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a b s t r a c t

This paper focuses on the curse of dimensionality in the numerical solution of the station-
ary Fokker–Planck equation for systems with state-independent excitation. A tensor de-
composition approach is combined with Chebyshev spectral differentiation to drastically
reduce the number of degrees of freedom required to maintain accuracy as dimensional-
ity increases. Following the enforcement of the normality condition via a penalty method,
the discretized system is solved using alternating least squares algorithm. Numerical re-
sults for a variety of systems, including separable/non-separable systems, linear/nonlinear
systems and systemswith/without closed-form stationary solutions up to ten dimensional
state-space are presented to illustrate the effectiveness of the proposed method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of uncertainty propagation through nonlinear dynamical systems subject to stochastic excitation and un-
certain initial conditions has been extensively studied. Among all pertinent techniques for this problem, the Monte Carlo
method is probably the simplest yet most robust. Its slow rate of convergence is however well documented, causing it
to become computationally burdensome as the underlying dimensionality increases. On the other hand, truncation based
methods such as equivalent linearization and/or higher order moment closure are suitable only for moderately nonlinear
systems [1].

The exact description of the uncertainty propagation problem through nonlinear systems with white noise excitation is
given by the Fokker–Planck equation (FPE) [2]. However, its closed-form analytical solution (especially for the transient FPE)
exists only for a handful of systems and numerical techniquesmust be utilized. It has beenwidely observed that tomaintain
accuracy in traditional discretization based numerical methods such as finite element [3] or finite difference, the number
of degrees of freedom (DOF) of the approximation, i.e. the number of unknowns grows exponentially as the dimensionality
of the underlying state-space increases. This so-called curse of dimensionality [4] fundamentally limits the use of FPE for
uncertainty quantification in high dimensional systems [5]. Recently, the meshless partition of unity finite element method
(PUFEM) was employed to counter this problem with moderate success [5–7]. While the unstructured node-based approx-
imation paradigm of PUFEM simplifies discretization of high dimensional spaces, the number of basis functions needed still

∗ Corresponding author.
E-mail addresses: yfsun@ufl.edu (Y. Sun), mrinalkumar@ufl.edu (M. Kumar).

1 Graduate Research Assistant.
2 Assistant Professor.

http://dx.doi.org/10.1016/j.camwa.2014.04.017
0898-1221/© 2014 Elsevier Ltd. All rights reserved.



Author's personal copy

Y. Sun, M. Kumar / Computers and Mathematics with Applications 67 (2014) 1960–1977 1961

increases rapidly with dimensionality. This can be attributed to the factorial growth of a complete set of polynomial basis
functions.

In the related literature, the representation of data in a tensor product structure has been recognized as a key formanaging
thedimensionality issue [8].Methods based on tensor decompositions e.g., CANDECOMP/PARAFACdecomposition (CPD) and
Tucker decomposition have becomewell-established in awide range of applications [9–11]. The essence of their application
to numerical multidimensional partial differential equations (PDEs) [12–15] lies in the ‘‘decoupling’’ or ‘‘separation’’
of dimensions, following which expensive high dimensional operations are decomposed into a series of simple one-
dimensional operations. As an outcome, the complexity scales linearly rather than exponentially with dimensionality. The
price to pay is that it transforms a linear problem into a nonlinear problem (if the original PDE is linear), or exacerbates the
nonlinearity of the problem (if the original PDE is nonlinear). It is important to understand the source of nonlinearity in this
approach since both the operator of the PDE and the unknown function to be approximated must be expressed in tensor
product form. Writing the operator in tensor product structure does not cause nonlinearity. On the other hand, using the
CPD form for the unknown function does, but is also responsible for ameliorization of the curse of dimensionality.

Beylkin et al. [12] solved the Schrödinger equation (as well as certain other linear PDEs) with solution approximated
in the CPD form and used the alternating least squares (ALS) algorithm for the discretized nonlinear system. This scheme
was extended to stochastic PDEs in [16]. Ballani et al. [13] used a hierarchical Tucker decomposition to approximate the
unknown function, which was then solved using a projection method. Khoromskij et al. proposed methods based on
the quantics tensor train (QTT) format for solving the chemical master equation [17] and high dimensional numerical
modeling [18]. The finite element approximationwas used in their tensormethods and due to the QTT structure, logarithmic
complexity was demonstrated. An ALS multigrid algorithm was presented in Ref. [19] to accelerate the convergence of
tensor approximation for multi-dimensional problems. In Refs. [15,20], the so-called proper generalized decomposition
(PGD) method was developed, in which the approximation was constructed in CPD form through a sequence of enrichment
steps using the finite element method. It is important to note that at each enrichment step, only a single component rank-
one tensor was obtained. Several variants of PGD exist, e.g. see Ref. [21], where a Tucker decomposition structure is adopted.
In Ref. [15] and subsequent papers by the same authors, PGDwas used to solve high dimensional FPEs for multi-bead-spring
models of polymer chains encountered in the kinetic theory of complex fluids. Compared with simple discretization based
methods such as finite element/finite difference for this problem, an improvement of several orders ofmagnitudewas shown
in terms of the degrees of freedom of the approximation. However, the application of PGD to problems outside the domain
of kinetic theory of complex fluids is limited and in the experience of the current authors not very successful.

The current paper is concernedwith Fokker–Planck equations commonly encountered in the field of nonlinear vibrations
and is the extension of [22]. In particular, the stationary FPE is solved by combining the CPD structure with the Chebyshev
spectral differentiation framework. This approach benefits from the superior performance of the Chebyshev spectral
approach over other differentiation methods for smooth functions on domains of regular geometry [23,24]. The normality
constraint is enforced via a penalty method, following which all component rank-one tensors are obtained simultaneously
at each enrichment step using the alternating least squares method of [12]. It is shown through numerical examples that
the total number of degrees of freedom scales favorably, which is a significant result for the FPE.

The remainder of this paper is organized as follows: Section 2 introduces the concepts relevant to the separation of spatial
dimensions. The Chebyshev spectral method and its benefits are discussed in Section 3. Section 4 describes in detail the
proposed method and numerical examples are provided in Section 5, including systems up to ten dimensional state-space.
Finally, a summary and future research directions are provided in Section 6.

2. Separation of spatial dimensions

The origin of the classical separation of variables method dates back 200 years when Joseph Fourier studied the heat
equation. Traditionally used for solving PDEs of certain simple forms, the basic idea of separating the dimensions is now
being recognized as a key for breaking the curse of dimensionality [8]. In this section, we revisit some of the essential
concepts of separated representation (here confined to the continuous case) and tensor decomposition (for the discrete
case).

2.1. Separated representation

In the present context, separated representation refers to the expression of a multivariate function as a summation of
separable functions. Given a smooth scalar function F defined on a compact subset of P-dimensional Euclidean space RP ,
one can approximate F as

F(x1, x2, . . . , xP) =
Rϵ
l=1

P
d=1

f ld(xd)+ O(ϵ). (1)

The question of existence of the above representation can be examined, for instance, by considering the multiple Fourier
sine series of F : let X := [0, X1] × [0, X2] × · · · × [0, XP ] and n = (n1, n2, . . . , nP) be a vector of integers, then for a smooth
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function F : X→ R,

F(x1, x2, . . . , xP) =

n∈NP

Bn

P
d=1

sin


πndxd
Xd


, (2)

where the multiple Fourier sine coefficients are given by

Bn =
2P

P
d=1

Xd


X
F(x)

P
d=1

sin


πndxd
Xd


dx. (3)

It is evident that the computation of Bn requires high dimensional integration. The advantage of separated representation
of Eq. (1) is that once it is determined, algebraic operations on F (such as Eq. (3)) can be decoupled into P single
dimensional operations. Consequently, computational complexity grows linearly rather than exponentially with respect
to dimensionality, as long as there is no dependence of Rϵ (the number of summands) on dimensionality P .

2.2. Tensor decomposition

Viewed as a generalization of amatrix in two dimensions, a tensor of order P and size n1×n2×· · ·×nP is a P dimensional
array denoted by F ∈ Rn1×n2×···×nP . In numerous applications, multivariate functions are discretized using tensor grids, the
storage alone of which is difficult owing to the exponential growth (

P
d=1 nd) of its elements with respect to P . One remedy

is to decompose the tensor into a summation of several rank-one tensors. A tensor F ∈ Rn1×n2×···×nP is of rank-one if

F = f1 ⊗ f2 ⊗ · · · ⊗ fP , (4)

where fd are nd × 1 vectors for d = 1, 2, . . . , P and ‘‘⊗’’ is the standard tensor product:

Fi1i2...iP =

P
d=1

fd(id) (5)

for all 1 ≤ id ≤ nd. The following important tensor decomposition of F was introduced by [25,26], named
CANDECOMP/PARAFAC decomposition (CPD):

F ≈
R

r=1

P
d=1

f rd . (6)

Note that the above decomposition represents an approximation. The minimum R for which the ‘‘≈’’ can be replaced
with ‘‘=’’ is called the rank of tensor F . We define factor matrices of the above decomposition as Fd =


f 1d f 2d · · · f Rd


,

d = 1, 2, . . . , P . Once the CPD is found, a tensor of order P can be reconstructed using its P factor matrices. For a prescribed
accuracy, the total number of elements in the above approximation (R

P
d=1 nd) grows linearly with P , provided that R does

not exhibit explosive growth. Fortunately it is observed that in many applications, a tensor of high order can be very well
approximated by CP decompositions of relatively low rank, although no theoretical results are available [27]. This makes
the CPD structure a good candidate for numerically dealing with high dimensional PDEs.

The problem of determining the rank of a tensor is NP-hard [28]. Moreover, finding the best low-rank approximation is
an ill-posed problem [9]. The selection of R for CPD is therefore a tradeoff between accuracy and computational efficiency.

2.2.1. Alternating least squares
Alternating least squares (ALS) is a commonly usedmethod for computing the factor matrices of a CP decomposition. For

a tensor G ∈ Rn1×n2×···×nP , the problem of finding its CPDwith prescribed R can be formulated as the following optimization
problem:

min
{f rd }

R, R =

G− R
r=1

P
d=1

f rd


2

F

, (7)

where Frobenius norm is used, and the unknowns are the vectors f rd , d = 1, 2, . . . , P and r = 1, 2, . . . , R or equivalently the
factor matrices Fd. Although Eq. (7) appears to be a standard nonlinear least squares problem whose objective function is
a 2Pth degree polynomial with R

P
d=1 nd variables, there exist no well established algorithms for its solution [27]. Among

existing techniques, alternating least squares (ALS) is arguably the most popular, underlying which is the basic idea of
holding all factor matrices except one constant, thus translating the original nonlinear least squares problem into a series
of sequential linear least squares problems. The scheme of ALS for the problem in Eq. (7) is as follows:

• Initialize (for example, randomly) Fd ∈ Rnd×R, d = 1, 2, . . . , P .
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• Cycle for d = 1, 2, . . . , P until


RP
d=1 nd

< ϵ or the maximum number of iterations is reached:

Fd ← G(d)[(FP ⊙ · · · ⊙ Fd+1 ⊙ Fd−1 ⊙ · · · ⊙ F1)T ]Ď (8)

end of cycle.
• Return Fd for d = 1, 2, . . . , P

where (·)(d) is the mode-d matricization of a tensor, ‘‘⊙’’ is the Khatri-Rao product and (·)Ď denotes the Moore–Penrose
pseudoinverse of a matrix. It should be noted that although a convergence proof of ALS (even to a local minimum) is not
yet available, it can be shown that the objective function of Eq. (7) decreases monotonically [12]. The rate of convergence
is often a concern especially as dimensionality increases, leading to problems such as ‘‘bottlenecks’’, ‘‘swamps’’ and ‘‘CP-
degeneracy’’ [27] discussed further in the results section. For a comprehensive introduction to tensor decompositions, the
reader is referred to the review paper [9].

3. Spectral differentiation

There are two main ingredients of the proposed approach: (i) discretization of the Fokker–Planck operator via spectral
differentiation and, (ii) CPD representation of the unknown probability density function (pdf), obtained using a generalized
version of the ALS algorithm described above. As previously mentioned, CPD representation of the unknown pdf necessarily
requires a tensor product representation of the discretized FP operator. In general, the operator L(·) of a linear PDE can be
approximated in tensor product form through discretization in the following manner:

L ≈

RA
l=1

P
d=1

Al
d, (9)

where Al
d are square matrices, which in order to be compatible with Eq. (6) must be of size nd × nd. By virtue of the above

separated form, high dimensional operations involving L(·) can now be decoupled into simple one-dimensional operations
on Al

d. Numerical discretization techniques (most commonly the finite difference method) are used to determine the above
form. It is most desirable if the linear operator can be approximated accurately by a small sized tensor, which is crucial
for reducing the computational burden as dimensionality increases. In the current application of solving the stationary FPE
admitting smooth solution on a hypercuboid, a much better choice for spatial differentiation is the Chebyshev spectral
method [29].

3.1. Finite differences

The traditional finite differencemethod canbeunderstood as using overlapping local polynomials of relatively lowdegree
to approximate the unknown function. Consequently, its derivatives at a grid point are approximated by the derivatives
of its local interpolating polynomial. Higher order accuracy can be obtained by choosing a stencil of a greater number of
points. In an extreme scenario, all existing grid points may contribute to the derivatives at a point, which is equivalent to
the use of a global polynomial interpolant of very high order. Of course, this approach is susceptible to the damaging Runge
phenomenon [29]. However, the idea of ‘‘extremely high order finite difference’’ can provide excellent results if the error of
polynomial interpolation is carefully controlled. Consider the Cauchy interpolation error theorem [30]:

Theorem 1. Let x0, x1, . . . , xn be distinct real numbers, and let f be a given real valued functionwith n+1 continuous derivatives
on the interval Iz = H {z, x0, . . . , xn} (the smallest interval containing all of the real numbers z, x0, . . . , xn), where z is some
given real number. Then there exists ξ ∈ Iz such that:

f (z)−
n

j=0

f (xj)lj(z) =
f (n+1)(ξ)

(n+ 1)!

n
j=0

(z − xj). (10)

In Theorem 1,
n

j=0 f (xj)lj(z) denotes the interpolating polynomial of f on x0, x1, . . . , xn. Note that there is no way
to control the effect of f (n+1)(ξ) on the interpolation error since f is problem dependent. On the other hand, the user
has complete control on the selection of the interpolation points x0, x1, . . . , xn. In this work, they are determined via the
Chebyshev spectral method, which essentially minimizes the maximum of the monic polynomial

n
j=0(z − xj) on Iz .

3.2. Chebyshev spectral method

The problem of finding the optimal interpolation points was addressed by the Chebyshev minimal amplitude theorem
given below [24]:
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Fig. 1. Unevenly distributed Chebyshev extrema points (black dots).

Theorem 2. Of all monic polynomials of degree N, the unique polynomial with the least maximum on [−1, 1] is TN (z)
2N−1

, the N th

Chebyshev polynomial divided by 2N−1. In other words, all monic polynomials of the same degree satisfy the inequality:

max
z∈[−1,1]

 n
j=0

(z − xj)

 ≥ max
z∈[−1,1]

TN(z)
2N−1

 = 1
2N−1

. (11)

Comparing Theorems 1 and 2, it is clear that the roots of the Chebyshev polynomial can be chosen as optimal interpolation
points. Moreover, it can be proved that extrema of the Chebyshev polynomial provide the same interpolation error bound
as its roots [24]. Here we simply use the Chebyshev extrema given by

xj = cos

jπ
N


, j = 0, 1, . . . ,N. (12)

The above points can be viewed as the projection of equally distributed nodes on the upper half of a unit circle onto the
horizontal line passing through the center of this circle, as is illustrated by Fig. 1, where the black dots are the (unevenly
distributed) Chebyshev extrema.

Derivatives can be approximated by differentiating the interpolating polynomial at the desired point. For instance, the
first order differentiation matrix is given by the following theorem [23]:

Theorem 3. For each N ≥ 1, let the rows and columns of the (N + 1) × (N + 1) first order Chebyshev spectral differentiation
matrix DN be indexed from 0 to N. The entries of this matrix are

(DN)00 =
2N2
+ 1
6

, (DN)NN = −
2N2
+ 1
6

,

(DN)jj =
−xj

2(1− x2j )
, j = 1, . . . ,N − 1,

(DN)ij =
ci(−1)i+j

cj(xi − xj)
, i ≠ j, i, j = 1, . . . ,N − 1,

where ci =

2 i = 0 or N,
1 otherwise.

The accuracy of Chebyshev spectral differentiation is given by [23]:

Theorem 4. Suppose u is analytic on and inside the ellipse with foci±1 on which the Chebyshev potential takes the value φf , that
is, the ellipse whose semi-major and semi-minor axis lengths sum to K = eφf+log 2. Let w be the vth Chebyshev spectral derivative
of u (v ≥ 1). Then

|wj − u(v)(xj)| = O

e−N(φf+log 2)


= O(K−N) (13)

as N →∞.

In Theorem 4, the Chebyshev potential on complex plane is defined as

φ(z) =
 1

−1

1

π
√
1− x2

log |z − x| dx. (14)

If the assumption in Theorem 4 holds (as in the current application), the spectral derivative converges geometrically. In
otherwords, a differentiationmatrix of significantly smaller sizewill be sufficient to approximate the same one-dimensional
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operator with equal accuracy as compared with the finite difference method. This is crucial for amelioration of the curse of
dimensionality in the FPE as will be illustrated via examples in Section 5.

We note that as opposed to the attractive band-limited differentiation matrix of the finite difference method, the
Chebyshev spectral differentiation matrix is dense. However, since only one-dimensional differentiation is required for the
tensor decomposition based method used here, the dense structure fails to have an adverse impact.

4. A Chebyshev spectral tensor decomposition solution of the stationary FPE

In this section, we outline the use of Chebyshev spectral differentiation to discretize the Fokker–Planck operator. The CPD
form is used for tensorization and the alternating least squares method [12] is used to solve the resulting discrete system
while incorporating the normality constraint for a valid probability density function. It is shown through examples that the
number of degrees of freedom of the approximation grows benignly with dimensionality, which is in sharp contrast with
the exponential growth observed in traditional finite difference/element methods.

4.1. Fokker–Planck equation

Consider a nonlinear dynamical system perturbed by white noise excitation with initial condition uncertainty, modeled
by the following Itô stochastic differential equation:

dx = f(t, x)dt + gdB(t), x ∈ RP , (15)
where B(t) denotes an M-dimensional Brownian motion process with correlation function Qδ(t1 − t2), f(t, x) : [0,∞) ×
RP
→ RP is a deterministic vector function and in the current paper, g is a constant noise influence matrix of size (P ×M).

The uncertainty in the state x(t) is quantified by its time varying probability density function (pdf) W(t, x). Initial condition
uncertainty is prescribed as W(t0, x) = W0(x). The Fokker–Planck equation [2] corresponding to Eq. (15) is a PDE that
captures the time evolution of the state pdf:

∂

∂t
W(t, x) = LF P [W(t, x)], (16)

where LF P is the Fokker–Planck operator given by

LF P =


−

P
i=1

∂

∂xi
D(1)

i (·)+

P
i=1

P
j=1

∂2

∂xi∂xj
D(2)

ij (·)


, (17)

D(1)(t, x) = f(t, x), D(2)
=

1
2
gQgT.

In Eq. (17), D(1) and D(2) are called drift coefficient vector and diffusion coefficient matrix respectively. Under certain
conditions (in addition to the time invariance of f and g: see [2]), there exists a unique global asymptotically stable steady
state pdf Ws(x) that solves the following simplified form of Eq. (16):

LF P [W(x)] = 0. (18)
The above equation, called the stationary Fokker–Planck equation, is the concern of the current paper.

4.2. Representation in tensor product form

To begin tensorization of the FP operator, we assume that f(x) is separable so that the drift vector can be expressed
without error in the following separable form:

D(1)
i (t, x) = fi(x) =

R1i
j

P
d=1

f jd(xd) (19)

where R1i is finite. The FPE is to be solved over a P-dimensional hypercuboid, of which the dth dimension is discretized by
the vector xv

d of nodes. Denote by Dxd the Chebyshev spectral differentiation matrix of ∂
∂xd

on the solution domain. The drift
coefficients can then be given in tensor form as follows:

∂

∂xi
D(1)

i ≈


j


i−1
d=1

diag(f jd(x
v
d))


⊗


diag(Dxi f

j
i (x

v
i ))


⊗


P

d=i+1

diag(f jd(x
v
d))


+


j


i−1
d=1

diag(f jd(x
v
d))



⊗


diag(f ji (x

v
i ))Dxi


⊗


P

d=i+1

diag(f jd(x
v
d))


.
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If f(x) is not separable, it can be approximated by separable functions either ‘‘continuously’’ via the multiple Fourier series
described in Section 2.1 or ‘‘discretely’’ via CP decomposition discussed in Section 2.2. In such case, the second ‘‘=’’ of Eq.
(19) must be replaced with ‘‘≈’’.

4.3. CPD approximation of the discretized FPE

Once all the terms in the FP operator are tensorized as shown in the above section, the stationary FPE is reduced to the
following linear algebraic form:

AU = G, (20)

where, U is the approximation of the unknown stationary pdf W(x). Due to the homogeneous nature of the FPE, G (also in
a CP decomposition structure) is identically zero. In order to handle the curse of dimensionality, the vector U is sought in a
CP decomposition form as described in Section 2.1:

W(x) ≈ U(x) =
RU
l=1

P
d=1

ul
d(xd). (21)

Due to the special structure of the above decomposition, Eq. (20) is nonlinear in terms of the component functions ul
d(xd)

despite the fact that it is clearly linear in terms of the unknown tensor U.
Solution schemes for Eq. (20) first appeared in [12], wherein two different types of methods were proposed. The first

approach uses an iterative inversion scheme similar to the ones used for linear systemswith a large sparsematrix, combined
with simultaneous approximation of the intermediate solution by a tensor of lower rank to control the size growth ofU. The
second method casts Eq. (20) as an equation error minimization problem and uses ALS to solve it. This can be understood
as a generalized CP decomposition problem (Eq. (20) is the standard CP decomposition problem when A = I.). This paper
uses a modified version of the second approach to suit the current application.

The developments below describe the solver for the general case of Eq. (20), which in addition to Eq. (21), has A =RA
iA=1

P
d=1 A

iA
d and G =

RG
iG=1

P
d=1 g

iG
d ; where AiA

d are nd×nd matrices while uiU
d and g iG

d are nd×1 vectors. Transforming
Eq. (20) into an optimization problem, we get

min
{urk}
∥ AU− G ∥2F , (22)

and define R =∥ AU− G ∥2F , such that R = ⟨AU, AU⟩ − 2⟨AU, G⟩ + ⟨G, G⟩, where,

AU =

RA
iA=1

RU
iU=1

P
d=1

(AiA
d u

iU
d ),

⟨AU, AU⟩ =

RA
iA=1

RU
iU=1

RA
jA=1

RU
jU=1

P
d=1

⟨AiA
d u

iU
d , AjA

d u
jU
d ⟩, and

⟨AU, G⟩ =

RA
iA=1

RU
iU=1

RG
iG=1

P
d=1

⟨AiA
d u

iU
d , g iG

d ⟩.

The necessary condition for minimization of R is

∂⟨AU, AU⟩

∂ur
k

− 2
∂⟨AU, G⟩

∂ur
k
= 0, (23)

for k = 1, 2, . . . , P and r = 1, 2, . . . , RU ; where

∂⟨AU, AU⟩

∂ur
k

=

RA
iA=1

RA
jA=1

RU
jU=1

(AjA
k u

jU
k )TAiA

k


d≠k

⟨AiA
d u

iU
d , AjA

d u
jU
d ⟩ +

RA
iA=1

RU
iU=1

RA
jA=1

(AiA
k u

iU
k )TAjA

k


d≠k

⟨AiA
d u

iU
d , AjA

d u
jU
d ⟩,

∂⟨AU, G⟩

∂ur
k
=

RA
iA=1

RG
iG=1

(g iG
k )TAiA

k


d≠k

⟨AiA
d u

iU
d , g iG

d ⟩.

Collecting terms in Eq. (23) for all r ’s and fixed dimension k, we haveM1,1 · · · M1,RU
...

. . .
...

MRU ,1 · · · MRU ,RU


  

=M

 u1
k
...

uRU
k

 =
 N1

...
NRU


  
=N

, (24)
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where Mi,j and Ni are submatrices of the block matricesM and N respectively, given by

Mi,j =

RA
iA=1

RA
jA=1

(AjA
k )TAiA

k


d≠k

⟨AiA
d u

j
d, A

jA
d u

i
d⟩, (25)

Ni =

RA
iA=1

RG
iG=1

(AiA
k )Tg iG

k


d≠k

⟨AiA
d u

i
d, g

iG
d ⟩. (26)

Eqs. (25) and (26) first appeared (in a different form than above) in Ref. [12]. Clearly, the above equation is nonlinear in
terms of the unknowns ul

d. In the ALS framework, Eq. (24) is reduced to a linear system and solved sequentially for each
dimension in an iterative manner. Therefore, the number of unknowns in a single iteration is nkRU , which is independent
of the dimensionality P once the user prescribes RU . Moreover, a significant amount of computation is saved by noting that
only a small portion of the terms involved need to be recalculated for different k and RU . In implementation, we begin with
RU = 1 and random initial values for ul

d, and then increase RU gradually until stopping criteria (magnitude of objective
function and/or number of iterations) are met.

At this point, it is of interest to examine the growth of memory requirement in the above described CPD approximation.
Without loss of generality, assume that n nodes are used for discretization per dimension. Then the total number of entries
needed to represent A, G and U are Pn2RA, PnRG and PnRU respectively, which grow only linearly with the dimensionality
P for fixed values of RA, RG and RU . In other words, the memory required for the terms appearing in Eqs. (25) and (26)
grows rather benignly with dimensionality. For further reduction in memory requirement, these terms can be computed
‘‘dynamically’’, i.e. when needed during the execution of the code (of course, at the cost of increased computation time). See
section 4.2 of Ref. [12] for a detailed analysis of the complexity of this ALS framework.

In the next section, we discuss the incorporation of the normality constraint, which is essential to ensure that the ALS
scheme returns a nontrivial answer (note that for the stationary FPE, G ≡ 0).

4.4. Constraints

A probability density function that solves the stationary FPE must satisfy the following constraints:
lim
x→∞

W(x) = 0, (27)
Ω

W(x)dx = 1. (28)

Eqs. (27) and (28) are called the vanishing boundary condition and normality condition respectively. Any spatial discretiza-
tion based method requires a compact domain for implementation, due to which the vanishing boundary condition is im-
posed on a conservatively chosen ‘‘large-enough’’ domain. Here, the boundary condition is enforced by simply removing the
boundary rows and columns of AiA

d ’s and uiU
d ’s in Eq. (24). This is also typical in traditional finite difference/elementmethods.

Normality constraint
Adding the normality constraint to Eq. (18) precludes the trivial solution. By virtue of the CP structure of U, the multi-

dimensional integral of Eq. (28) can be decoupled into a product of one-dimensional integrals and therefore scales lin-
early with system dimensionality. Corresponding to the Chebyshev extrema points used for spatial discretization, the
Clenshaw–Curtis quadrature are used for integration [23], resulting in the following tensorized structure of the normal-
ity condition:

B =
P

d=1

bd, ⟨B, U⟩ = 1, (29)

where bd is a nd × 1 vector, containing the Clenshaw–Curtis weights for dimension d. To impose the normality condition, a
penalty term is added to the minimization problem of Eq. (22). With G = 0, we have

min
{urk}
∥ AU ∥2F +

α

2
(⟨B, U⟩ − 1)2 , (30)

where α is a positive penalty parameter. We thus redefine the cost function as

R = ∥ AU ∥2F +
α

2
(⟨B, U⟩ − 1)2

= ⟨AU, AU⟩ +
α

2


⟨B, U⟩2 − 2⟨B, U⟩ + 1


. (31)

The corresponding first order conditions for minimization are

∂⟨AU, AU⟩

∂ur
k

+ α


⟨B, U⟩

∂⟨B, U⟩

∂ur
k
−

∂⟨B, U⟩

∂ur
k


= 0, (32)



Author's personal copy

1968 Y. Sun, M. Kumar / Computers and Mathematics with Applications 67 (2014) 1960–1977

where, the terms not already given in Section 4.3 are

⟨B, U⟩ =

RU
iU=1

P
d=1

⟨bd, u
iU
d ⟩,

∂⟨B, U⟩

∂ur
k
= (bd)T


d≠k

⟨bd, ur
d⟩.

For a fixed k, upon collecting terms for all r ’s we have,M+ α

 B1,1 · · · B1,RU
...

. . .
...

BRU ,1 · · · BRU ,RU



 u1

k
...

uRU
k

 = α

 C1
...

CRU

 , (33)

whereM is the same as in Eq. (24) and

Bi,j = bk(bk)T


d≠k

(bd)Tu
j
d


d≠k

(bd)Tui
d


, (34)

Ci = bk

d≠k

(bd)Tui
d. (35)

The ALS scheme discussed in Section 4.3 can now be used directly to solve Eq. (33). A summary of the entire approach is
provided below:

• Use Chebyshev extrema points for spatial discretization of each dimension and approximate the Fokker–Planck operator
by Chebyshev differentiation matrices.
• Rewrite the FP operator in tensor product structure and incorporate the normality constraint to obtain Eq. (33).
• Cycle for RU = 1, 2, . . . , Rmax until stopping criterion S1 (see below) is met:

– Initialize ur
d for d = 1, 2, . . . , P and r = 1, 2, . . . , RU .

– Repeat for d = 1, 2, . . . , P until stopping criterion S2 (see below) is met:
∗ Solve Eq. (33) to obtain ur

d for r = 1, 2, . . . , RU while holding ur
d’s for other dimensions constant.

• Return ur
d for d = 1, 2, . . . , P and r = 1, 2, . . . , RU .

Stopping criteria
The stopping criteria appearing above are:

• S1:


RP
d=1 nd

< ϵ1 or RU = Rmax, where Rmax is the maximum allowable number of component rank-one tensors. In other

words, unless the prescribed computational limit is reached, this corresponds to reaching a satisfactorily low value of
the objective function, such that the optimization problem of Eq. (30) is considered solved.
• S2: δ

.
= |Rcurr − Rprev| < ϵ2 or maximum number of iterations reached. This corresponds to checking for satisfactory

reduction of the objective function over a single iteration with a fixed number (RU ) of component rank-one tensors. If
the reduction is not significant, i.e. δ < ϵ2, a new enrichment step is initiated by setting RU ← RU + 1, unless criterion
S1 is met.

5. Numerical examples

In this section, we present several numerical examples involving relatively high dimensional systems. To facilitate
illustration, RU is referred to as the ‘‘number of enrichment steps’’ while uiU

d for iU = 1, 2, . . . , RU are called basis functions
for dimension d. All shown basis functions are scaled to have unit norm via the use of a scaling vector. Due to the random
initialization of basis functions, the comparisons and conclusions are made in an average sense. It is shown through a
progression of examples that the number of degrees of freedom in the proposed method scales favorably with the system
dimensionality and presents a strong case for curbing the curse of dimensionality associated with FPE.

5.1. Example 1: 2-state system

Consider the following two-state nonlinear oscillator [31]:

ẍ+ bẋ+ x+ a(x2 + ẋ2)ẋ = g ′ξ(t), (36)

where, ξ(t) is white noise with intensity Q and a = 0.125, b = −0.5, g ′ = 1,Q = 0.4 are constants. FPE of the above
system admits the following stationary solution:

Ws(x, y) = C exp

−

1
g ′2Q

 a
2
(x2 + y2)2 + b(x2 + y2)


, (37)
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Fig. 2. Approximated stationary solution for the 2-state system.

(a) Error surface: Chebyshev spectral differentiation. (b) Error surface: Traditional finite difference method.

Fig. 3. Comparison of error surface for the 2-state system.

where, y .
= ẋ and C is the normalization constant. Note that the true solution is not a separable function. The current

method was implemented using 29 Chebyshev extrema points per dimension on the finite domain [−4, 4] ⊗ [−4, 4]. The
approximation after five enrichment steps (RU = 5) is shown in Fig. 2. The error between the approximated and in this case,
known true solution inmean square sense (MSE) evaluated on the grid shown in Fig. 3(a) is 4.403×10−9. The basis functions
{uiU

d }
5
iU=1

for d = 1 (dimension x) and d = 2 (dimension y) are shown in Fig. 4(a) and (b) respectively with scaling vector
[0.6883, 0.4570, 0.1192, 0.0263, 0.0046]. In this and all subsequent examples, the basis functions have been ordered from
most to least significant in terms of their contribution to the final approximation, as reflected by the relative magnitudes of
the corresponding components of the scaling vector.

The total number of degrees of freedom of this approximation is (number of nodes per dimension) × (number of
dimensions)× (number of enrichment steps)= 29× 2× 5 = 290. In comparison, if second order finite difference spatial
discretization in tensor product form is used, 83 nodes per dimension provide an MSE of 1.242 × 10−8 after 8 enrichment
steps (see error plot in Fig. 3(b)). The total DOFs is now 83× 2× 8 = 1328, with a worse MSE. The advantage of Chebyshev
spectral differentiation should be further evident for higher dimensional cases.

5.2. Example 2: 4-state system

Next consider the 4-state nonlinear isolating suspension model given in [32],

ẋ1 = x3,
ẋ2 = x4,

ẋ3 = −ax3 −
1
M

∂V
∂x1
+ ξ1,

ẋ4 = −bx4 −
1
I

∂V
∂x2
+ ξ2.
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(a) Basis functions: x dimension. (b) Basis functions: y dimension.

Fig. 4. Basis functions for the 2-state system.

(a) Approximated x1 − x2 marginal pdf. (b) Error surface of the marginal pdf.

Fig. 5. Results for the 4-state system.

The above system belongs to a small class of nonlinear systems possessing a ‘‘Hamiltonian-like’’ [2] structure for which
the true stationary distribution is known. In this example, the coupled potential function V is chosen as V (x1, x2) = k1x21 +
k2x22 + ϵ(λ1x41 + λ2x42 + µx21x

2
2). System parameters are a = 0.5, b = 1, k1 = 0.5, k2 = −0.5, ϵ = 0.5, λ1 = 0.25, λ2 =

0.125, µ = 0.375. The noise process is two-dimensional with intensities 2D1(∼ ξ1) = 4 and 2D2(∼ ξ2) = 8. Parameters
have been selected to ensure that D1M

a =
D2I
b = 2T , because under this condition the analytical solution can be written as

Ws(x1, x2, x3, x4) = C exp

−

1
2T

V (x1, x2)−
a

2D1
x23 −

b
2D2

x24


, (38)

where C is the normalization constant as usual. Owing to the nature of the chosen potential function V , the true stationary
solution is once again not separable.

The described method was implemented using 33 Chebyshev extrema points per dimension on the finite domain
⊗

4
[−6, 6]. The x1 − x2 marginal pdf of the approximated solution is presented in Fig. 5(a), while the error plot is shown

in Fig. 5(b). After three enrichment steps, the MSE between the approximated and true marginal is 5.118 × 10−8. The
time of execution of the entire algorithm (on a PC with 2.5 GHz CPU and 4 GB RAM) was less than 20 s. The basis
functions for each dimension, i.e. {uiU

d }
3
iU=1

are shown in Fig. 6 labeled in decreasing order of significance with scaling vector
[0.0930, 0.0154, 3.077× 10−4], and the total DOF is 33× 4× 3 = 396.

It is interesting to look at the nature of the various basis functions. In keepingwith the true solution given in Eq. (38), all of
them are even functions, except u3

1 and u3
3, which are odd. In the present example, such odd basis functions are unexpected,

but while they do appear, they have a negligible effect on the solution because of their relatively insignificant magnitude
(see scaling vector above). This is in fact a recurring trend in the present approach as seen below in higher dimensional
examples and is a phenomenon worthy of further investigation. Once again, the second order finite difference method in
its tensor-product form provides an MSE of 7.297 × 10−8 following six enrichment steps, requiring a total of 1608 DOFs
(67 nodes per dimension).
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(a) Basis functions: x1 . (b) Basis functions: x2 .

(c) Basis functions: x3 . (d) Basis functions: x4 .

Fig. 6. Basis functions for the 4-state system.

(a) 2-state system. (b) 4-state system.

Fig. 7. Evolution of equation error: Examples 1 and 2.

Fig. 7(a) illustrates the convergence characteristics of ALS for examples 1 and 2. Clearly, the two-state system exhibits
relatively ‘‘gradual’’ convergence whereas the four-state system goes through extended periods of sluggish performance
in between abrupt improvements in the approximation. Similar slow convergence of ALS has been noted widely in the
literature (e.g. see [27,33,34]) and attributed to ‘‘degeneracies’’ in the tensor. For example, the so-called ‘‘bottleneck’’ sluggish
behavior is observed if two or more basis functions of a single dimension are collinear. If linear dependency is observed in
all dimensions, the phenomenon is sometimes referred to as a ‘‘swamp’’ [27]. It is clear from Fig. 4 that the two-state system
suffers from no such collinearity whereas the four-state system has linear dependency between the bases {uiU

3 } and {u
iU
4 }

(Fig. 6(c) and (d)), leading to a bottleneck scenario and the concomitant sluggish convergence (Fig. 7(b)). In addition, we note
that there is another factor in play in the current application, namely the dimensionality of the underlying system which
can potentially cause sluggish convergence. This is discussed in greater detail in the next example.
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(a) Average DOF growth. (b) Success rates.

Fig. 8. Performance trends versus dimensionality.

(a) Basis functions for x1 , i.e. {u
iU
1 }

10
iU=1

. (b) ALS convergence characteristics.

Fig. 9. A bottleneck situation: 8-state system.

Fig. 10. A comparison of methods: FEM, s/p-PUFEM and the current approach.

5.3. Example 3: higher order systems

To demonstrate the scalability of the proposedmethod,we extend the previous example to solve the FPE for a generalized
high dimensional nonlinear oscillator given by the following template:

ẋi = yi,

ẏi = −aiyi − bi
∂V
∂xi
+ ξi, i = 1, 2, . . . , P
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(a) Basis functions: x1 . (b) Basis functions: x2 . (c) Basis functions: x3 .

(d) Basis functions: x4 . (e) Basis functions: x5 . (f) Basis functions: x6 .

(g) Basis functions: x7 . (h) Basis functions: x8 . (i) Basis functions: x9 .

(j) Basis functions: x10 .

Fig. 11. Basis functions for the 10-state system in Case II.

where ξi’s are uncorrelated white noise processes, i.e., Dij = 0 for i ≠ j. When Di
aibi
= 2T , the stationary solution can be given

by

Ws(x, y) = C exp


−

1
2T

V (x1, x2, . . . , xP)−
P

i=1

ai
2Di

y2i


, (39)

where intensity of noise ξi is 2Di. Three types of configurations are considered:

• Case I: For simplicity, set V (x1, . . . , xP) = 1
2

P
i=1 x

2
i and Di

aibi
= 2T for i = 1, 2, . . . , P . In this configuration, the

normalization constant is C = (8Tπ2Di/ai)−P/2 and Eq. (39) can be separated into a product of P identical one-
dimensional functions. Results for various P are presented in Table 1 of Section 5.3.1.
• Case II: A non-separable linear system is considered by selecting V (x1, . . . , xP) = 1

2

P
i=1 x

2
i +

1
4

P−1
i=1 x1xi+1. We let

2P = 10, and in order to ensure the existence of a closed-form solution given by Eq. (39), set Di
aibi
= 2T for i = 1, 2, . . . , P .
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(a) Case II. (b) Case III.

Fig. 12. Evolution of equation error for the 10-state system in Case II and III.

Table 1
Results for higher order systems.

Dimensionality (2P) Results of a typical run Avg. number of enrichment
steps in successful runs

Average DOF

Number of enrichment
steps (RU )

DOF


R2P
d=1 nd

Time of
execution

2 1 106 2.42× 10−7 0.5 s 1 106
4 1 212 7.26× 10−9 1.5 s 1 212
6 3 954 6.05× 10−10 60 s 3 954
8 10 4240 4.70× 10−12 1.8 h 9.6 4070

10 6 3180 1.32× 10−13 0.9 h 8.8 4664

The corresponding results are provided in Section 5.3.2 and this case demonstrates the effectiveness of the proposed
method for non-separable systems.
• Case III: To demonstrate the versatility of the current method, a non-separable nonlinear system is tested by setting

V (x1, . . . , xP) = 1
2 (

1
16x

4
1 +

P
i=2 x

2
i )+

1
4

P−1
i=1 x1xi+1 with 2P = 10. This system admits a stationary solution, however,

the parameters Di, ai and bi are chosen such that Di
aibi
= 2T no longer holds for all i. Consequently, a closed-form solution

does not exist. Results are given in Section 5.3.3 to support the strength of the proposed method.

In all cases, 53 Chebyshev extrema points were used per dimension on the domain⊗2P
[−5, 5].

5.3.1. Case I with separable analytical stationary solution
For the casewith separable stationary solution, let ai = bi = Di = 1, thus 2T = 1. For each P , Table 1 shows the results of

a typical run of the described procedure, as well as its average performance overmultiple runs, each starting from a different
random initialization of the basis functions. The following observations can be made:

• Computation Time: As expected, the average computation time growswith dimensionality, although this growthmay not
manifest in an individual run of the algorithm (compare typical runs for 2P = 8, 10).
• Enrichment Steps/DOF Growth: Due to the fact that Eq. (39) is perfectly separable, a single enrichment step should

ideally be sufficient to obtain the solution. In reality, the number of enrichment steps (RU ) generally increases with P ,
although not exponentially (see average RU ). Consequently the DOF count (=2PRUnd) does not grow explosively with
dimensionality. This is a key result, and is illustrated further in Fig. 8(a). It is clearly visible that although not linear (since
RU = RU(P)), the average DOF count of the current method for the chosen problem shows a rather benign growth rate
for obtaining highly accurate approximations.
• Bottlenecks and Dimensionality: As mentioned in the previous example, ALS is susceptible to bottleneck/swamp

behavior (i.e. periods of slow convergence) resulting from linear dependency of basis functions. It is observed that as
dimensionality increases, this problem becomes increasingly inescapable. Fig. 9(a) shows a bottleneck situation in the x1-
basis functions for the 8-state system (see for example the collinearity of u2

1 through u8
1). The resulting slow convergence

characteristics of ALS is apparent in Fig. 9(b).
We note here that in addition to collinearity type degenracies, high dimensionality also plays a role in the observed
sluggish behavior of ALS in the current application. The objective function of Eq. (30) is a 2Pth degree polynomial, due
to which ALS must overcome an increasingly large number of local minima as the dimensionality grows. Even without
tensor degenracies, ALS can therefore be expected to meander through various local minima until it receives just the
‘‘right’’ random perturbation that guides it towards the global minimum. Each new enrichment step adds a randomly
generated rank-one tensor to the existing solution tensor, which may help ALS meet the


R2P

d=1 nd
< ϵ1 stopping
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(a) Basis functions: x1 . (b) Basis functions: x2 . (c) Basis functions: x3 .

(d) Basis functions: x4 . (e) Basis functions: x5 . (f) Basis functions: x6 .

(g) Basis functions: x7 . (h) Basis functions: x8 . (i) Basis functions: x9 .

(j) Basis functions: x10 .

Fig. 13. Basis functions for the 10-state system in Case III.

criterion (S1). Such meandering can clearly become longer as dimensionality increases (compare Figs. 7(a), (b) and 9).
This argument also explains the growth of RU with P described in the previous bullet.
• Success Rates: Owing to bottleneck/dimensionality issues described above, not all runs of the described algorithm end

successfully (i.e. some runs terminate after hitting the upper limit on the number of iterations without achieving the
desirable accuracy. If more iterations were executed, ALS would probably have obtained better results.). The success rate
declines with increasing dimensionality (see Fig. 8(b)) and puts in perspective the benign growth rate of DOF versus P .
While this is a problem, it can be handled by numerous initializations of ALS in parallel, thus improving the chance of
quick termination of the procedure.
• Curse of Dimensionality and Comparative Performance: At this point, it is interesting to compare the DOF growth of the

currentmethodwith some existing numerical techniques for solving FPE. Fig. 10 depicts the curse of dimensionality faced
by direct discretization basedmethods such as finite element [35,36], which become quickly infeasible as dimensionality
increases. Partition of unity basedmeshlessmethods (such as standard-PUFEM and particle-PUFEM)were able to achieve
muchmore favorable scaling and polynomial-like DOF growth [5,1]. In thesemethods, even though the number of nodes
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(a) x1 − x2 marginal pdf by the proposed tensor method. (b) Error surface of the marginal pdf with respect to
MCS.

Fig. 14. Results for the marginal pdf of Case III.

needed does not grow exponentially, the number of basis functions needed per node suffers from factorial growth,
thus resulting in excessive computational burden. In comparison, the present approach scales very well and is easily
able to solve high dimensional systems in a reasonable amount of time. Data for FEM, sPUFEM and pPUFEM are not
available for dimensions greater than 4, 4 and 5 respectively because of infeasiblity on the computational platforms they
were implemented. It must be noted that Fig. 10 must be interpreted with caution because of variability in the type of
problems solved in various dimensions and different methods. This figure is only meant to provide a gross order-of-
magnitude comparison. Moreover, the comparison is not exhaustive, i.e. does not consider the potential performance of
other advanced tensor approaches, e.g. QTT approximation of [17,18].

5.3.2. Case II with non-separable analytical stationary solution
In this case, let ai = bi = 1 and Di = 2, thus 2T = 2. Through 10 enrichment steps, the root mean square (RMS)

error of the approximated solution with respect to the analytical solution is 4.24 × 10−11. The basis functions along all
the 10 dimensions are given by Fig. 11 and the convergence characteristic for this example is provided in Fig. 12(a). It is
demonstrated via this non-separable 10D case that the proposed method works effectively for solving high dimensional
stationary Fokker–Planck equations.

5.3.3. Case III with no closed-form stationary solution
We set D1 = 1, Di = 2 for i = 2, . . . , P , and ai = bi = 1 for i = 1, . . . , P . Following 11 enrichment steps, the

convergence characteristics and spatial basis functions for each dimension are provided in Figs. 12(b) and 13 respectively.
For visualization, the marginal pdf of the first two states is provided in Fig. 14(a). Since a closed-form stationary solution is
not available for this example, Monte Carlo simulation (Milstein scheme [37]) was employed to estimate the accuracy of the
obtained approximation. Fig. 14(b) shows the error surface constructed by comparing themarginal pdf of Fig. 14(a) with the
histogram obtained fromMilstein integration of an ensemble of 106 initial conditions (a final time of 5 s is sufficient for the
system to reach near stationary behavior). The mean squared error (MSE) corresponding to Fig. 14(b) is 2.13 × 10−7, and
reduces to 1.48× 10−7 if 107 samples are used.

6. Conclusions and further research

In this paper, the stationary FPE was solved by incorporating Chebyshev spectral differentiation into the framework of
solving linear PDEs by CP decomposition. The FP operator was expressed in a tensor product structure and the normality
constraintwas enforced via a penaltymethod. Using the alternating least squares algorithm to solve the resulting discretized
system, numerical results for non-separable systems up to 10 dimensional state-space were provided. It was shown that
the DOF count of the proposed approach scales favorably, making it an attractive approach for nontrivial uncertainty
quantification problems. Also the computational time involved is reasonable, potentially allowing the present approach
for use in nonlinear state estimation. Reduction of the incidence of bottlenecks is a topic of current investigation which will
further increase the applicability of the proposed approach to real life high dimensional problems. Further research is also
needed to extend the proposed approach to the transient Fokker–Planck equation (see [38] for some initial results).
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