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Abstract

Model-based control for improving energy efficiency of binlgs has been a pop-
ular topic of late. Smart control requires a predictive mad¢he building’s ther-
mal dynamics. Due to the complexity of the underlying phgbprocesses, usu-
ally system identification techniques are used to identyameters of a physics-
based grey-box model. We investigate questions of requirede! structure and
identification techniques for parameter estimation of gleizone model through
a combination of analysis and experiments. Our resultca@tdithat a second-
order model can reproduce the input-output behavior of lasttdle model with
13 states. We also show that data collected during usuaatiperdeads to poor
parameter estimates that may nevertheless appear totgrezliemperature well.
The error becomes apparent when there is sufficient difteremimong various
inputs and the output. We propose an algorithm to overcoresetlissues that
involve specific forced-response tests. The results ofitivestigation are ex-
pected to provide guidelines on do’s and don’t’s in modeéing identification of
buildings for control.

1. Introduction

Model-based control of HVAC (Heating, Ventilation, and Alonditioning)
systems has generated excitement in the community of daesearchers in re-
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cent years. This problem is of great societal importanceesbuildings account
for 34% of total energy use in the United States and HVAC acotéor roughly
half of that [1]. If novel control techniques can increase éfficiency of HVAC
systems, it will lead to substantial savings in total enargg. A popular candi-
date for control of building HVAC systems is MPC (Model Pretdie Control);
a number of recent papers have been published on this tagecf2s 3, 4] and
references therein.

Demand for heating, cooling and ventilation air varies frooom to room,
and the control algorithms need to be targeted to each ro@®dban its state.
MPC requires a model that can be used to predict the evolofieemperature
and humidity (and possibly other environmental variablesasCO, concentra-
tion) of a room given the inputs, which include mass flow ratd &emperature
of the supply air, temperatures of the surroundings, antl diegas. The under-
lying processes that govern the dynamics of temperaturieitemo are complex
and uncertain, so simplified lumped parameter models nebd tsed. A ques-
tion that is relevant to control designers is, given a pibscdrdegree of accuracy,
how to choose model structure and identify its parametatsithieve that degree
of accuracy? This paper attempts to answer this questionlimiiteourselves to
modeling a single room in a building with possibly many rooms

The lumped parameter models that researchers typicalliousedel temper-
ature dynamics of a room—and sometimes of an entire buidisga combina-
tion of R-C network (resistor-capacitor) models that captweat transfer through
solid surfaces. The model has a non-linear term that capthee effect of en-
thalpy exchange with the outside due to the supply and exfzus\We restrict
ourselves to this class efon-linear R-C network modelsvhich is denoted by
AMrc(n, g, p), wheren refers to state dimensiog,to the number of inputs, angd
to the number of uncertain parameters. Two questions arear. Q1 (Minimal
model complexity question): What is the minimum model coempl (measured
by n,q, p) that is required to predict the temperature dynamics ohglsiroom
with an acceptable degree of accuracy? In this paper, we'dakeptable degree
of accuracy” to mean a peak error in temperature predictidéess than 3F. The
reason is that the temperature distribution inside a room Ina&e spatial varia-
tion of higher than 3. ASHRAE (American Society of Heating, Refrigeration
and Air-conditioning Engineers) standard 55 [5] mandates vertical tempera-
ture stratification in an occupied zone should be less théitFrbmeaning that this
degree of spatial variation is expected. Q2 (Model calibratjuestion): How to
identify the values of the uncertain parameters (typicagistances and capac-
itances) from measured data, and what kind of data are esfjuiv achieve this
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level of accuracy?

It should be noted that there is a long history of using R-Qvoéits for mod-
eling building thermal dynamics; see the review article filstorically, they first
arise in deriving lumped models of heat transfer througidssirfaces by dis-
cretizing the heat equation. However, whether they aredorehtally capable of
reproducing observed data with a prescribed degree of acgdor a room or a
building has not been examined. It has been merely accepatdhey are. In
fact, ASHRAE (American Society of Heating, RefrigeratiardaAir conditioning
Engineers) handbook [7] describes how to determine the Ri@es for a solid
surface given its material and construction type. Thisnmfation is now available
in software such as HAP [8]. The resistances and capaciarf@R-C network
model are carefully chosen to model the combined effect nflaotion between
the air masses separated by the surface, as well as long a@dation and con-
vection between the surface and the air mass in contacttf#thiO]. We refer to
parameter values so obtained as “ASHRAE values”. Howeleretis uncertainty
in ASHRAE values. First, the room capacitance is unknownoesiir as well as
furniture and other objects in the room all contribute toSecond, information
on wall and window construction and material is not alwaysye@ obtain for
existing buildings due to poor record keeping. Third, duerecks in windows,
walls, and air gaps around closed doors, the effectiveteasie of an window or
a wall is likely to be lower than what is inferred from consfiion data. Finally,
if a window or a door is open, the effective resistance coeldidn lower than the
resistance estimated for a closed window or door. Thergéwen if R-C network
models are adequate, there is a needlémtify/estimateR-C parameters from
measured data; in other words,dalibratethe model.

The model calibration problem is not trivial, mostly becaws the need to
estimate values of R-C parameters as opposed to obtainysjenrsrealization to
mimic observed input-output behavior. There are seveedaes for estimating
these parameters. First, R-C values have intuitive, paysieaning. Second, one
can check if the identified parameters values are reascralld therefore if the
model is—by comparing against ASHRAE values. This proviaesnity check
and can help unearth potentially grossly inaccurate syatentification. We will
see an example of this in Section 3.3. Third, a trend in ifiedtparameter values
over time, when identification is carried out repeatediyy aveal wear and tear
of the building fabric or damage in wall insulation. Foursince R-C modeling
paradigm is prevalent in the HVAC community, it is useful pignas a common
language.

Even though powerful state-space identification methods as the subspace
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method [11] can be used to identify the system matrices imlfatrary state space,
they are not useful for estimating R-C parameters. Paranestemation tech-
niques for transfer functions, such as least-squares ARM#@eahidentification
methods [11] and adaptive identification methods [12], &se imadequate. These
methods can estimate coefficients in the polynomials thatri®e the transfer
functions. However, obtaining R-C parameters from idegdifiransfer function
polynomial coefficients is quite challenging due to the ctempelationship be-
tween the two. Moreover, the majority of commercial buighnn the U.S. use
forced ventilation, in which case the common control sigradla zone are supply
air temperature and flow rate. This introduce bilinearitp ithe model. Although
there exists methods to estimate bilinear models (such3} fhese methods es-
timate a realization in some arbitrary state space basisangarameters in the
model.

The paper makes three contributions on the model calibrafigestion that
are relevant to model based control of indoor climate of aroBirst, we answer
the minimal model complexity question by a comparison opoese between a
R-C network model of high state dimension and low-order n®desame class.
When the mass flow rate of supply air is held constant, the imedd . Fre-
guency domain comparisons show that a second-order motteBwiarameters
is capable of reproducing the input-output behavior of thiedcale model of the
room (with 13 states and 32 parameters) with a high degreecofacy. The con-
clusion is that a large number of R-C parameters is not requi& model with
two capacitor suffices. This answers the question how manydRCaparameters
are needed if we accept R-C network models as adequate eapatsn of real-
ity. Existing work on the minimal model complexity questiogsually starts from
modeling the heat transfer through a single surface. Manfatsultiple surfaces
that make up the room are then combined to construct the nafdbke room.
See for example, Mathews et al. [9], Gouda et al. [14, 15]isBeset al. [10], and
Braun et al. [16]. One drawback of this approach is that tlieioof the zone be-
comes large when individual building elements are combirfégts problem can
be avoided by directly constructing a low-order model f@& thole zone, which
is the idea adopted in [17, 18] as well as in this paper. Mads$eal. [17] de-
velop a second-order model for a house, and study the timeidoperformance
of the model. However, comparison between the second-ondeel and possi-
ble higher-order models, as well as frequency domain aisalge not discussed.
Bacher et al. [18] provides a zone model selection procedhirst, a set of feasi-
ble models of different orders is chosen. A maximum liketilanethod is used
to determine the unknown parameters in each model and thiénitlod function
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value corresponding to the optimal parameters is recorddccampared among
different model structures. The selection starts from iimpkest model, and stops
when the likelihood function value does not increase sigaifily. However, the
relation between the likelihood function value and the ptsahs accuracy is not
clear. Their model selection approach is similar to ourhat they start from the
simplest model and increase complexity gradually, but iferdin model evalua-
tion.

The second contribution of the paper is that it answers théetcalibration
guestion, with a qualified “yes” to the adequacy of R-C netwuopdels for mod-
eling a room’s thermal dynamics. The R-C parameters armatsd through nu-
merical minimization of a prediction error cost, with datdlected from a room
in a building in the University of Florida campus. The corsttn of the study is
that data collected from forced response tests that enstiarcfeatures can lead
to reliable calibration that can reproduce input outputavédr reasonably well
in a wide range of scenarios. We provide guidelines on whetufes the data
should contain so that it leads to accurate parameter @gtimand what kind of
forced response tests are needed to ensure that the datesasdatures. It turns
out that data collected from building during usual operateven when the inputs
are persistently exciting, can lead to grossly “wrong” itifecation of the param-
eters. These parameters can nevertheless reproduceoumpuit- behavior under
some commonly encountered, but special, conditions intidibg. That the pa-
rameters are incorrect becomes obvious only when the medeskied to predict
outputs in scenarios that are somewhat uncommon at presengly, when each
room’s climate differs significantly from their neighbogimooms’. It should be
emphasized that such situations will arise if control alfpons are employed to
control room-level climate based on occupancy to minimizergy use [2, 19, 4].

In many existing papers about the model calibration probkmh as Madsen
et al. [17] and Bacher et al. [18], the heat gain from heatingling devices enters
the model in a linear fashion. However in this paper, we agrsthe bilinear
scenario, which is common in the U.S. as mentioned beforés rEimders many
tools for linear systems inapplicable. Agbi et al. [20] fe@n the identifiability of
the model and experiment design. They simulate a 13-zonelmoth 52 states
and 150 parameters using a number of different inputs, whadhdes step, multi-
sinusoidal, and random signals. An information metric impated to evaluate
the difficulty of parameter estimation. Their result sholwattsome parameters
are hard to identify even with inputs that are often deemad This result agrees
with the results of our study.

The third contribution is that we establish that one needsa dtatus sen-
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sor to perform model-based control. When the door is openctimvective heat
transfer through the open area has a significant effect orothra’s thermal dy-

namics. If one calibrates the room model with door-closetd,dne prediction

for the door-open case is poor. We show that the effect of gemaoor can be
adequately modeled as an additional resistor between tivealgaand the room.

Once the door status is known, the control algorithm cancéviaetween the door-
closed model and the door-open model, which ensures godatpom at all times.

Without a sensor to measure door open/close status, apmticd MPC to indoor

climate control is not likely to be feasible.

A preliminary version of this work was presented in [21]. Tioeus of this
manuscript is on model structures with different boundars® that different ef-
fects from different surrounding room temperatures candmuwed; while the
models analyzed in [21] were not able to achieve this task.mbdel calibration
problem is also more challenging since many more paramatersnvolved in
differential boundary models. Only three data sets werd tecalibration and
validation in [21] and they are inadequate to identify theapaeters in the differ-
ential boundary models. In this manuscript we use two amlthti data sets to test
prediction accuracy of various model structures. The caiibn algorithm pre-
sented in [21] was based on direct search, while the onemtezshere is based on
a quasi-Newton search method, and involves additionass@pmpared to [21],
this manuscript involves more experiments and detailetbegtions.

The rest of the paper is organized as follows: Section 2dfuices the structure
of both high- and low-order models and presents a companmsodel calibration
is discussed in Section 3, where identifiability, cost fimrctformulation, and
calibration method and results are presented; Section wsshiwe effect of an
open door on the thermal dynamics of the room and providesyatavanodel
the effect; finally, Section 5 concludes our work and diseass/enues for future
work.

2. Modéd structure (Q1)

In this section, we will describe the structure of severatigis of a room in
the class#Rrc(n,q, p), enumerating their states, inputs, and parameters.

Consider a typical room in a multi-room building with VAV ggsn, shown in
Figure 1. It is separated from the ambient environment tincan external wall
and a window, and from five internal spaces (the room abowerdbm below,
one room on each side, and a hallway) through internal wallisaadoor to the
hallway. The external wall and internal wall are two typesvafls due to different
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construction. The major heat transfer mechanisms inclueléailowing: (1) heat
exchange through external and internal walls, windowd, @ ceiling; (2) heat
convection with outside air due to the air supplied to andaetéd from the room
by the HVAC system; (3) solar radiation through the windo®); ffeat gain from
occupants and equipment, and (5) infiltration and exfitbrati

Room above Hallway
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Figure 1: Room configuration studied.

This room configuration is quite common in commercial buiggi. A model
for such a room also encompasses the model for a room thahdbsbkare a wall
with the outside, or does not have an window. The only otherrmon case that
is not captured by the chosen room configuration is when tbenris located on
the ground floor so that the temperature on the other sideedfdbr is the ground
temperature.

The following assumptions are made throughout the papest, Ehe air in-
side the room is well mixed, so that we have one uniform teatpee in the room.
Second, no exfiltration occurs. Exfiltration affects therggeonsumption but not
the temperature dynamics; it hardly matters if the air legthe room is leaving
through a return air grille or through cracks in an windowir@hinfiltration does
not occur if the door is closed. Most commercial buildings araintained at
positive pressure to preclude the possibility of infilloatifrom the outside envi-
ronment through cracks, so assuming infiltration does naiiis reasonable.

A high-order full-scale model and a second-order model bélldescribed.
In Section 2.1 and 2.2, we focus on the door-closed case,ewthere is only
surface between the room and the hallway. When the door s, ¢tipere may be



significant heat transfer between the room and the hallwatyd#n’t be captured
by a R-C network model of the wall separating them. Model &f general case
is discussed in Section 2.3. Also, our main interest is offédintial boundary”
model structures, in which each adjacent room temperatueedistinct input,
so that the different effects of different surrounding rotemperatures can be
captured. However, a lumped-boundary model will also beflyrintroduced and
be used as an intermediate step in model calibration ($e2th2). In the sequel,
we denote the parameters in the modeBbashe state vector as and the input
vector asu. We now describe the various models.

2.1. Full-scale model

The full-scale model of room thermal dynamics is constridtg combining
R-C models for individual surfaces, a room capacitance, leeat gains. Heat
transfer through each surface, except for a window, is neatas 3R-2C, which
is inspired by the results in [14]. Since windows have very hkeat capacitance,
a window is modeled as a single resistor. Each surface elestren connected
to the room “node” to form a R-C network model. An additionapacitor is
included to model the heat stored by the air and other objestsom. The heat
gains include enthalpy change due to supply and exhausnhdiirgernal heat
gains. The structure of the full-scale model is shown in Fegu Since each wall

Figure 2: Full-scale model structure for the door-closeskca

is a 3R-2C component, there are two states for each wall.tiegeith the room
temperaturd , we have a 13-state vector:

T
X= [T7 Tf,in7 Tf,OUt7 Tc7in,Tc,out7 < ] )
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whereT, jn are the temperatures of the inside nodes of surfa@nd T, oy are
the temperatures of the outside nodes of of surfadef the two wall nodes, the
inside node refers to the node that is closer to the room,exhi outside node
refers to the one that is closer to the surrounding spaceinplgs that affect the
room temperature are ambient (outside the building) teatpe, temperatures
of the surrounding rooms and hallway, heat gain inside tloentcand enthalpy
exchange due to ventilation. We define the input vector to be

u= [Ta7 Tf 9 T07 Tm7 Tl’h Th7 T57 m7 Q]Tv

whereT, is the temperature of the ambiefit, is the temperature of the space
below the floor,T; is the temperature of the space above the ceiliggand T,
are the temperature of two adjacent rooms to the Jidis, the temperature of the
hallway,Q is the heat gain from occupants, appliances et@andTs are the flow
rate and temperature of supply air, respectively. Fort@sisand capacitors, we
introduce the notatioR. . andC, .. The first subscript indicates which surface it
belongs to. The second subscript indicates the positioheofdsistor/capacitor.
We usein for the ones next to the room nodweid for the ones in the middle, and
out for the ones next to the outside of the surface. For exaniplg, means the
inside resistor of the floor. With this notation, the dynasméT is:

. 1 1 1 1 1 1 1 Ta Tain
CGT=(—5—— - - T+os—+5—+
T = Run Rain Rfin Rein Rain Rmin thm>' Ruwin | Rain

Tf in Tc in Tn in Tmin Th in
—+ =+~ +5—+5—+0ac+Q,
Rf,in RCJI‘] Rn7in Rm7in Rh7in A

(1)

whereQac is the net heat gained by the room due to the ventilation esulating
through it. This heat gain equals to the enthalpy of supplyranus the enthalpy
of exhaust air [22]:

QAC - hin - hout

=mGCy(Ts—T) + mWs(hwe+ CpwTs) — W (hwe+CpwT)] @)

whereCy, is the specific heat of ai€p, is the specific heat of water vaptiye is
the evaporation heat of water atO, andWs andW are the humidity ratios of sup-
ply air and room air. In this paper we assume Wgt) = W(t) (see Remark 1).
ThenQac can be simplified t@ac = m(Ts—T)(Cp +WCpw). In addition,C;, is



an order of magnitude larger than WeCp,, terms under normal indoor condition,
so we ignore them in the model. As a result, in the remainddrepaper we use

Qac= me(Ts —-T). 3)

The dynamics of the wall nodes of each wall have similar stma; and are ob-
tained by heat balance:

_ 1 1 T T out
CiinTejin = (— AL 7
inTijin = ( Roin R*mid) in+ Ron + R mid
CoouTrou = (— = I LT I ?
*,0Ut Tx,0ut R*7mid R*,out mout R*7mid R*70Ut

For each surface, there are three resistances and two @aEad, which results
in 30 parameters for all six surfaces. Together with the raampacitance and
window resistance, there are a total of 32 parameters in theem Thus, the
full-scale model is of the clas#/rc(13,9,32).

Remark 1. The assumption thatyf) = W(t) only holds if there is no source or
sink for water vapor in the room. We ensure this is the casendunodel cali-
bration by only collecting data during unoccupied times @amsuring there are
no plants or other sources of water vapor. Under such cirdamse, the unknown
humidity inputs to the model vanish, making parameter egton easier. Once
parameters are calibrated, they can be used for predictidth @&l inputs pre-
sented. This method introduce no loss of generality sinmetédo not change the
value of parameters. O

2.2. Second-order models

We now consider low-order models that still employs the Re@uork analogy
of heat transfer as the full-scale model described aboveyibl fewer states and
parameters. The response of the room temperdttioechanges in mass flow rate
and temperature of the supply air is usually faster tharegponse to changes in
the surrounding temperatures. To reproduce this two tirakesof the process, at
least two capacitors are required, which results in a secoder model.

2.2.1. Second-order differential boundary model
To make the model composible, we still assign each surfadéaaht resistor.
One capacitor (room capacitanCg is used for the thermal mass of the air and
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Figure 3: Second-order differential boundary model strrect

other objects in the room, and the other (wall capacitadgeis used for the
heat capacity of all the walls combined. A different resistis assigned to each
surface. The model structure is shown in Figure 3.
The dynamics of this model are:
ct=Ta T T ot
Ruwin Rw (5)
T—]N+Tv¥m Te—Tw Tm—Tw Th—Tw Th—Tw

Rw Ry Re Rm Rn Rn
whereR, is assumed to equal to the effective resistance of all tHases resis-
tance connected in parallel, |%1 = le + % + % + % + %. In this model, we

have 2 states = [T, T,,|T, the same 9 inputs as in the first-order model, and 1 new
parameteC,. Thus, it is of the class#(2,9,8).

Cw-l;w =

2.2.2. Second-order lumped boundary model

In this model, all surrounding spaces are combined into ategrated wall
and a 2R-1C element is used to model that wall, which leadsdctructure in
Figure 4. Since the effect of different surrounding spacesat distinguished in
this model, we cannot easily combine individual room motieferm a model of
the building. Though not composable, this lumped boundasgehwill help in
the model calibration of the differential boundary modehjeh will be described
in Section 3.3.
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Figure 4: Second-order lumped boundary model structure.

The dynamics of this model are:
Ta—T Tyu—T

CT =

r R + R, +Qac+Q ©
. T-Tw To—Tw

T =
Cw Rn | Row

whereT,, is the temperature of the wall node. This model has 2 state§’, TW]T,
5 inputsu = [Ta, To, Ts,m,Q]", and 5 parameter = [C;,Cy, Ruin, Rin, Rout] " -
Thus, itis of class# (2,5,5).

2.3. General model for both door-open and door-closed cases

When the door is kept open, a large open area is created gtinkhich large
heat exchange between the hallway and the room may occurs®&\a resistor to
capture this phenomenon. The addition heat transfer term is

1
Oh=—(Th—T 7

Rod( ) (7)

whereRyq is the effective resistance of open door. The new room thieadtgmeam-
ics with an open door are given by:

. Ta—T Ty—T
CGT=—2—+—"-—+Qac+Q+Qn
Ruwin Rw (8)

Rw Ry Re Rm Ry Ry

A general model can be obtained by augmenting the door-alos®lel with
the new door-open resistor and a switch, which can be usqaddiction in both
door-open and door-closed scenarios. To illustrate the, ite new model struc-
ture of the second-order differential boundary model isnshan Figure 5. All

CwTw
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Figure 5: Second-order differential boundary model witwéch and an additional resistor be-
tween the hallway and the room to model the effect of open.door

the model structures discussed before can be augmentedesittior and door
switch in the same manner to obtain general model. When titelsig closed,
the resistor is connected, which models the door-open soemdhen the switch
is open, the model changes back to the original door-cloasel Although simple
in structure, it turns out that this model is sufficient to\pde good prediction;
more detail is provided in Section 4.

Remark 2. Note also that, in all the models mentioned above, thetérm is the
only nonlinear term in the models. When the supply air flow,rat, is constant,
the Quc term becomes linear in the state T and inpuytThe system then becomes
LTI

X=Fx+Gu, T =HX, (9)

where the state x and input u varies depending on which ohtlee imodels is un-
der consideration. The output is the room temperature Tesiinzan be measured,
but the output matrix H depends on the choice of model. Thexfadepends

on the parameter m. The number of inputs is reduced by onabdr @ass, since
m has been moved from being an input to a known constant p&ame

2.4. Frequency domain comparison

In this section, we will compare two models: full-scale mlog#rc(13,9,32)
and second-order differential boundary modékc(2,9,8). We do not deal with
calibration in this section. Instead, we first fix the paraengbf a full-scale model.
Then we construct low order models from this full-scale mMddeough anad-

hoc model reductiomprocedure, whereupon these models are compared among
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themselves. The motivation for doing so is the followinga rhodel obtained from
an ad-hoc procedure can reproduce full-scale model behavimodel of same
structure but with parameters calibrated from a more metlogical approach
will do better.

The parameters in the low-order models are obtained frorsetivo the full-
scale model as follows. First, the room capacitance anddhistance of the
windows remain the same as in the full-scale model. Sectedntegrated wall
capacitance is calculated by aggregating each surface@paomponent, i.e.,
the total capacitance is the sum of capacitances of eachcsurfThird, since
low-order models retain the differential boundary stroefthe resistance of each
surface is also kept at the same value as in the full-scalemod

To determine the parameters of the full-scale model as wedlbtain input
signals, a typical office in the second floor of a UniversityFddrida building
(Pugh Hall) is used as a prototype. This room, referred tdhasarget roomin
the sequel, is of the configuration shown in Figure 1. It hasreedsion of 15t x
15ft x 9.25ft, and its climate is controlled by a dedicated VAV terminakxb®o
determine resistance and capacitance values, we refertiiRAE handbook [7]
and available construction information.

By examining data from Pugh hall for several months, we firad the supply
air temperature has the fastest change rate among all igmatls. It can change
from its minimum value to maximum value in 5 minutes. Assugnthat the
largest period we consider is 5 hours, we choose the fregueiaterest to be
shaus (= 107%rad/s) to s+ (=~ 10~2rad/s). The discrepancy between models
was found to increase with increasing value of supply air ftate. The flow
rate is therefore set tm = 0.1(Kg/s), which is the maximum value for the target
room.

First, we consider the magnitude frequency response. Arabtite inputs;Ts
is seen to have the largest gain, and its magnitude frequesppnse are shown
in Figure 6 left. Outside temperatuifg has smaller gain to the output compared
to the other inputs, which is consistent with the fact thahoeercial buildings are
usually well-insulated. Gain for surrounding temperasure between the gain
for T, andTs, which is determined by the thermal properties of the sedads
shown Figure 6 left, for the range of frequencies deemedtefest, the second
order model is almost as accurate as the 13-th order model.

The prediction in response to an input depends not only otrémsfer func-
tion but also on the magnitude of the input. The variatiofigmand surrounding
space temperatures can be significantly different from e#toér. The error in the
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Figure 6: Frequency domain comparison for the input supiplieenperaturdls. Left: gain com-
parison; right: prediction difference.

prediction of T may be different due to the difference in magnitudes of tipeis
even though their transfer functions might have the sane Jdierefore we next
examine therediction difference with respect to i-th inputhich is defined as:

&(w) = ||[H"" (jw)| - [H*Y(jw)|| Ui, (10)

whereH,"'(-) andH!®¥(.) correspond to the transfer function of full-scale and
low-order models from thé-th input to output, andu; is the maximum varia-
tion in thei-th input. By examining the data from Pugh Hall, we obsenat th
the largest variations in supply air temperature and suadimg room tempera-
tures are 49 and 10F. However, if more intelligent control strategy is applied
controller may let the room temperatures vary more to saeeggi?, 19, 23, 4].

In that case the temperature difference between adjacemsraay grow bigger.
Thus we useu, = 20°F for the surrounding temperature inputs. The ambient
temperature is assumed to have a maximum variation @ 80the frequency of
interest.

It turns out that the input with most significant predictiaffetence is stillTs.
The differenceg as a function of frequency for this input is shown in Figure 6
right. We see from the figure that for the second order modhel,haximum
difference is less than.2°F. These conclusions provide us initial confidence in
the second-order differential boundary model.

3. Modd calibration (Q2)

Since the second-order differential boundary model hatefaer parameters
than the full-scale model (8 vs. 32) and the predictive pavfene two models is
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quite similar, as seen in the previous section, we limit dterdion to the second
order modelZrc(2,9,8) for the purpose of identification.

3.1. Identifiability

First we address the question of local identifiability of seeond-order model
Mrc(2,9,8) in the sense defined in [24] for LTI systems. We consider a con-
stant supply air flow rate, which ensures the model is LTI @emark 2). Since
varying flow rate provides more information, if the modelhwitonstant flow rate
is identifiable, the model with varying flow rate is likely t@ Iso as well. With
constant supply air flow rate, the discrete version of sygt®man be written as:

x(k+1) = F(8)x(k) + G(8)u(k)
y(k) =H(8)x(k)

Local identifiability is defined as follows: a model is logaidientifiable atfy, if in

the neighborhood dfly there does not exist two distinct parameters which produce
the same input-output behavior. By Proposition 2 in [24],cae determine the
identifiability of the model by computing the rank of the inwation matrix. The
precise statement is as follows: consider the matrix

(11)

S<9) = [M<17 9)7M<27 9)7 7M(r79)]
whereM(j, 0) is thejth Markov parameter of the system (11) organized row-wise:
M(Jve) = [M1(179>7M2(176)7 7MD(J79>]

whereMp(j, 0) is thent” row of the corresponding Markov parameter. The model
is locally identifiable aB if for large enougtr, rank(%(ge)) equals to the number

of parameters afp. The minimum number of Markov parameters required

is given by the sum of the observability index and contraligbindex of the
system (11). We le6, take the value discussed in Section 2.4. It turns out that

r = 3 suffices and the model is locally identifiableGat

3.2. Cost function formulation

Identification will be performed by minimizing a cost furati that captures
how well a model (with a given set parameters) predicts nredsautputs. To
solve the minimization problem applying available numalrigptimization tools,
we need a discrete time representation of the dynamics.yfupforward Euler
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approximation to the continuous-time model (5) and (6), diseretized system
model is given by:

X1 = X+ ts(AX+ B+ fi) (12)

Tk = C>q<
wherets is the sampling timex, Uk is the state and input at= kts, fy := f(kts),
andTy is room temperature predicted from the model. For a givenahstducture
with fixed parameters, we define theediction error cost Js:

Z (T —Tio)? (13)

whereT," is the measured room temperature at thn§ is the room temperature
at timek predicted by the model with a given set of parameter valua$ras a
user-specified time interval. The optimal parameters ayeetlthat minimize the
prediction error cosi:

6* = argminJ (14)

OcRPt

Solution of the minimization problem yields an estimatehsf parameters. In this
paper we solve the optimization problem (14) numericalipgighe quasi-Newton
BFGS (Broyden - Fletcher - Goldfarb - Shanno) method [25].

3.3. Calibration of second-order differential boundary ced

3.3.1. Method
The calibration is carried out in two steps:

1. ldentify the room capacitance and window resista@z@(dRyin) by cali-
brating the second-order lumped boundary model describ8ddtion 2.2.2
by prediction error cost minimization.

2. ldentify other 6 parameters in the second-order diffeméboundary model
with C; andRy;n values obtained from step 1.

There are two advantages of starting from the lumped boyndadel instead
of directly calibrating the differential boundary modelirgt, the room capaci-
tance and window resistance remain the same no matter tteieding surfaces
are combined to one or kept separate. Thus, we can reducerttizen of param-
eters to be estimated in the differential boundary modeldiggithe estimates of
those two parameters obtained from calibrating the lumpech8&ary model. This
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Data setg Date of collection

Description

A 08/02/2011

Normal building operation during summer time.

B 12/05/2011

Normal building operation during winter time.

C 10/24/2011

Forced response test. First the target room was
heated up and surrounding rooms are cooled
down to generate a temperature difference; then
the air supply to the target room is shut down.

D 12/01/2012

Forced response test. The temperature in the
surrounding rooms were made to be different
from each other.

E 12/03/2012

Forced response test. Besides the features in
data set D, the average surrounding room tem-
peratures were made to be different from the tar-

get room temperature.

Table 1: Description of experimental data sets (obtaingd door closed).

will reduce the dimension of the optimization problem, whiowers the number
of possible local minima, as well as computation time. Sdceve have fewer
parameters to determine in the lumped boundary model, socibmvenient for
preliminary investigation.

3.3.2. Data description

For model calibration and validation we collected field datan the target
room. All data are collected from 6pm in the evening to 6ant nexrning, when
the room is unoccupied to eliminate the effect of occupamcytaumidity dynam-
ics; see Remark 1. The data sets are described in Table 1 o0®hetemperature
and a few of the inputs for these data sets are shown in Figure 7

Richness of the inputs are important for model calibratfersistency of exci-
tation is a concept that is usually used to describe the estiof input. From [12],
an input vectok(t) € RY, g > 1, is calledexcitingover the time intervako, to+ o],
to, 0 > 0, if there existax > 0 such that

to+0
/ X(T)x(1)Tdr > al.
to

Among the 5 data sets we collected, inputs in set A, D, and Exaiing How-
ever, we'll see in the next section that it is not enough tcehaxciting inputs to
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Figure 7: Room temperatuiieand surrounding spacég, andT, for the 5 data sets. Other inputs
including supply air flow rate and other surrounding spacepgratures are not shown to avoid
clutter.

obtain reliable parameter estimates.

3.3.3. Results

In the initial investigation, data sets A, B, and C are useddlibrate the
second-order lumped model. We found that the model withmaters calibrated
with data set A predicts the room temperature well for bottadt A and B,
though set Ais collected in summer and set B in winter. Howet/ails to predict
data set C accurately; see Figure 8. The reason for thedailas found to be the
input data; see Figure 7. In the calibration data (data seth®&)temperatures of
the surrounding spaces are almost the same as that of teéraogn. So the best
fit resistance values are small: the resulting room tempegassentially follows
the temperature of the surroundings, leading to small ptiedi error. In data set
B, though the room temperature profile is quite differentrfrthat in set A, the
surrounding room temperatures are still close to the taggenh’s temperature, so
the model with small resistances predicts measurementsagaih. However, in
data set C, the surrounding space temperatures are sigtlifidéferent from the
room temperature, so the model fails to predict measuresmeell. Only data
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set C, obtained from a forced response test, reveals thabthated parameter
values are incorrect.

(i) —— Measured
= = =Predicted

7213 vantb e,

707 Calibration
Data set A

6pm 9pm 12am 3am 6am

8
Validation (i)

7
76 Data set B
74

6pm 9pm 12am 3am 6am

Validation ==, . Ve
sl Da@setc ~ TTTTTTRTTTTTRTCN
6pm 9pm 12am 3am 6am

Figure 8: Calibration and (in)validation when data set Asedi for calibration; good prediction
for data set A and B, poor prediction for data set C.

The best fit parameters for the second-order differentiahdary model when
data sets C, D, and E are used for calibration, respectiaedyshown in Table 2.
Also shown in the table for reference are the ASHRAE valuegtie param-
eters, which are calculated by the ad-hoc model reductiaimadedescribed in
Section 2.4. Validation simulations are performed withbatlata sets; results are
shown in Figure 9. We found that though the parameter valakigrated from
data set C are close to ASHRAE values, they leads to poorgti@aliin some
scenarios; see Figure 9 (v). The reason is that in data setr@usding spaces
have similar temperatures. A model calibrated to C is nat sdboHifferentiate the
effects of the surrounding spaces. The inaccuracy in theehtmtomes evident
when it is asked to provide prediction in scenarios wheréviddal surrounding
spaces have different temperatures, as in data set E. Dafx dees not suf-
fer from this problem since each surrounding space has erdift temperature.
However, when it is used in calibration, two of the wall rémces Ry andR,,
turn out to be an order of magnitude lower than their ASHRAK®s. The pre-
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diction is also poor, as can be seen in Figure 9 (iii, v). Waelelthe reason for
this failure is that even though the surrounding spaces tiffezent temperatures,
their average resembles the target room’s temperature.résstances cause the
room temperature to follow the average surrounding tentpexawhich leads to
a small prediction error. As a result, prediction error miization leads to a small
resistance. This is similar to the problem encountered datia set A.

Data set E was created to avoid all of these issues: all suiling space tem-
peratures are commanded to be lower or higher than the taxgats temperature
while ensuring that their mean is not equal to the room’s &nauire; see Figure 7.
We see from Figure 9 that the model calibrated with data seeHigts all four
data sets (A,B,C,D) well. Also, Table 2 shows that the patarseobtained from
data set E are the closest to the ASHRAE values. We can nowm ¢hat the
model calibrated with data set E idaw-order differential boundary model with
reasonable accuracy

—— Mearsured - - -Params from C - - - Params from D ‘- - Params from E
78
@ 76
o
g4
(V] - bl
F 72 v AR AN
68 Data set A 20 DatasetB * “\,\'\’\’ "\r\,‘/
6pm 9pm  12am  3am 6am 6pm 9pm  12am  3am 6am
76 ( )
v
€ 74WWWW
572 vV —’:\:‘:;‘4:':}%’/‘“\\/ N <7
(] ~
_— =70
65t Data set C - Data set D
68
6pm 9pm  12am  3am 6am 8pm 10pm 12am 2am 4am 6am

/
0 T Data set E
8pm 10pm 12am 2am 4am 6am

Figure 9: Validation of model calibrated from data set E analidation of model calibrated from
data set C and D.

21



Parameter | Data set C| Data set D| Data set Ef ASHRAE value
Cw(J/K) 16x10° | 1.6x10" | 1.1x 1P | 22x1P-23x 1P

R¢ (K /W) 0.39 0.0012 0.78 -
Ro(K /W) 0.11 0.42 0.13 -

Rn(K /W) 0.2 0.79 0.02 0.021—0.145
Ra(K /W) 0.025 | 0.0042 0.02 0.021—0.145

Rn(K /W) 0.028 0.015 0.0069 -
Cr(J/K) 52x10° | 1.6x 1P | 81x10° -
Rwin(K/W) | 0.059 0.03 0.14 0.05-0.15

Table 2: Best fit parameters for the second-order diffeaétibundary model calibrated with
different data sets.

4. Effect of open door and its modeling

The first question regarding the open door is whether opethiegioor can
cause significant changes to the room’s temperature thdytremic model needs
to take the door into account. We first show that this is indbéedcase, by per-
forming another forced response experiment in the targatron Apr. 20th,
2012. During the test, a temperature difference betweerotira and the hallway
is created by commanding the supply air temperature and #tsvin the target
room while leaving the corresponding commands for the teglluntouched. The
door is kept closed for some time until the temperaturesesktiown; then it was
opened. To see how well our door-closed model (calibrated data set E) pre-
dicts the room temperature in the door open case, the modesivaulated with
the inputs measured during the experiment. The simulagisultis shown in Fig-
ure 10. It is clear from the figure that, while the predictemhperature matches
the measured temperature well before the door was opentedwafds it is no
longer the case: the predicted temperature decreasestivbiteeasured temper-
ature increases. This divergence indicates that the effeapening the door is
significant enough that a model calibrated with “door clds#ata is ineffective
for predicting “door open” scenarios.

Recall the model structure discussed in Section 2.3. Aniestiwe search is
used to obtain the best-fit valuelfy while all other parameters are fixed at values
obtained from calibration discussed in Section 3.3.3. &liepnly one resistance
to determine and we know that it should not be larger thanatesolid surface of
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Figure 10: Prediction of door-open data with door-closedieloVertical line indicates the time
door was opened.

the same size, so exhaustive search is both feasible andrdent. The estimated
Rog turns out to be @043 K /W).

To check the door-open model so obtained, we perform a \adidaoor-
open experiment in the target room on May 3rd, 2012, in whighdoor was
kept closed first for some time and then opened, but the teahpes of the target
room and the hallway were different from those in the presidoor-open test
(the one used for calibration ¢&,q). The following simulation is performed to
compare our model prediction with experimental data: theratosed model is
used for simulation until the door was open; after that wa@wio the door-open
model. The result is shown in Figure 11. As shown in the figwe see that the
calibrated door-closed and door-open models are able tiigpreom temperature
in an independent test when the room transitions from dasecl to door open. It
should be noted that even with the calibrated door-closed@pen models, real
time prediction of the room’s temperature will require kegdge of whether the
door is open or closed in any given instant.

5. Summary and future work

We examined two questions regarding models of single rocarciommercial
building that can be used for predictive control: requireadel complexity and
parameter identification. We examined models of varying mexity within the
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Figure 11: Measured room temperature and temperaturecpeddiom door-open model in vali-
dation experiment.

popular class of non-linear R-C network models. We concthdea second-order
model can closely approximate the input-output behaviaheffull-scale, 13th

order model. Thus, the need for complex models with highesdahension and
large number of resistance/capacitance parameters astianable for control

purposes.

The work reported here on parameter identification of lodeomodels from
experimental data has revealed that calibrating the paessef the R-C network
model to normal operation data from a building is likely tadeto grossly in-
accurate parameter estimates. A single plot of predictemsus measured data,
as often shown in many papers, is virtually meaningless. nsorrect set of pa-
rameters may predict certain data sets quite well. Ourtegigntified features
that the data should have to enable “correct” identificatibhese features seem
to be possible to ensure only through forced response t&stalgorithm is pre-
sented that is able to identify parameter values that leadétiable model when
such data is used for calibration. By reliable we mean thiatable to reproduce
the observed output (room temperature) in a wide range wditsiins that involve
large variations between the output and measurable destads. Interestingly,
this reliability is seen to come at the cost of accuracy - tieeligtion error of the
temperature is larger for the more reliable model. It rathesquestion: what is
the fundamental limit on the accuracy of a non-linear R-Gvoet model? This
is still an open question.

Since specially designed forced response tests are rdduoirealibrating the
model of a room, calibrating multiple zones simultaneogsiyld reduce the num-
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ber of experiments required. An interesting direction atife work is to design
such tests so that the desired data features are guaraatessth zone.

Our results also reveal that an open door has such a signiéffant on room
thermal dynamics that one needs to use distinct model ategfor the two sit-
uations: door-open and door-closed. This has implicatonthe cost of appli-
cation of model predictive control in practice, since a semns measure the door
open/close state will be required to obtain model predigtiand therefore by
such a controller.

This work presents model calibration of a room whose all@urding tem-
peratures can be measured—this is important for simulasorce these temper-
atures appear as inputs to the model. The target room wagrthode in the
second floor of a three-story building to satisfy these nesguents. In case of a
room in the first floor that is in contact with the building falation, especially if
there is significant ground coupling, the situation is maveplicated. It is not
clear how to obtain the “ground temperature” measuremeupsired for predic-
tion and identification.
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