets cannot

be adequately captured by straight lines, which means a

deterministic trend is too restrictive, which is also inline

with the Harvey (1997) result. However, we note that if the

time series evolves in exponential or multiplicative form,

the first step should be to apply transformations such as

taking the logarithm of the series.
5.2. Experiment 2: How can we construct optimal neural

network architectures for seasonal time series?

In this experiment, we investigated whether neural

networks are able to model seasonal time series. For each

data set, we selected the TDNN configurations that

produced the best mean performance (lowest RMSE) out

of 256 (see Table 3), and compared these with Zhang and Qi

(2005) TDNN model, who determined the number of the

input nodes and delays according to the nature of the

autocorrelation in the time series. Note that their results

report the best-fit model among 5 trials of 98 architectures

only.

The TDNN trained on first-order differenced data sets

produced lower RMSE than the TDNN* for all data sets,
Table 3

Comparison of TDNN architectures: the second column shows the best

TDNN configuration obtained from 256 models

Data sets Model TDNN TDNN*

USBC retail 16:2:1 628.70G28.27 1785.77

USBC hardware 14:4:1 35.70G6.90 105.12

USBC clothing 14:2:1 372.50G50.66 1117.72

USBC furniture 16:2:1 173.10G31.10 226.68

USBC bookstore 12:2:1 91.51G10.41 170.49

FR durable goods 12:16:1 2.91G0.34 5.98

FR fuels 32:2:1 1.64G0.13 1.83

FR consumer goods 24:2:1 1.07G0.20 1.48

FR total production 28:2:1 1.07G0.05 1.62

The third column presents the mean and standard deviation of RMSE

results of corresponding models based on 30 trials. The last column (*)

shows the best fit results of Zhang and Qi (2005).
with improvement on USBC retail (64%), hardware (66%),

clothing (66%), furniture (24%), bookstore (46%), FR

durable goods (51%), fuels (10%), consumer goods (28%),

and total production (34%).

We found that the number of input delays in optimum

TDNN architectures shown in Table 3 is highly correlated

with the cycle information obtained from Fourier Analysis

for each data set. We recently reported an algorithm to

configure optimum TDNN architectures for analyzing

cyclic series (Taskaya-Temizel, Casey, & Ahmad, 2005),

finding that the number of input delays should be selected by

taking into consideration the longest cycle information and

the number of input weights in the network. On the five

USBC data sets having size of 120, we found that there are

no significant longer cycles than 12. If we assume a

relaxation of G2 as per Zhang and Qi (2005), we can

approximate the best performed TDNN input layer design in

Table 3. For longer series such as FR total production

exhibiting several cycles such as 24, 37, 42 and 63 months,

we undertook a similar experiment with configurations

varying between 2i:2j:1, where 1%i, j%33. We observed

that the network gives its best performance on 43:2:1, which

is close to 42 periods obtained from Fourier Analysis, but

the performance degrades in larger input sizes, such as in 63.

In addition, the number of hidden layer nodes should be kept

small as generalization performance reduces for networks

with larger hidden layers. This result agrees with the

application of a TDNN to S&P financial time series (Sitte &

Sitte, 2000). However, in these experiments the conclusion

was that the input layer does not play a significant role in

neural network design, perhaps due to the selected series

following a random walk, in contrast to our results. These

results also disagree with the application of a TDNN to the

exchange rate data between British pound and US dollar

(Zhang & Berardi, 2001). Although the time serial data

exhibits a random walk, they conclude that forecasting

ability of neural networks are not sensitive to the number of

hidden nodes but sensitive to the number of input nodes.

In order to investigate the effect of the input and hidden

layers on the overall performance of TDNNs, we calculated

the mean RMSE of 30 randomly initialized TDNNs for each

configuration. Fig. 1 illustrates the testing set performance

of USBC bookstore time series. The x-axis and y-axis show

the hidden and input layer sizes, respectively. The bar on the

right side of the figure shows the correspondence between

RMSE and shading, with dark depicting lower errors. It is

apparent that the RMSE is significantly large when the input

layer size is less than 12 (corresponds to a year) and that the

best fit results are obtained for a lower number of neurons in

the hidden layer. The error surface of FR fuels (see Fig. 2)

shows similar results. In addition, the performance in the

input layer degrades after 14 in Fig. 1, however not as much

as the performance variation between networks having input

layer with size of 12 and less. The other notable result is that

the neural networks give good estimates when the input

layer size is close to that of extracted cycle information.



Fig. 1. USBC bookstore testing data set performance based on average

RMSE. For each configuration, the mean RMSE is calculated over 30 trials.

Mean RMSE is grouped into discrete bands to show the error landscape

corresponding to the different layer sizes.
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In Fig. 2, the darkest regions are clumped around 12 and 30,

which are two of the cycles found in the FR fuels data set.

In addition, we found that there is no significant evidence

that one should incorporate autocorrelation structures.

Zhang and Qi (2005) included 10 various lag numbers of

1–4, 12–14, 24, 25 and 36 for the original and detrended

data where seasonality exists. They attributed this to the

observations being 12, 24 and 36 months apart, with high

correlation, and hence it is necessary to include these lags in

the input layer. However, the performances of the neural

networks comprising 24 delays in the input layer did not

yield the best results in our experiments.
Fig. 2. FR fuels testing data set performance based on average RMSE. For

each configuration, the mean RMSE is calculated over 30 trials. Mean

RMSE is grouped into discrete bands to show the error landscape

corresponding to the different layer sizes.
5.3. Experiment 3: Performance comparison of linear

autoregressive and neural networks

In this section, we compare the performance of linear

models with neural networks. Linear AR models were

constructed using the AICC criteria as described in Section

4.22. The performance of the validation set was used for

model selection.

Our seven out of nine AR models performed considerably

better than the ARIMA models constructed by Zhang and Qi

(2005) (see Table 4). However the best fit results of the

TDNN show a lower RMSE was obtained than AR fits of the

USBC retail (6%), hardware (31%), clothing (28%),

furniture (29%), bookstore (38%), FR durable goods

(28%), fuels (45%), and consumer goods (13%) but not on

total production (K1%). Our results show that a TDNN can

outperform a linear model if the TDNN is configured

appropriately.
5.4. Experiment 4: Are ARIMA neural network hybrids

better than single models?

The hybrid architectures we tested were constructed

following the procedure described in Section 4.3. We first

detrended the time series and fitted linear AR to the

detrended data, using the AR model orders shown in

Table 4. Then we modeled the residuals of AR using 256

different TDNN architectures. Finally, for each data set, we

selected the TDNN configurations that produced the best

mean performance over 30 trials (lowest RMSE) from the

256.

AR hybrids performed better than single AR models on

six out of nine data sets (compare Tables 4 and 5). However,

we observed a degeneration in performance in the USBC

retail and clothing data sets. In the hybrid model, while the

linear component is estimated by the AR model, the residual

error (that is the error between the AR estimate and the

original data) is estimated by a neural network. However,

this residual error exhibits randomness, lacking the proper-

ties for a successful estimate by neural networks. The

residual error and the residual error predicted by the neural

network are shown in Fig. 3. This plot indicates that the

error between the predicted residuals and the original

residuals is greater than the error between zero (representing

the case of no prediction, or just AR) and the residuals. This

means that the neural network adversely affects the

performance of the AR estimate, resulting in an overall

poorer performance.

In Table 5, we compared our hybrid model performances

with Zhang and Qi’s results. In their model construction,

they used the X-11 method (current X-12-ARIMA)
2 The Matlab programs to build autoregressive models and neural

networks, as well as the autoregressive coefficients of the models, can be

obtained from http://www.computing.surrey.ac.uk/personal/st/T.Taskaya/.

http://www.elsevier.com/locate/neunet


Table 4

AR model performance: the second column shows the AR order identified

by AICC

Data set AR order Test error ARIMA*

USBC retail 11 551.84 1005.41

USBC hardware 12 25.75 100.71

USBC clothing 14 350.49 519.60

USBC furniture 13 179.65 124.44

USBC bookstore 12 111.17 98.17

FR durable goods 15 2.72 5.61

FR fuels 13 1.53 1.62

FR consumer goods 13 0.97 3.96

FR total production 15 0.85 8.94

The third column presents the RMSE of the AR model. The last column (*)

is the RMSE of Zhang and Qi (2005) ARIMA model.

Table 5

Hybrid architecture performance: the second column shows the best TDNN

model order identified for the residuals of linear AR

Data sets Model ARCTDNN ARIMAC

TDNN*

USBC retail 28:2:1 726.56G81.16 975.55

USBC hardware 2:10:1 25.39G3.80 49.17

USBC clothing 2:4:1 381.76G10.70 315.43

USBC furniture 22:10:1 173.03G19.55 99.45

USBC bookstore 2:6:1 99.33G6.99 88.74

FR durable goods 2:2:1 2.71G0.05 3.63

FR fuels 18:4:1 1.52G0.12 0.81

FR consumer goods 4:2:1 0.98G0.03 0.68

FR total production 2:2:1 0.83G0.02 0.85

The third column is the mean RMSE of the hybrid model and the fourth

column (*) is the best-fit hybrid results of Zhang and Qi (2005).
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Fig. 4. Percentage performance improvement for the mean and best fit of

the TDNN, best fit of the AR neural network hybrid and AR single models

as compared to the mean for the hybrid architecture.
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developed by the Bureau of the Census, which includes

several seasonal adjustment methods. On average, we

outperformed on three out of nine data sets. Recall that all

our comparisons in the tables are based on mean and

standard deviation of RMSE obtained over 30 trials, whilst
Fig. 3. The residuals of the AR process and the neural network prediction on

the AR residuals. Although there is some correlation between the

predictions, for higher time indices, the prediction differs significantly to

the actual residual.
Zhang and Qi (2005) results are based on the best fit.

Comparing our best fit results, we outperformed on six out

of nine data sets: on the USBC retail (46%), hardware

(63%), clothing (20%), furniture (11%), bookstore (22%),

FR durable goods (46%), but not on fuels (K3%), consumer

goods (K23%) and total production (K1%).

Another interesting result is that the optimum configur-

ations of five out of nine of the TDNNs in the hybrid models

have similar input layer sizes. The tapped delays reveal that

the AR models successfully removed the cyclic components

from the differenced series, whilst the residuals appeared to

follow a non-linear random walk model. For the three sets

USBC retail, furniture and FR fuels, the TDNN configur-

ations show that AR models could not successfully remove

the long time cycles from the time series.

Fig. 4 shows the percentage performance improvement

for the mean and best fit of the TDNN, best fit of the AR

neural network hybrid and AR single models as compared to

the mean of hybrid architecture. For four out of the nine data

sets, the mean hybrid outperforms the single model.

However, for five of the data sets, either the linear AR or

TDNN model outperforms the hybrid. Of these improved

single models, three significantly outperform the hybrid.

These improvements appear to be related to model

configuration, where selection for generalization perform-

ance allows for better results.
6. Discussion

In this paper, we have attempted to understand if hybrid

models really are better than single models. Our findings can

be summarized as follows:

(A) How important is preprocessing for neural networks?

How does detrending affect the performance?

If a given time series exhibits trend, one should employ

detrending. The selection of the detrending process is also
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vital for training with neural networks. We found that

differencing generally gives superior results than that of

trend fitting.

(B) Are neural networks able to model seasonality? If

they are, how can we construct optimal architectures?

Neural networks are able to model seasonality if the

neural network architecture is properly configured. It

appears that neural networks give better forecasts when

the input layer size is equal to the longest cycle information

obtained from Fourier Analysis (Taskaya-Temizel, Casey,

& Ahmad, 2005) and the hidden layer size is small, relating

to the generalization capabilities of the network.

(C) Compared to linear autoregressive models, how

successful are neural networks?

When the mean RMSE of the TDNNs are compared to

linear AR processes, they outperform in two out of the nine

data sets. When the best fit results are compared, the TDNNs

outperform the AR processes in eight out of nine data sets.

However, to obtain these better results requires effort in

configuring the network appropriately.

(D) Are ARIMA neural network hybrids better than

single models?

For five of the nine data sets, the linear AR and TDNN

models outperform the ARIMA neural network hybrids,

albeit with similar levels of performance for two of these

data sets. This demonstrates that, despite the popularity of

hybrid models, which rely upon the success of their

components, single models themselves can be sufficient.

Perhaps the danger in using ARIMA neural network hybrids

is that there is an assumption that the relationship between

the linear and non-linear components is additive and this

may degrade performance if the relationship is different (for

example multiplicative). In addition, one may not guarantee

that the residuals of the linear component may comprise

valid non-linear patterns.

These results show that hybrids are not always better, and

hence that the model selection process still remains an

important step despite the popularity of hybrid models. We

have focused on a limited subset of hybrid models, and

therefore further work is required to assess the generated

performance of hybrid models in comparison to single

models. Following on from these results, there are still some

questions to be answered. For example, we also plan to work

on model selection procedures for TDNN architectures. In

our earlier work, we found that there is a strong relationship

between the cycle information obtained from Fourier

Analysis and the number of weights in the neural networks.

We will further investigate the impact that this has on

generalization capability.
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