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In this paper, a tensor decomposition approach combined with Chebyshev spectral 
differentiation is presented to solve the high dimensional transient Fokker–Planck equations 
(FPE) arising in the simulation of polymeric fluids via multi-bead-spring (MBS) model. 
Generalizing the authors’ previous work on the stationary FPE, the transient solution is 
obtained in a single CANDECOMP/PARAFAC decomposition (CPD) form for all times via 
the alternating least squares algorithm. This is accomplished by treating the temporal 
dimension in the same manner as all other spatial dimensions, thereby decoupling it 
from them. As a result, the transient solution is obtained without resorting to expensive 
time stepping schemes. A new, relaxed approach for imposing the vanishing boundary 
conditions is proposed, improving the quality of the approximation. The asymptotic 
behavior of the temporal basis functions is studied. The proposed solver scales very 
well with the dimensionality of the MBS model. Numerical results for systems up to 14 
dimensional state space are successfully obtained on a regular personal computer and 
compared with the corresponding matrix Riccati differential equation (for linear models) 
or Monte Carlo simulations (for nonlinear models).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the study of polymeric fluids, the multi-bead-spring (MBS) model is commonly employed by rheologists to represent 
coarse-grained molecular configurations. This model is a chain of N beads connected by N − 1 springs, where the beads 
represent interaction points with the solvent and springs capture the local stiffness property depending on local stretch-
ing [1]: see Fig. 1. For the special case of N = 2, it is often referred to as the dumbbell model. The configuration of an MBS 
chain can be specified by the connector vectors qi = ri+1 − ri , i = 1, . . . , N − 1, where ri is the position vector of the beads 
with local dimensionality d equal to 1, 2 or 3. A typical flow characterizing the polymeric fluid is the shear flow with the 
following linear velocity field:

v(x) = K x, K = β

[0 1 0
0 0 0
0 0 0

]
, (1)

where β is the shear rate.
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Fig. 1. Illustration of the multi-bead-spring (MBS) model (with 5 beads).

The chain is subject to viscous drag and a Brownian force exerted by the solvent and it also interacts with itself via a 
potential [2]. Additionally, the initial positions of the beads are not known exactly and this uncertainty is described by the 
initial pdf ψ0. Consequently, the configuration of the chain at any given time is probabilistic and can be captured by a time 
varying pdf ψ satisfying the Fokker–Planck equation (FPE) [3] with global dimensionality (N − 1)d, which can easily become 
very large as the number of beads in the chain increases.

The numerical solution of the FPE, in particular the transient FPE continues to remain a formidable challenge. It is 
well known that “traditional” discretization based numerical methods such as the finite element method (FEM) [4] and 
the finite difference method (FDM) suffer from the curse of dimensionality [5], i.e. for the same level of accuracy, the 
degrees of freedom of the approximation (i.e. number of unknowns to solve for) grows exponentially as the dimensionality 
of the underlying state space increases. Therefore, solving the transient FPE by FEM or FDM for high dimensional systems 
is computationally quite challenging even when parallel supercomputers are used [6]. Extensive research has been done to 
develop efficient numerical solvers for high dimensional FPE, such as in Refs. [1,7–9] for FPEs encountered in polymeric 
fluids applications and [10–14] for nonlinear vibrations.

In related literature, the tensor product representation has been recognized as a key for addressing the curse of di-
mensionality [15]. Numerical methods based on tensor decompositions have been established for solving high dimensional 
PDEs [16–18]. The essence of these tensor methods lies in the separation of dimensions, following which expensive high di-
mensional operations are decoupled into a series of simple one-dimensional operations, at the expense of exacerbating the 
problem’s nonlinearity. Beylkin and Mohlenkamp [16] proposed a method in which the solution to a time independent PDE 
was sought in the CANDECOMP/PARAFAC decomposition (CPD) [19,20] form by the alternating least squares (ALS) algorithm 
and FDM was locally used for discretization. Their scheme was extended in [13] for solving the stationary FPE for nonlinear 
systems in up to 10 dimensions. Tensor methods for time dependent PDEs almost exclusively perform a spatial discretiza-
tion as the first step while holding the temporal domain as is, then either use dynamical low rank methods [21,22] or time 
stepping schemes [8,9] to obtain the time evolution. If time stepping is used, the rank of the tensor approximation will keep 
growing as time progresses. As a result, appropriate truncation must be performed repeatedly to inhibit the growth of com-
plexity, which is a time consuming process. In [8] the tensor train format [23,24] was used for parabolic PDEs in modeling 
polymeric liquids where the FPE for linear systems in up to 12D was successfully solved. The transient solution was approx-
imated by a spatial discretization, followed by marching in the temporal domain step by step or encapsulating all time steps 
as a large block system. In Refs. [1,7,25,26], the proper generalized decomposition (PGD) method was developed by Ammar 
et al. motivated by applications in the kinetic theory of complex fluids, in which the solution of a PDE was constructed in 
CPD form through a sequence of enrichment steps using the finite element scheme. For time dependent PDEs, they decou-
pled the temporal domain from the spatial domain and essentially considered it as an additional dimension. In this manner, 
the strength of the tensor product structure was fully exploited and transient solution was obtained more efficiently. It is 
important to note that in the PGD enrichment step, the new approximation is constructed by adding a single component 
rank one tensor at a time. Thus, two successive approximations differ only by a single rank one tensor, due to which the 
PGD method can be described as a successive rank one approximation. Despite its efficiency within a single enrichment 
step (since only a single rank one tensor is sought in each iteration regardless of the total approximation rank), the overall 
strategy of PGD is a matter of debate. An example provided by Kolda [27] where the best rank one approximation of a cubic 
tensor is not a subset of its best rank two approximation, suggests that components of the best rank k approximation must 
be solved for simultaneously such as using the ALS algorithm [28–30].

The current paper constitutes a progression of the authors’ previous work [13] on the solution of high dimensional 
stationary FPE. Here, the transient FPE is solved in the CPD structure via the ALS algorithm with the Chebyshev spectral 
method used for discretization of the combined spatial temporal domain. This is similar to the strategy in the PGD method 
involving a separation of spatial and temporal domains [7]. This approach benefits from the superior performance of the 
Chebyshev spectral approach over other differentiation methods for smooth functions on domains of regular geometry [31,
32]. Moreover, the transient solution at all times is obtained simultaneously avoiding expensive time-stepping schemes, 
thereby exploiting the full benefits of the tensor product structure [33,34]. A new method for enforcing the boundary con-
ditions is proposed in which they are expressed as a linear constraint and imposed using a penalty parameter. In addition, 
the asymptotic behavior of the temporal basis functions is studied and shown to attain steady state for systems admitting 
a stationary distribution. The proposed method is implemented on a regular personal computer, tested on numerical exam-
ples from the field of nonlinear vibrations, and then applied to the simulation of polymeric fluids with multi-bead-spring 
(MBS) models. Our results indicate that the method works well on dynamical systems from both these fields and the total 
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Fig. 2. Illustration of the CP decomposition for a third order tensor.

DOF required for accurate solutions scales favorably. Interested readers can find the usage of the proposed solver for orbital 
mechanics [35] and nonlinear Bayesian filtering [36].

The remainder of this paper is organized as follows: Section 2 introduces the concepts of CP decomposition. The Cheby-
shev spectral method and its benefits are discussed in Section 3. Section 4 describes the FPE and some useful solution 
and validation tools. Section 5 illustrates in detail the proposed solver and numerical examples are provided in Section 6, 
including systems up to 14 dimensional state space. Finally, a summary and future research directions are provided in 
Section 7.

2. CANDECOMP/PARAFAC decomposition

In current context, a tensor can be understood as a multi-dimensional array. The order of a tensor is the number of 
indices needed to specify a single element of that array; whereby first and second order tensors are commonly known 
as vectors and matrices respectively. A tensor of order P and size n1 × n2 × · · · × nP is denoted by F ∈ Rn1×n2×···×nP . In 
numerous applications, a multivariate function can be represented by a tensor whose entries are the function evaluation on 
the tensor grids. If the resulting tensor is kept in its original form, its storage alone can be difficult in high dimensional cases 
owing to the exponential growth of its total number of elements (

∏P
d=1 nd) with respect to P . One remedy is to decompose 

the tensor into a summation of several rank one tensors. A tensor F ∈ Rn1×n2×···×nP is of rank one if
F = f1 ⊗ f2 ⊗ · · · ⊗ f P , (2)

where fd are nd × 1 vectors for d = 1, 2, . . . , P and “⊗” is the standard tensor product such that F(i1, i2, . . . , i P ) =∏P
d=1 fd(id) for all 1 ≤ id ≤ nd . The following important tensor decomposition of F was introduced by Carroll and Chang 

[19] and Harshman [20], named CANDECOMP/PARAFAC decomposition (CPD):

F ≈
R∑

r=1

P⊗
d=1

f r
d . (3)

Note that the above decomposition represents an approximation and is illustrated in Fig. 2. The minimum R for which 
the “≈” can be replaced with “=” is called the rank of tensor F . For simplicity, in Eq. (3) we call R the approximation 
rank (or just rank for short) of the CP decomposition. The inner product of two tensors F̂ and F̃ in the CPD form can be 
computed as

〈F̂, F̃〉 =
R̂∑

r̂=1

R̃∑
r̃=1

P∏
d=1

〈 f̂ r̂
d , f̃ r̃

d 〉. (4)

It is customary to define factor matrices of the above decomposition as Fd = [ f 1
d f 2

d · · · f R
d ], d = 1, 2, . . . , P . Once the 

CPD is found, a tensor of order P can be reconstructed using its P factor matrices. For prescribed accuracy, the total number 
of elements in the above approximation (R 

∑P
d=1 nd) grows linearly with P , provided that R does not exhibit explosive 

growth. Fortunately it is observed that in many applications, a tensor of high order can be very well approximated by CP 
decompositions of relatively low rank, although no theoretical results are available [37]. This makes the CPD structure a good 
candidate for numerically dealing with high dimensional PDEs despite the fact that finding the best low rank approximation 
for a given tensor is an ill-posed problem [38]. Determining the rank of a tensor is NP-hard [39], hence the selection of R
is a tradeoff between accuracy and computational efficiency.

The most commonly used method for computing a CP decomposition of a tensor is the alternating least squares (ALS) 
algorithm. Given a tensor G ∈ Rn1×n2×···×nP , the problem of finding its CPD of prescribed approximation rank R can be 
formulated as the following optimization problem

min
{ f r

d }
R, R =

∥∥∥∥∥G −
R∑

r=1

P⊗
d=1

f r
d

∥∥∥∥∥
2

F

, (5)

where “F ” stands for the Frobenius norm. The unknowns are the vectors f r
d for d = 1, 2, . . . , P and r = 1, 2, . . . , R , or 

equivalently the factor matrices Fd . Although Eq. (5) appears to be a standard nonlinear least squares problem whose 
objective function is a 2P th degree polynomial with R 

∑P
d=1 nd variables, there exist no well established algorithms for its 

solution [37]. Among existing techniques, alternating least squares (ALS) is arguably the most popular, underlying which 
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is the basic idea of holding all factor matrices except one constant, thus translating the original nonlinear least squares 
problem into a series of sequential linear least squares problems. The scheme of ALS for the problem in Eq. (5) is as follows:

• Initialize (for example, randomly) Fd ∈ Rnd×R , d = 1, 2, . . . , P .

• Cycle for d = 1, 2, . . . , P until 
√

R∏P
d=1 nd

< ε or the maximum number of iterations is reached:

Fd ← G(d)[(F P 
 · · · 
 Fd+1 
 Fd−1 
 · · · 
 F1)
T ]† (6)

end of cycle.
• Return Fd for d = 1, 2, . . . , P ,

where (·)(d) is the mode-d matricization of a tensor, “
” is the Khatri–Rao product and (·)† denotes the Moore–Penrose 
pseudoinverse of a matrix. It should be noted that although a convergence proof of ALS (even to a local minimum) is not 
yet available, it can be shown that the objective function of Eq. (5) decreases monotonically [16]. The rate of convergence 
is often a concern especially as dimensionality increases, leading to problems such as “bottlenecks”, “swamps” and “CP-
degeneracy” [37]. For a comprehensive introduction to tensor decompositions, the reader is referred to the review papers 
[28,40]. In application for solving PDEs, the solution is sought in the form of a tensor, and the essential idea of ALS can still 
be applied for obtaining the CP decomposition as discussed in detail in Section 5.

3. Chebyshev spectral method

Suppose the solution of a linear time dependent PDE lies in a hypercubic spatio-temporal domain. Once the domain 
is discretized by a tensor grid and the solution is sought in the CPD form, the high dimensional operations of the PDE’s 
operator can now be decoupled into simple one dimensional operations. For these one dimensional operations, the spatial 
differentiation involved is most commonly performed by FDM in the literature. Also note that it is always desirable to have 
a sparser grid while maintaining high accuracy. The current application (transient FPE) involves a parabolic PDE that admits 
smooth solutions over a hypercubic domain, for which a much better choice for approximating derivatives is the Chebyshev 
spectral method [41] described below.

The Cauchy interpolation error theorem [42] and Chebyshev minimal amplitude theorem [32] state that for a smooth 
real valued function, the optimal locations of (N + 1) grid nodes in terms of polynomial interpolation error are the extrema 
of the Chebyshev polynomial, i.e., x j = cos

(
jπ
N

)
j = 0, 1, . . . , N . These points can be viewed as the projection of equally 

distributed nodes on the upper half of a unit circle onto the horizontal line passing through the center of this circle. 
Thus the Chebyshev extrema points are not evenly distributed, but denser near the two ends than in the middle region. 
Derivatives can then be evaluated by differentiating the interpolating polynomial at the desired point. For instance, the first 
order differentiation matrix D N is of size (N + 1) × (N + 1) given by [31]:

(D N)00 = 2N2 + 1

6
, (D N)N N = −2N2 + 1

6
,

(D N) j j = −x j

2(1 − x2
j )

, j = 1, . . . , N − 1,

(D N)i j = ci(−1)i+ j

c j(xi − x j)
, i �= j, i, j = 1, . . . , N − 1,

where,

ci =
{

2 i = 0 or N,

1 otherwise
For solving the FPE we also need second order derivatives, which are relatively easy to obtain. For instance, the operator 
∂2

∂x2 can simply be approximated as the square of D N . The Chebyshev potential [31] can be used to show that in the current 
application, the above spectral derivative converges geometrically, which significantly outperforms both FDM and FEM. In 
other words, a differentiation matrix of significantly smaller size is sufficient for approximating the same one dimensional 
operator with equal accuracy. This is crucial for dealing with the curse of dimensionality while solving the FPE. For more 
theoretical details on the Chebyshev spectral method and its application in tensor form, we recommend the reader to see 
the books [31,32] and papers [13].

Note that as opposed to the attractive band-limited differentiation matrix of FDM, the Chebyshev spectral differentiation 
matrix is dense. However, since only one-dimensional differentiation is required for the tensor based method here, the 
dense structure does not have an adverse impact. Also note that if used in the temporal domain, its dense matrix structure 
would lead to expensive time stepping schemes, whereby traditional numerical schemes only use the Chebyshev spectral 
differentiation in the spatial domain. However, in the current tensor approach with complete separation of temporal and 
spatial domains, there is no need to perform time stepping for solving the transient problem. Thus the superior accuracy of 
Chebyshev spectral differentiation can be extended to temporal differentiation without any penalty, as shown in Section 5.
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4. Fokker–Planck equation and some validation tools

In this section, we first review the Fokker–Planck equation. For linear systems with Gaussian initial uncertainty, we 
describe its solution via the corresponding matrix Riccati differential equation. As a universal validation tool, especially for 
nonlinear dynamical systems, we describe the Monte-Carlo simulation (MCS) approach via Milstein’s stochastic integration. 
These validation techniques will be used in Section 6 for evaluating the performance of the proposed tensor approach.

4.1. Fokker–Planck equation

Consider a P -dimensional nonlinear dynamical system with initial condition uncertainty and white noise excitation, 
modeled by the following stochastic differential equation:

dx = f(t,x)dt + g(t,x)dB(t), x ∈RP , (7)

where B(t) denotes an M dimensional Brownian motion process with zero mean and covariance Qt . The f(t, x) : [0, ∞) ×
RP →RP and g(t, x) : [0, ∞) ×RP →RP×M are deterministic functions. The uncertainty in the state x(t) can be quantified 
by its time varying probability density function (pdf) W(t, x). The uncertainty in initial conditions is given by the pdf 
W(t0, x) =W0(x). The FPE corresponding to Eq. (7) is a linear second order parabolic PDE that captures the time evolution 
of the state pdf:

∂

∂t
W(t,x) = LFP [W(t,x)], (8)

where LFP is the Fokker–Planck operator given by

LFP =
⎡
⎣−

P∑
i=1

∂

∂xi
D(1)

i (·) +
P∑

i=1

P∑
j=1

∂2

∂xi∂x j
D(2)

i j (·)
⎤
⎦ ,

D(1)(t,x) = f(t,x), D(2)(t,x) = 1

2
g(t,x)Q gT(t,x). (9)

In Eq. (9), D(1) and D(2) are called drift vector and diffusion matrix respectively. The vector D(1) captures drifting apart 
of the mean of the propagated W(t, x) from the propagated mean of W0(x). Generally, this drift increases with degree of 
nonlinearity of underlying dynamics (i.e. f(t, x)). The matrix D(2) captures the spreading out of the substantial portion of 
the W(t, x) over the state-space. In case that g(t, x) = 0, i.e., the underlying governing dynamics is deterministic, the source 
of uncertainty lies purely in initial condition and the FPE reduces to the Liouville equation [43]. This paper is concerned 
with the transient solution of Eq. (9). As a valid pdf, the transient solution of FPE must satisfy the following constraints at 
all times:

lim
x→∞W(t,x) = 0, (10)∫
�

W(t,x)dx = 1. (11)

Eq. (10) and Eq. (11) are called the vanishing boundary condition and normality condition respectively. Any discretization 
based method requires a compact domain for implementation, due to which the vanishing boundary condition is imposed 
on a conservatively chosen “large-enough” domain.

Besides the constraints described in Eqs. (10) and (11), W(t, x) should also be non-negative on the entire spatio-temporal 
domain. In this paper, although non-negativity is not actively enforced, the numerical solutions obtained are “accurate 
enough” to preserve this property (negative pdf values with magnitude less than 10−7 occasionally appear in certain small 
regions in some examples).

4.2. Linear systems: solution by matrix Riccati differential equation

For a linear system with constant coefficients, Eq. (7) reduces to

dx = Axdt + gdB(t), (12)

where A and g are constant matrices of size P × P and P × M respectively. It is known that the solution to FPE for the 
linear system in Eq. (12) with Gaussian initial pdf W0(x) remains Gaussian for all times. In other words, W(t, x) is Gaussian 
N (μ(t), �(t)) with time-varying mean μ(t) and covariance �(t) that satisfy the following ordinary differential equations 
(ODEs)

μ̇ = Aμ, (13)

�̇ = A� + �AT + gQgT , (14)
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where Eq. (14) is a special form of the matrix Riccati differential equation. If only the stationary solution is desired (when it 
exists), Eq. (13) yields μ∞ = 0, while the stationary covariance matrix can be obtained from the continuous time algebraic 
Riccati equation, whose solution has been extensively studied. In high dimensional cases, 2D marginal solutions are often 
desired for visualization. The ensuing computationally unattractive high dimensional numerical integration can be avoided 
as described below: suppose the x1–x2 marginal is desired and let the solution at a certain time be

W(x) = 1√
(2π)P det(�)

exp

(
−1

2
(x − μ)T �−1(x − μ)

)
. (15)

The information matrix �−1 can be split as follows to isolate the target states (x1 and x2):

�−1 =
(

�1 �2
�T

2 �3

)
, (16)

where �1 is a matrix of size 2 × 2 and the remaining components can be identified accordingly. It can be shown after some 
algebra that the desired marginal pdf is given by

W(xr) = 1

2π
√

det(�)det(�3)
exp

(
−1

2
(xr − μr)

T �4(xr − μr)

)
, (17)

where xr = [x1, x2]T , μr = [μ1, μ2]T , �4 = �1 − �2�
−1
3 �T

2 . In fact, above formulas can be easily generalized for any 
marginal pdf of dimensionality P ′ with 1 ≤ P ′ ≤ P . A rearrangement in the ordering of the states may be needed to ensure 
that the dimensions of interest for the marginal appear first in the state vector, followed by the other states that are to be 
“integrated out”.

4.3. Solution by Monte Carlo simulation

A commonly employed tool for studying uncertainty flow is the so-called Monte-Carlo simulation (MCS), primarily be-
cause of its relative simplicity and universal applicability to general nonlinear systems with arbitrary initial PDFs. The 
essential idea behind MCS is to first create a “sufficiently large” sample from the initial PDF W0(x), followed by stochastic 
integration of the system dynamics (Eq. (7)) for each initial sample. Finally, the time varying statistics are computed using 
the propagated particles. Estimating the marginal PDF solution is rather easy in MCS by taking the histogram of the resulting 
samples on the dimensions of interest. MCS is motivated by the law of large numbers and unfortunately no guidelines exist 
for how large the initial sample must be in order to obtain sufficiently accurate statistics of the state, especially vis-à-vis 
the degree of system nonlinearity and the length of the time of propagation.

For simplicity, suppose the B(t) of stochastic system in Eq. (7) is an M dimensional standard Brownian motion process, 
i.e., Q is identity matrix of size M × M , and we have

x(t) = x0 +
t∫

0

f(s,x(s))ds +
t∫

0

g(s,x(s))dB(s), 0 ≤ t ≤ T , (18)

where the stochastic integral on the RHS is with respect to Brownian motion in the Itô sense. To estimate these integrals, 
discretize the time as t j = j�t for j = 0, . . . , L where �t = T

L . Then the Milstein stochastic integration scheme [44] for 
Eq. (18) is given by

xi, j+1 = xi, j + f i(t j,x j)�t +
M∑

k=1

gi,k(t j,x j)(Bk(t j+1) − Bk(t j))

+
M∑

k1=1

M∑
k2=1

P∑
l=1

gl,k1

∂ gi,k2

∂xl
I j(k1,k2), j = 0, . . . , L − 1, i = 1, . . . , P (19)

where xi, j is the ith component of x(t j), B(t j+1) − B(t j) ∼ N (0, Q�t) and I j(k1, k2) is the double stochastic integral given 
as [45]

I j(k1,k2) =
t j+�t∫
t j

s∫
t j

dBk1(r)dBk2(s)

≈
H−1∑
h=0

[Bk1(th, j) − Bk1(t0, j)][Bk2(th+1, j) − Bk2(th, j)], (20)

where th, j = t j + h�t for h = 0, . . . , H that equally divide [t j, t j+1] into H intervals [46].
H
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Note that having the last term on the RHS of Eq. (19) helps the method gain strong order convergence equal to 1
compared with the Euler–Maruyama method of order 1

2 [47]. In addition, for additive noise, i.e., all entries of matrix g in 
Eq. (7) are either constant or functions of time only, this last term vanishes which renders the Milstein scheme the same as 
the Euler–Maruyama method [48].

MCS is especially useful as a validation tool when closed-form solutions are not available, which is the most common 
scenario in real life. It can also be used to determine the appropriate size of the solution domain for other numerical 
methods.

5. A Chebyshev spectral tensor decomposition solution of the transient FPE

As mentioned in Section 1, the transient solution of PDEs in the existing literature is almost exclusively obtained via 
time stepping schemes for the corresponding elliptic problem even when a tensor product structure is adopted. This strat-
egy for time dependent PDEs is naturally inherited from traditional numerical methods where spatial dimensions remain 
coupled. Unfortunately, if time stepping is used in a tensor approach, the rank of approximation would keep growing as 
time progresses. Appropriate truncation must therefore be performed repeatedly to inhibit the growth of complexity.

A more effective way of solving time dependent PDEs in tensor product form is to not only separate the spatial dimen-
sions as in the stationary problem, but also the temporal dimension from the spatial ones. Essentially, time is treated as an 
additional spatial dimension, whereby the full power of the tensor product structure can be unleashed and computational 
complexity would grow in a benign manner, similar to the stationary problem studied in our previous work [13].

5.1. Separation of spatial and temporal domains

The transient solution W(t, x) of FPE in Eq. (8) is sought in the following CPD form:

W(t,x) ≈ U(t,x) =
RU∑
l=1

[(
P∏

d=1

ul
d(xd)

)
T l(t)

]
, (21)

where ul
d(xd) and T l(t) for l = 1, 2, . . . , RU are called spatial and temporal basis functions respectively. Note that each 

of these basis functions has only one dependent variable and can be discretized by the Chebyshev spectral method. This 
results in vectors ul

d and T l with size nd ×1 and nt ×1 respectively. For convenience, the discretized version of U is denoted 
by U = ∑RU

l=1

⊗P+1
d=1 f l

d , where f l
d includes both ul

d and T l . Correspondingly, the Fokker–Planck (FP) operator LFP can be 
written in tensorized form as

A =
R A∑

i A=1

[(
P⊗

d=1

Ai A
d

)
⊗ It

]
, (22)

where Ai A
d is nd × nd matrix, and It is nt × nt identity matrix. The Ai A

d represents the action of the FP operator on each 
decoupled spatial domain, while the identity matrix It simply signifies that the FP operator does not involve any temporal 
derivatives and the related basis functions must not be modified. Writing the FP operator LFP in the form of Eq. (22) is 
straightforward if the f(t, x) and g(t, x) in Eq. (7) are given as separable functions. When this is not the case, additional 
function approximation step can be performed to obtain a decent separable representation of the f(t, x) and g(t, x) by 
algorithm discussed in Section 2. Interested readers can find more details related to individual terms in Eq. (22) from 
Ref. [13]. Similarly, the operator ∂

∂t in Eq. (8) can be approximated in CPD form as

∂

∂t
≈

(
P⊗

d=1

Id

)
⊗ Dt � At, (23)

where Dt is the nt × nt first order differentiation matrix corresponding to the temporal domain and Id are nd × nd identity 
matrices corresponding to the spatial dimensions. The easiest way to construct Dt is via a finite difference scheme, either 
of first or second order accuracy wherein the user can employ a combination of centered and one-sided stencils for the 
boundary and interior nodes. Each such strategy corresponds to a different time stepping scheme in the traditional discrete 
differentiation sense and their stability properties are well studied [41]. However in the context of the current proposed 
method, based on our numerical experience with the FPE, none of these finite difference schemes for Dt were able to yield 
sufficiently accurate transient solutions, no matter how fine a temporal grid was used. At this point, the theoretical reason 
behind this behavior is not clear.

Another possible choice for Dt is the Chebyshev spectral differentiation matrix as used for spatial differentiation for the 
stationary FPE by the authors in Ref. [13]. In traditional numerical methods, the Chebyshev spectral differentiation is usually 
limited to the spatial domain, because its dense matrix structure necessitates expensive time stepping schemes. However in 
the current tensor method with complete separation of temporal and spatial domains, there is no need for time stepping 
and the superior performance of Chebyshev spectral differentiation can be extended to temporal differentiation without 
penalty. Moreover (and importantly), no stability issues were encountered upon its use with temporal grids of varying 
fineness.
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5.2. Asymptotic behavior of temporal basis functions

The asymptotic behavior of the temporal basis functions is of particular interest. For systems that admit a stationary 
solution, the form of the approximation (U(t, x)) in Eq. (21) suggests that the temporal basis functions T l(t) must eventually 
assume constant values. This behavior is captured by the following proposition.

Proposition 1. Let the transient solution be written in the form of Eq. (21). Then for a system admitting a stationary solution, the 
temporal basis functions T l(t) approach constant values as t becomes sufficiently large.

Proof. Let t′ ≥ ts where ts is sufficiently large such that U(t′, x) is viewed to be the stationary solution, i.e., ∂U(t,x)
∂t

∣∣∣
t′

= 0. 
Upon differentiating Eq. (21),

RU∑
l=1

[(
P∏

d=1

ul
d(xd)

)
Ṫ l(t′)

]
= 0. (24)

The above equation must hold for arbitrary values of x ∈ � (i.e. the solution domain). Thereby, consider an arbitrary set of 
points xi = (xi

1, x
i
2, · · · , xi

P ) for i = 1, 2, · · · , RU , and evaluate Eq. (24) at these points to get⎛
⎜⎝

∏P
d=1 u1

d(x1
d) · · · ∏P

d=1 uRU
d (x1

d)

...
. . .

...∏P
d=1 u1

d(xRU
d ) · · · ∏P

d=1 uRU
d (xRU

d )

⎞
⎟⎠

︸ ︷︷ ︸
=M1

⎛
⎝ Ṫ 1(t′)

...

Ṫ RU (t′)

⎞
⎠

︸ ︷︷ ︸
=M2

=
⎛
⎝0

...

0

⎞
⎠ . (25)

It is relatively easy to ensure that the RU × RU sized matrix M1 appearing above is full ranked because of the arbitrary 
nature of the selected points xi . Thus the vector M2 must be trivial, i.e., T l(t′) is constant for l = 1, 2, · · · , RU . �
5.3. The ALS formulation for FPE

So far, the FPE has been reduced to the following linear algebraic form:

A′U= 0, (26)

where A′ = (A + At) (see Eqs. (22) and (23)) and can be rewritten as A′ = ∑R A′
i A=1

⊗P+1
d=1 Gi A

d for convenience. Note that 
Eq. (26) is linear in U as a whole but nonlinear with respect to the individual f l

d ’s. Eq. (26) can be solved by transformation 
into the following optimization problem:

min
{ f l

d}
‖A′U ‖2

F . (27)

The necessary condition for minimization is

∂〈A′U,A′U〉
∂ f l

d

= 0, (28)

for d = 1, 2, . . . , P + 1 and l = 1, 2, . . . , RU . Collecting terms in Eq. (28) for all l’s and fixed dimension d, we have⎛
⎜⎝

M1,1 · · · M1,RU

...
. . .

...

MRU ,1 · · · MRU ,RU

⎞
⎟⎠

︸ ︷︷ ︸
=M

⎛
⎜⎝

f 1
d
...

f RU
d

⎞
⎟⎠ = 0, (29)

where Mi, j is a submatrix of the block matrix M, given by

Mi, j =
R A′∑

i A=1

R A′∑
j A=1

(G j A
d )T Gi A

d

∏
k �=d

〈Gi A
k f j

k , G j A
k f i

k〉 (30)

The general ALS formulation for solving an equation in the form of Eq. (26) was first provided in Ref. [16] (in an element-
wise form different from above), and a detailed derivation is provided in [13]. In the ALS framework, Eq. (29) is reduced 
to a linear system and solved sequentially for each dimension in an iterative manner. Therefore once the user prescribes 
RU , the number of unknowns in a single iteration is independent of the dimensionality P . Moreover, a significant amount 
of computation is saved by noting that only a small portion of the terms involved need to be recalculated for different d
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and RU . The overall dominant complexity of this ALS scheme is O((P + 1)R3
U n3) (see Ref. [16] for more details) where n

is the number of nodes in each spatial and temporal dimension. In implementation, we begin with RU = 1 and random 
initial values for f 1

d . For each subsequent enrichment step (RU = RU + 1), ALS initializes with a random rank one tensor 
added to the final iteration of the previous step. This procedure is repeated until stopping criteria are met. Because of the 
dependence of the current enrichment step on the previous one (in terms of its starting point) as well as the dependence 
between consecutive ALS iterations, implementation on a parallel computing architecture is possible only within a single 
ALS iteration. In the next section, we discuss the enforcement of constraints described in Section 4 which are essential for 
the ALS scheme to return a nontrivial answer.

5.4. Enforcement of constraints

Besides the governing FPE, several other ingredients are needed for solution:

• Initial conditions: In this work, the initial conditions are enforced using a penalty parameter as described below in 
Section 5.4.1.

• Vanishing boundary conditions: A new method is presented in which the vanishing boundary conditions are posed as 
a linear constraint and enforced using a penalty parameter. It will be shown that this method improves the quality of 
results as compared with Ref. [13].

• Normality condition: Interestingly, its enforcement is not really needed. In Ref. [13], it was enforced primarily to trans-
form the discretized problem into a non-homogeneous equation, thereby avoiding the need to search the null space of 
the resulting tensor equation. In the current paper, the penalty terms corresponding to the initial and boundary con-
ditions described above already achieve this objective. At the same time, it was found through numerical experiments 
that imposing the normality constraint significantly improves the overall accuracy of the solution, especially when the 
approximation rank is relatively small. This is useful because its inclusion entails essentially a negligible additional 
computational cost.

Putting the above elements together, the transient FPE can be posed as the following minimization problem:

min
{ur

k,T r }
〈R,R〉 = ‖A′U ‖2

F + α1

2
‖ PU−U0 ‖2

F + α2

2
‖MU ‖2

F + α3

2
‖ BU−Q ‖2

F , (31)

where the terms in the RHS reflect the equation error in the FPE and errors from the enforcement of initial conditions, 
boundary conditions and normality constraint respectively, described in greater detail below. The root mean value of the 

residual R is 
√

R
nt

∏P
d=1 nd

, which indicates the overall accuracy of the approximated solution and is abbreviated as RMR. 

An ALS procedure similar to the one described in Section 5.3 above can be used to solve the minimization problem of 
Eq. (31), where essentially the procedure is applied to each term in the RHS. Interested readers can find formula for the 
non-homogeneous version of Eq. (26) in Refs. [13,16].

5.4.1. Initial conditions
The initial condition of the approximation U(t, x) can be given in CPD form as follows

U0 =
RU0∑
l=1

(
P⊗

d=1

ul
0,d

)
⊗ [1], (32)

where the scalar [1] is used purely to maintain the correct order of tensor U0 since it has no contribution from the temporal 
bases. If U0 is not available in CPD form, an approximation can be obtained using the standard ALS algorithm described 
above, for example see Ref. [28] or [13]. The effect of tensor P in the “PU” term in Eq. (31) is to restrict the evaluation of 
the temporal basis functions of U to the first node of temporal domain (t = 0). It is given by

P =
(

P⊗
d=1

Ixv
d

)
⊗ e1, (33)

where e1 is nt ×1 row vector [1, 0, · · · , 0] and Ixv
d

is an identity matrix whose column size is the same as that of vector ul
0,d .

5.4.2. Boundary conditions
In Ref. [13], the vanishing boundary conditions (Eq. (10)) were enforced by simply deleting the boundary rows and 

columns of all relevant matrices, which we refer to as the “deletion method”. The underlying logic is that all spatial basis 
functions should vanish at the boundary of the spatial domain. This is an effective approach and can be easily extended to 
the transient problem. However, it imposes a much stronger condition than what is actually stipulated by Eq. (10), which 
only requires the summation of the terms 

∏P
d=1 ul (xd)T l(t) in Eq. (21) to be 0 at the boundary. Motivated by this fact, we 
d
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propose a new relaxed method for boundary condition enforcement, which is equivalent to Eq. (10) and does not require 
individual basis functions (ul

d(xd)) to vanish at the boundaries. Moreover, this new method is significantly more general in 
that it can easily impose other boundary conditions, such as arbitrary Dirichlet or Neumann boundary conditions. Numerical 
examples in Section 6 will show that ensuing solutions are significantly more accurate. The main idea is to consider the 
boundary condition as a linear constraint MU = 0 where M is given by

M=
P∑

iM=1

⎡
⎣
⎛
⎝iM−1⊗

d=1

I ′xv
d

⎞
⎠⊗ I ′′xv

iM
⊗

⎛
⎝ P⊗

d=iM+1

Ixv
d

⎞
⎠⊗ It

⎤
⎦ , (34)

where Ixv
d

is the same as in Eq. (33), I ′xv
d

is diag([0, 1, · · · , 1, 0]) corresponding to vector xv
d , and I ′′xv

iM

is diag([1, 0, · · · , 0, 1])
corresponding to vector xv

iM
. The essential effect of M in MU is to evaluate the spatial boundary values of U. Since the rank 

of M is merely the system’s dimensionality P and it only contains diagonal matrices, the computational burden of imposing 
MU = 0 is rather small.

5.4.3. Normality constraint
In Eq. (31), the normality condition is captured by the term BU −Q where

B =
(

P⊗
d=1

bd

)
⊗ It and Q =

(
P⊗

d=1

[1]
)

⊗ e, (35)

where, bd contains the Clenshaw–Curtis quadrature and It are the same as in Eq. (26), and e is the nt × 1 column vector 
[1, · · · , 1]T . Note that the scalar terms “[1]” in above equation serve to maintain the correct order of the tensor Q as in 
Eq. (32). For the rank one tensors B and Q with component matrices shown above, the computational burden of imposing 
this normality constraint is insignificant.

6. Numerical examples

In this section, the proposed numerical solver will first be tested on transient FPEs encountered in the study of nonlinear 
vibrations with examples up to 14 dimensional state space, then it will be applied to the simulation of polymeric fluids, 
namely a 3D dumbbell example and a 9D multi-spring example. These numerical experiments illustrate the effectiveness 
of the numerical solver for relatively high dimensional dynamical systems. Note that for all examples in this section, the 
penalty parameters α1, α2, α3 in Eq. (31) are chosen to be 100.

6.1. Nonlinear vibrations systems

6.1.1. Example 1: 2-state system
Consider the following two-state nonlinear oscillator [49]:

ẍ + bẋ + x + a(x2 + ẋ2)ẋ = gξ(t), (36)

where, a = 0.125, b = −0.5, g = 1 and ξ(t) is a white noise term with intensity Q = 0.4. We assume that the initial dis-
tribution of the state (x, ̇x) is a two dimensional Gaussian pdf with zero mean and covariance of 0.5I where I is a 2 × 2
identity matrix. Unlike the stationary solution, the analytical form of the transient solution for this system is not available. 
We seek the transient solution for the time duration t ∈ [0, 20] s using 29 nodes per spatial domain and 32 temporal node. 
The final time considered (20 s) is sufficiently large for the system to settle to a “near stationary state” (see Fig. 3(c)). 
Following 13 enrichment steps (consuming 126 seconds, the total DOF is (29 × 2 + 32) × 13 = 1170), the obtained RMR is 
5.734 × 10−4 and the mean squared error (MSE) of the final time transient response (at t f = 20 s) with respect to the true 
stationary solution is 7.294 × 10−9. The spatial and temporal basis functions, transient solution as well as its error surface 
at the final time (estimated by comparing with the known analytical stationary solution), and evolution of RMR are given 
in Fig. 3. Note that in agreement with Proposition 1, the temporal basis functions settle to constant values after 16 seconds. 
Also, the RMR decays monotonically as additional enrichment steps are performed.

6.1.2. Example 2: 4-state system
Next consider the 4-state nonlinear isolating suspension model given in [50],

ẋ1 = x3, ẋ2 = x4,

ẋ3 = −ax3 − 1

M0

∂V

∂x1
+ ξ1,

ẋ4 = −bx4 − 1 ∂V + ξ2.

I0 ∂x2
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Fig. 3. Results for the 2-state system.

The coupled potential function V is chosen as V (x1, x2) = k1x2
1 + k2x2

2 + ε(λ1x4
1 + λ2x4

2 + μx2
1x2

2). System parameters are 
a = 0.5, b = 1, k1 = 0.5, k2 = −0.5, ε = 0.5, λ1 = 0.25, λ2 = 0.125, μ = 0.375. The noise process is two-dimensional with 
intensities 2D1(∼ ξ1) = 4 and 2D2(∼ ξ2) = 8. Parameters have been selected such that D1 M0

a = D2 I0
b = 2T , which guarantees 

the existence of a stationary solution.
We assume that the initial pdf is Gaussian with zero mean and covariance 0.5I where I is a 4 × 4 identity matrix. Using 

33 spatial nodes per dimension and 22 temporal nodes and following 27 enrichment steps (with DOF = 4158) that con-
sumed about 3 hours of computation time, an RMR of 3.542 × 10−5 was obtained. The spatial and temporal basis functions, 
evolution of RMR, the x1–x2 marginal transient solution and its error surface at the final time (estimated by comparing with 
the known analytical stationary solution, with MSE = 2.84 × 10−7) are shown in Fig. 4. As expected, the transient solution 
requires a significantly greater number of enrichment steps compared to the stationary version (see Ref. [13]). The RMR 
shows a desirable gradual decay and no sluggishness in the convergence is observed, which can be attributed to the linear 
independence of the temporal basis functions. Further details of this behavior is provided in Section 6.1.3.

6.1.3. Example 3: 14-state system
To demonstrate the scalability of the proposed method, we extend the previous example to solve the FPE for a general-

ized high dimensional linear oscillator given by the following template:

ẋi = yi,

ẏi = −ai yi − bi
∂V

∂xi
+ ξi, i = 1,2, . . . , P

where ξi ’s are uncorrelated white noise processes, i.e., Dij = 0 for i �= j. We use the potential function V (x1, . . . , xP ) =
1
2

∑P
i=1 x2

i , along with ai = bi = Dii = 1. Select P = 7, which corresponds to a fourteen dimensional state space. The ini-
tial uncertainty is a Gaussian zero mean pdf of covariance 0.5I , where I is a 14 × 14 identity matrix. For this system, we 
compare the two different methods described in Section 5.4.2 for imposing vanishing boundary conditions. In both cases, 
approximations were obtained using 55 nodes per spatial dimension, 32 nodes along the temporal axis and an approxima-
tion rank of 30. This corresponds to a total DOF of 24,060, which is extremely small for a 14D time varying PDE. Table 1
shows the result of eight runs of both methods. Clearly, the new approach takes about the same time to run but performs 
better on all metrics. Additionally, it is frequently observed that the basis functions resulting from the deletion method have 
one oscillating component for every spatial dimension, as shown in Fig. 5(a) for a typical run. However, this phenomenon 
is never observed in the new method. The origin of these oscillating basis functions is not clear at this time and is under 
further investigation. Temporal basis functions of the deletion method are shown in Fig. 5(b). The corresponding basis func-
tions and evolution of RMR for the new approach are shown in Fig. 6 and Fig. 7(a) respectively. Interestingly enough, it is 
observed that although in the new method of boundary condition enforcement we do not explicitly require the spatial basis 
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Fig. 4. Results for the 4-state system.

Fig. 5. Typical basis functions of 14-state system with the “deletion method”.

functions to vanish at both ends individually, it does in fact turn out to be the case in numerical simulations. Nevertheless, 
the advantages of this new method are evident in Table 1. Moreover, it provides a convenient way to impose other more 
general boundary conditions as discussed in Section 5.4.2.

Since the system in this example is linear, its true transient solution can be obtained using the Riccati equation (Eq. (14)). 
Fig. 7(b) illustrates the time history of MSE in the x1–x2 marginal pdf, obtained by comparing the obtained approximation 
against the solution to the Riccati equation.

It is interesting to note that in Ref. [13], the accuracy of the stationary solution showed significant variation across 
different runs of the algorithm as a result of which multiple runs were required to settle to an acceptable approximation. 
In addition, the rate of convergence was also slow. However when the proposed method is used for the transient problem, 
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Fig. 6. Basis functions of 14-state system with new method.

only insignificant variations are observed in the accuracy. Also, the RMR exhibits a favorable gradual decay (Fig. 7(a)), which 
has a much faster convergence rate. This is because the basis functions obtained here are not linearly dependent, unlike 
what was observed for the stationary solution in Ref. [13]. In this manner, the transient solution avoids the “bottleneck” or 
“swamp” behavior that traditionally causes slow convergence.
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Fig. 7. Error estimate of 14-state system with new method.

Table 1
Comparison of two methods for boundary condition enforcement: Example 3.

Comparison metric New method Deletion method

Average execution time (s) 3.01 × 105 2.80 × 105

Average RMR 1.26 × 10−13 1.68 × 10−13

Max MSE of marginal transient solution of best run 1.20 × 10−6 6.90 × 10−6

Average of max MSE of marginal transient solution 1.64 × 10−5 7.42 × 10−5

6.2. Application to modeling of polymeric fluids

6.2.1. Dumbbell example
Consider the following 3D dumbbell example from Ref. [9], where the dynamics is given by

q̇ = K q − 1

2
grad(φ) + ξ, (37)

where K is the same as in Eq. (1) with β = 1, q ∈ [−8, 8]3, ξ is a 3 dimensional Brownian motion process with intensity 
given by a 3 × 3 identity matrix, and φ is the potential given by

φ(q) = 1

2
‖q‖2

F + α

p3
exp

(
−‖q‖2

F

2p2

)
. (38)

The potential in Eq. (38) consists of a quadratic attractive part and a Gaussian repulsive part such that the beads of the 
chain neither scatter nor aggregate excessively [2]. The parameters α and p control the strength and extent of the repulsive 
potential, and are chosen as 0.1 and 0.5 respectively. The initial pdf is assumed to be standard 3 dimensional Gaussian and 
t ∈ [0, 10].

Using 55 and 30 Chebyshev nodes for each spatial and the temporal dimension respectively and following 11 enrichment 
steps (consuming 405 seconds, corresponding DOF is (55 × 3 + 30) × 11 = 2145), the current method achieves an RMR of 
3.774 × 10−5 as shown in Fig. 8(h). In this figure, the RMR value of every 40th iteration is shown as a data point. The 
q1–q2 marginal solution at 3 time instances and the basis functions are shown in Figs. 8(a) to 8(g). Since a closed form 
solution is not available for this example, Monte Carlo simulations (MCS) described in Section 4.3 were employed with 105

initial particles to estimate the true solution at the final time. Compared with the proposed tensor approach, an MSE of 
8.69 × 10−7 was computed between the shown marginal in Figs. 8(a) to 8(c) and the MCS, which reflects a fairly accurate 
solution. Fig. 8(i) shows the total CPU time needed as the number of enrichment steps is increased. Each enrichment step 
introduces an additional 55 × 3 + 30 = 195 DOFs.

At this point, it is interesting to compare the above results with those obtained in Ref. [8] for the same 3D dumbbell 
example, wherein the quantized tensor train (QTT) format was used (which requires the grid size of each dimension to be 
a power of 2) along with a different transient solution scheme. A series of experiments were executed with 512 nodes for 
each spatial dimension and time steps ranging from 64 to 1024; resulting in solutions with error in the order of 10−4 to 
10−5 consuming roughly 1200 to 5700 seconds of CPU time. However, their underlying approximation rank is unavailable 
due to which a precise DOF comparison is not possible.

The effect of the shear rate β is also of concern in that larger β indicates faster shear flow and thus in general the 
pdf of the states would have a larger support. It was reported in Ref. [8] that a larger approximation rank is required to 
maintain solution accuracy as β increases. To study the effect of β on the proposed tensor approach, we consider two values 
(β = 1, 1.5) while keeping the remaining configuration the same, and the results are given in Fig. 9. It is observed that now 
14 instead of 11 enrichment steps are needed to obtain a similar RMR of 3.546 × 10−5 after 658 seconds of CPU time. The 
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Fig. 8. Results for the 3D dumbbell example (β = 1).

corresponding MSE of the marginal pdf with respect to MCS is 7.48 × 10−7. By comparing the marginal pdfs in Fig. 9(g) and 
Fig. 9(h), it is visible that the stationary pdf indeed “spreads out” as β increases from 1 to 1.5.

Note that all numerical examples considered so far assume Gaussian initial pdfs. This is motivated by the fact that 
initial uncertainty usually arises from a combination of many sources, which when combined in the spirit of the central 
limit theorem, results in an approximately Gaussian distribution. Additionally, in engineering applications one typically 
only knows the first and second order statistics of the pdf, whereby a Gaussian approximation is usually ideal [51]. Note 
however that the current approach is capable of handling arbitrary initial conditions provided they are sufficiently smooth. 
As an illustration, we consider the 3D dumbbell example (with β = 1) with the logistic distribution as its initial pdf given 
as follows:

ψ0(q1,q2,q3) =
3∏

i=1

1

4si
sech2

(
qi − μi

2si

)
, (39)

where μi, si are chosen to be 1 for i = 1, 2, 3. The suitable solution domain determined by MCS is q ∈ [−10, 10]3, t ∈ [0, 15]. 
Using 55 and 32 Chebyshev nodes for each spatial and the temporal dimension respectively and following 25 enrichment 
steps (consuming 51 minutes, corresponding DOF is (55 × 3 + 32) × 25 = 4925), it achieves an RMR of 2.286 × 10−5, and 
the corresponding MSE of the marginal pdf with respect to MCS is 4.46 × 10−7 at the final time. More details of the test 
results are shown in Fig. 10.

6.2.2. Multi-spring example
Consider the MBS model with N = 4 beads and qi ∈ [−5, 5]3 for i = 1, . . . , N − 1 adapted from Ref. [9]. The FPE of this 

example can be written as [2]
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Fig. 9. Results for the 3D dumbbell example (β = 1.5).

∂ψ

∂t
= −

N−1∑
j=1

∂

∂q j
·
(

K q j − 1

4

N−1∑
k=1

A jk
∂φ

∂qk

)
ψ + 1

4

N−1∑
j=1

N−1∑
k=1

A jk
∂

∂q j
· ∂ψ

∂qk
, (40)

where “·” is the vector inner product, K is the same as in Eq. (1) with β = 0.2, φ = 1
2

∑N−1
i=1 ‖qi‖2

F and

Aij =
{

2 if |i − j| = 0,

−1 if |i − j| = 1,

0 otherwise.

For the φ chosen above, the dynamics of the system is linear and can be written as[ q̇1
q̇2
q̇3

]
=

⎛
⎝ K − A11

4 I − A12
4 I 0

− A21
4 I K − A22

4 I − A23
4 I

0 − A32
4 I K − A33

4 I

⎞
⎠[q1

q2
q3

]
+ ξ, (41)

where I is a 3 × 3 identity matrix and ξ is a 9 dimensional Brownian motion with intensity

Q = 1

2

( A11 I A12 I 0
A21 I A22 I A23 I

0 A32 I A33 I

)
. (42)

We assume that the initial pdf ψ0 is a standard 9 dimensional Gaussian and t ∈ [0, 20]. Due to the linearity of the 
system, its true transient behavior can be obtained by the method described in Section 4.2. The current tensor approach was 
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Fig. 10. Results for the 3D dumbbell example (non-Gaussian initial pdf).

employed using 53 spatial and 82 temporal Chebyshev nodes and after 40 enrichment steps (total DOF = 22360, consuming 
about 82 hours), the RMR was reduced to 1.450 ×10−10 as shown in Fig. 11(k), where RMR value of every 100th iteration is 
shown. The basis functions and the q11–q12 marginal solution are shown in Fig. 11(a) to Fig. 11(j) and Fig. 12 respectively. 
The time history of MSE of Fig. 12 with respect to the marginal solution from the Riccati equation solver is given in 
Fig. 11(l). It is interesting to note from Fig. 11(j) that 4 out of the total 40 temporal basis functions do not yet achieve 
steady state near the final time, which is different from the other examples shown in this paper. This is likely because the 
number of enrichment steps used is not sufficient to completely resolve the solution features captured by these bases. In 
other words, while these features have been discovered, they haven’t been discovered with enough resolution, leading to the 
anomalous behavior shown in Fig. 11(j). This was indirectly confirmed by simply dropping the poorly resolved time-bases 
from the approximation. The ensuing MSE profile was better than the trend shown in Fig. 11(l), underlining the fact that 
the approximation accuracy improved upon removal of the unresolved features. It is expected that if additional enrichment 
steps are executed (consuming more time, thus not actually performed here), these bases will get fully resolved and their 
behavior will conform to the result stated in Proposition 1. In addition, this anomalous behavior is also observed in other 
examples admitting a stationary solution when the approximation rank is not large enough. Note that due to the structure 
of the ALS scheme, all R rank-one tensors obtained thus far will change after each iteration, allowing the unresolved bases 
to improve as the algorithm progresses.

To study how the number of beads affects the CPU time for the proposed method, the 3 beads (6D) version of Eq. (40) is 
solved using the same parameters and discretization grids. After 40 enrichment steps (total DOF = 16000, consuming about 
23 hours), the RMR decreases to 5.726 × 10−9 as shown in Fig. 13(b), where RMR value of every 105th iteration is shown. 
The corresponding temporal basis functions and the time history of MSE of q11–q12 transient marginal solution with respect 
to Riccati equation solver is given in Fig. 13(a) and Fig. 13(c) respectively. As can be seen, 40 enrichment steps are sufficient 
for the 6D case to yield an extremely accurate solution (MSE < 10−9) and the temporal bases approach constant values as 
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Fig. 11. Basis functions for the 9D MBS example.

indicated by Proposition 1. Fig. 14 shows how the CPU time scales with the number of beads for the 3D dumbbell example 
(2 beads with β = 1.5) considered in Section 6.2.1, 6D MBS (3 beads) and 9D MBS (4 beads) cases.

In Ref. [9], the 5 beads (12D) version of Eq. (40) was solved by a different tensor method using the QTT format, where 
an average QTT-rank of 38 (maximal QTT-rank of 84) was reported for the β = 0.2 case with “relative tensor rounding and 
residual accuracy” ε = 10−4. However, the number of nodes used for spatial dimensions, the time steps as well as the total 
computational time are not provided for that case, due to which a detailed comparison is not possible.

7. Conclusions

In this paper an efficient numerical solver for transient FPE was developed and applied to the simulation of polymeric 
fluids, which extends the authors’ former work [13] on the stationary FPE. The strategy of separating the spatial and tem-
poral domains, previously used in the proper generalized decomposition method [7] is introduced in the ALS framework 
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Fig. 12. Transient marginal solution for the 9D MBS example.

Fig. 13. Results for the 6D MBS example.

Fig. 14. CPU time versus number of beads in the MBS model.

for solving the transient FPE in a CPD format. A new method for enforcing the boundary conditions is proposed in which 
they are expressed as a linear constraint and imposed via a penalty parameter. The asymptotic behavior of the temporal 
basis functions is studied and shown to attain steady state for systems admitting a stationary distribution. The efficiency 
of the proposed method is captured by the favorable growth of DOF with system dimensionality, along with the fact that 
it retains the transient approximation in a single CPD format such that no time stepping is required. The latter property is 
highly desirable and will allow the method to be used successfully in nonlinear filtering problems. The overall accuracy of 
approximations as well as convergence characteristics are shown to be better than its precursor [13] with potential for use 
in a wide range of applications.
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