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Abstract

Model-based control for improving energy efficiency of buildings has been a pop-
ular topic of late. Smart control requires a predictive model of the building’s ther-
mal dynamics. Due to the complexity of the underlying physical processes, usu-
ally system identification techniques are used to identify parameters of a physics-
based grey-box model. We investigate questions of requiredmodel structure and
identification techniques for parameter estimation of a single zone model through
a combination of analysis and experiments. Our results indicate that a second-
order model can reproduce the input-output behavior of a full-scale model with
13 states. We also show that data collected during usual operation leads to poor
parameter estimates that may nevertheless appear to predict the temperature well.
The error becomes apparent when there is sufficient difference among various
inputs and the output. We propose an algorithm to overcome these issues that
involve specific forced-response tests. The results of thisinvestigation are ex-
pected to provide guidelines on do’s and don’t’s in modelingand identification of
buildings for control.

1. Introduction

Model-based control of HVAC (Heating, Ventilation, and AirConditioning)
systems has generated excitement in the community of control researchers in re-
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cent years. This problem is of great societal importance since buildings account
for 34% of total energy use in the United States and HVAC account for roughly
half of that [1]. If novel control techniques can increase the efficiency of HVAC
systems, it will lead to substantial savings in total energyuse. A popular candi-
date for control of building HVAC systems is MPC (Model Predictive Control);
a number of recent papers have been published on this topic; see [2, 3, 4] and
references therein.

Demand for heating, cooling and ventilation air varies fromroom to room,
and the control algorithms need to be targeted to each room based on its state.
MPC requires a model that can be used to predict the evolutionof temperature
and humidity (and possibly other environmental variables such asCO2 concentra-
tion) of a room given the inputs, which include mass flow rate and temperature
of the supply air, temperatures of the surroundings, and heat gains. The under-
lying processes that govern the dynamics of temperature evolution are complex
and uncertain, so simplified lumped parameter models need tobe used. A ques-
tion that is relevant to control designers is, given a prescribed degree of accuracy,
how to choose model structure and identify its parameters that achieve that degree
of accuracy? This paper attempts to answer this question. Welimit ourselves to
modeling a single room in a building with possibly many rooms.

The lumped parameter models that researchers typically useto model temper-
ature dynamics of a room—and sometimes of an entire building—is a combina-
tion of R-C network (resistor-capacitor) models that capture heat transfer through
solid surfaces. The model has a non-linear term that captures the effect of en-
thalpy exchange with the outside due to the supply and exhaust air. We restrict
ourselves to this class ofnon-linear R-C network models, which is denoted by
MRC(n,q, p), wheren refers to state dimension,q to the number of inputs, andp
to the number of uncertain parameters. Two questions are relevant. Q1 (Minimal
model complexity question): What is the minimum model complexity (measured
by n,q, p) that is required to predict the temperature dynamics of a single room
with an acceptable degree of accuracy? In this paper, we take“acceptable degree
of accuracy” to mean a peak error in temperature prediction of less than 3◦F. The
reason is that the temperature distribution inside a room may have spatial varia-
tion of higher than 3◦F. ASHRAE (American Society of Heating, Refrigeration
and Air-conditioning Engineers) standard 55 [5] mandates that vertical tempera-
ture stratification in an occupied zone should be less than 5.4◦F, meaning that this
degree of spatial variation is expected. Q2 (Model calibration question): How to
identify the values of the uncertain parameters (typically, resistances and capac-
itances) from measured data, and what kind of data are required, to achieve this
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level of accuracy?
It should be noted that there is a long history of using R-C networks for mod-

eling building thermal dynamics; see the review article [6]. Historically, they first
arise in deriving lumped models of heat transfer through solid surfaces by dis-
cretizing the heat equation. However, whether they are fundamentally capable of
reproducing observed data with a prescribed degree of accuracy for a room or a
building has not been examined. It has been merely accepted that they are. In
fact, ASHRAE (American Society of Heating, Refrigeration and Air conditioning
Engineers) handbook [7] describes how to determine the R-C values for a solid
surface given its material and construction type. This information is now available
in software such as HAP [8]. The resistances and capacitances of a R-C network
model are carefully chosen to model the combined effect of conduction between
the air masses separated by the surface, as well as long wave radiation and con-
vection between the surface and the air mass in contact with it [9, 10]. We refer to
parameter values so obtained as “ASHRAE values”. However, there is uncertainty
in ASHRAE values. First, the room capacitance is unknown since air as well as
furniture and other objects in the room all contribute to it.Second, information
on wall and window construction and material is not always easy to obtain for
existing buildings due to poor record keeping. Third, due tocracks in windows,
walls, and air gaps around closed doors, the effective resistance of an window or
a wall is likely to be lower than what is inferred from construction data. Finally,
if a window or a door is open, the effective resistance could be far lower than the
resistance estimated for a closed window or door. Therefore, even if R-C network
models are adequate, there is a need toidentify/estimateR-C parameters from
measured data; in other words, tocalibratethe model.

The model calibration problem is not trivial, mostly because of the need to
estimate values of R-C parameters as opposed to obtaining a system realization to
mimic observed input-output behavior. There are several reasons for estimating
these parameters. First, R-C values have intuitive, physical meaning. Second, one
can check if the identified parameters values are reasonable—and therefore if the
model is—by comparing against ASHRAE values. This providesa sanity check
and can help unearth potentially grossly inaccurate systemidentification. We will
see an example of this in Section 3.3. Third, a trend in identified parameter values
over time, when identification is carried out repeatedly, can reveal wear and tear
of the building fabric or damage in wall insulation. Fourth,since R-C modeling
paradigm is prevalent in the HVAC community, it is useful simply as a common
language.

Even though powerful state-space identification methods such as the subspace
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method [11] can be used to identify the system matrices in an arbitrary state space,
they are not useful for estimating R-C parameters. Parameter estimation tech-
niques for transfer functions, such as least-squares ARMA model identification
methods [11] and adaptive identification methods [12], are also inadequate. These
methods can estimate coefficients in the polynomials that describe the transfer
functions. However, obtaining R-C parameters from identified transfer function
polynomial coefficients is quite challenging due to the complex relationship be-
tween the two. Moreover, the majority of commercial buildings in the U.S. use
forced ventilation, in which case the common control signals at a zone are supply
air temperature and flow rate. This introduce bilinearity into the model. Although
there exists methods to estimate bilinear models (such as [13]), these methods es-
timate a realization in some arbitrary state space basis andnot parameters in the
model.

The paper makes three contributions on the model calibration question that
are relevant to model based control of indoor climate of a room. First, we answer
the minimal model complexity question by a comparison of response between a
R-C network model of high state dimension and low-order models of same class.
When the mass flow rate of supply air is held constant, the model is LTI. Fre-
quency domain comparisons show that a second-order model with 8 parameters
is capable of reproducing the input-output behavior of the full-scale model of the
room (with 13 states and 32 parameters) with a high degree of accuracy. The con-
clusion is that a large number of R-C parameters is not required; a model with
two capacitor suffices. This answers the question how many R and C parameters
are needed if we accept R-C network models as adequate representation of real-
ity. Existing work on the minimal model complexity questionusually starts from
modeling the heat transfer through a single surface. Modelsof multiple surfaces
that make up the room are then combined to construct the modelof the room.
See for example, Mathews et al. [9], Gouda et al. [14, 15], Fraisse et al. [10], and
Braun et al. [16]. One drawback of this approach is that the order of the zone be-
comes large when individual building elements are combined. This problem can
be avoided by directly constructing a low-order model for the whole zone, which
is the idea adopted in [17, 18] as well as in this paper. Madsenet al. [17] de-
velop a second-order model for a house, and study the time domain performance
of the model. However, comparison between the second-ordermodel and possi-
ble higher-order models, as well as frequency domain analysis, are not discussed.
Bacher et al. [18] provides a zone model selection procedure. First, a set of feasi-
ble models of different orders is chosen. A maximum likelihood method is used
to determine the unknown parameters in each model and the likelihood function
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value corresponding to the optimal parameters is recorded and compared among
different model structures. The selection starts from the simplest model, and stops
when the likelihood function value does not increase significantly. However, the
relation between the likelihood function value and the predictions accuracy is not
clear. Their model selection approach is similar to ours in that they start from the
simplest model and increase complexity gradually, but we differ in model evalua-
tion.

The second contribution of the paper is that it answers the model calibration
question, with a qualified “yes” to the adequacy of R-C network models for mod-
eling a room’s thermal dynamics. The R-C parameters are estimated through nu-
merical minimization of a prediction error cost, with data collected from a room
in a building in the University of Florida campus. The conclusion of the study is
that data collected from forced response tests that ensure certain features can lead
to reliable calibration that can reproduce input output behavior reasonably well
in a wide range of scenarios. We provide guidelines on what features the data
should contain so that it leads to accurate parameter estimation, and what kind of
forced response tests are needed to ensure that the data has those features. It turns
out that data collected from building during usual operation, even when the inputs
are persistently exciting, can lead to grossly “wrong” identification of the param-
eters. These parameters can nevertheless reproduce input-output behavior under
some commonly encountered, but special, conditions in the building. That the pa-
rameters are incorrect becomes obvious only when the model is asked to predict
outputs in scenarios that are somewhat uncommon at present,namely, when each
room’s climate differs significantly from their neighboring rooms’. It should be
emphasized that such situations will arise if control algorithms are employed to
control room-level climate based on occupancy to minimize energy use [2, 19, 4].

In many existing papers about the model calibration problem, such as Madsen
et al. [17] and Bacher et al. [18], the heat gain from heating/cooling devices enters
the model in a linear fashion. However in this paper, we consider the bilinear
scenario, which is common in the U.S. as mentioned before. This renders many
tools for linear systems inapplicable. Agbi et al. [20] focus on the identifiability of
the model and experiment design. They simulate a 13-zone model with 52 states
and 150 parameters using a number of different inputs, whichincludes step, multi-
sinusoidal, and random signals. An information metric is computed to evaluate
the difficulty of parameter estimation. Their result shows that some parameters
are hard to identify even with inputs that are often deemed rich. This result agrees
with the results of our study.

The third contribution is that we establish that one needs a door status sen-
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sor to perform model-based control. When the door is open, the convective heat
transfer through the open area has a significant effect on theroom’s thermal dy-
namics. If one calibrates the room model with door-closed data, the prediction
for the door-open case is poor. We show that the effect of the open door can be
adequately modeled as an additional resistor between the hallway and the room.
Once the door status is known, the control algorithm can switch between the door-
closed model and the door-open model, which ensures good prediction at all times.
Without a sensor to measure door open/close status, application of MPC to indoor
climate control is not likely to be feasible.

A preliminary version of this work was presented in [21]. Thefocus of this
manuscript is on model structures with different boundaries, so that different ef-
fects from different surrounding room temperatures can be captured; while the
models analyzed in [21] were not able to achieve this task. The model calibration
problem is also more challenging since many more parametersare involved in
differential boundary models. Only three data sets were used for calibration and
validation in [21] and they are inadequate to identify the parameters in the differ-
ential boundary models. In this manuscript we use two additional data sets to test
prediction accuracy of various model structures. The calibration algorithm pre-
sented in [21] was based on direct search, while the one presented here is based on
a quasi-Newton search method, and involves additional steps. Compared to [21],
this manuscript involves more experiments and detailed explanations.

The rest of the paper is organized as follows: Section 2 introduces the structure
of both high- and low-order models and presents a comparison; model calibration
is discussed in Section 3, where identifiability, cost function formulation, and
calibration method and results are presented; Section 4 shows the effect of an
open door on the thermal dynamics of the room and provides a way to model
the effect; finally, Section 5 concludes our work and discusses avenues for future
work.

2. Model structure (Q1)

In this section, we will describe the structure of several models of a room in
the classMRC(n,q, p), enumerating their states, inputs, and parameters.

Consider a typical room in a multi-room building with VAV system, shown in
Figure 1. It is separated from the ambient environment through an external wall
and a window, and from five internal spaces (the room above, the room below,
one room on each side, and a hallway) through internal walls and a door to the
hallway. The external wall and internal wall are two types ofwalls due to different
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construction. The major heat transfer mechanisms include the following: (1) heat
exchange through external and internal walls, windows, roof, and ceiling; (2) heat
convection with outside air due to the air supplied to and extracted from the room
by the HVAC system; (3) solar radiation through the window; (4) heat gain from
occupants and equipment, and (5) infiltration and exfiltration.

Room above

Room below

Adjacent

Room 1

Adjacent

Room 2

Hallway

Outside

Qint

QAC

Qs

Figure 1: Room configuration studied.

This room configuration is quite common in commercial buildings. A model
for such a room also encompasses the model for a room that doesnot share a wall
with the outside, or does not have an window. The only other common case that
is not captured by the chosen room configuration is when the room is located on
the ground floor so that the temperature on the other side of the floor is the ground
temperature.

The following assumptions are made throughout the paper. First, the air in-
side the room is well mixed, so that we have one uniform temperature in the room.
Second, no exfiltration occurs. Exfiltration affects the energy consumption but not
the temperature dynamics; it hardly matters if the air leaving the room is leaving
through a return air grille or through cracks in an window. Third, infiltration does
not occur if the door is closed. Most commercial buildings are maintained at
positive pressure to preclude the possibility of infiltration from the outside envi-
ronment through cracks, so assuming infiltration does not occur is reasonable.

A high-order full-scale model and a second-order model willbe described.
In Section 2.1 and 2.2, we focus on the door-closed case, where there is only
surface between the room and the hallway. When the door is open, there may be
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significant heat transfer between the room and the hallway that can’t be captured
by a R-C network model of the wall separating them. Model of this general case
is discussed in Section 2.3. Also, our main interest is on “differential boundary”
model structures, in which each adjacent room temperature is a distinct input,
so that the different effects of different surrounding roomtemperatures can be
captured. However, a lumped-boundary model will also be briefly introduced and
be used as an intermediate step in model calibration (Section 2.2.2). In the sequel,
we denote the parameters in the model asθ , the state vector asx, and the input
vector asu. We now describe the various models.

2.1. Full-scale model

The full-scale model of room thermal dynamics is constructed by combining
R-C models for individual surfaces, a room capacitance, andheat gains. Heat
transfer through each surface, except for a window, is modeled as 3R-2C, which
is inspired by the results in [14]. Since windows have very low heat capacitance,
a window is modeled as a single resistor. Each surface element is then connected
to the room “node” to form a R-C network model. An additional capacitor is
included to model the heat stored by the air and other objectsin room. The heat
gains include enthalpy change due to supply and exhaust air and internal heat
gains. The structure of the full-scale model is shown in Figure 2. Since each wall

T
Ta

Th

Tm

Tn

Tf

Tc
CrQAC,Q

Rwin

Cf,outCf,in

Rf,in Rf,mid Rf,outTf,in Tf,out
T Tl

Figure 2: Full-scale model structure for the door-closed case.

is a 3R-2C component, there are two states for each wall. Together with the room
temperatureT, we have a 13-state vector:

x= [T,Tf ,in,Tf ,out,Tc,in,Tc,out, . . .]
T ,
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whereT∗,in are the temperatures of the inside nodes of surface∗, andT∗,out are
the temperatures of the outside nodes of of surface∗. Of the two wall nodes, the
inside node refers to the node that is closer to the room, while the outside node
refers to the one that is closer to the surrounding space. Theinputs that affect the
room temperature are ambient (outside the building) temperature, temperatures
of the surrounding rooms and hallway, heat gain inside the room, and enthalpy
exchange due to ventilation. We define the input vector to be

u= [Ta,Tf ,Tc,Tm,Tn,Th,Ts,m,Q]T ,

whereTa is the temperature of the ambient,Tf is the temperature of the space
below the floor,Tc is the temperature of the space above the ceiling,Tm andTn

are the temperature of two adjacent rooms to the side,Th is the temperature of the
hallway,Q is the heat gain from occupants, appliances etc.,m andTs are the flow
rate and temperature of supply air, respectively. For resistors and capacitors, we
introduce the notationR∗,∗ andC∗,∗. The first subscript indicates which surface it
belongs to. The second subscript indicates the position of the resistor/capacitor.
We usein for the ones next to the room node,mid for the ones in the middle, and
out for the ones next to the outside of the surface. For example,Rf ,in means the
inside resistor of the floor. With this notation, the dynamics ofT is:

Cr Ṫ =(−
1

Rwin
−

1
Ra,in

−
1

Rf ,in
−

1
Rc,in

−
1

Rn,in
−

1
Rm,in

−
1

Rh,in
)Ti +

Ta

Rwin
+

Ta,in

Ra,in
+

Tf ,in

Rf ,in
+

Tc,in

Rc,in
+

Tn,in

Rn,in
+

Tm,in

Rm,in
+

Th,in

Rh,in
+QAC+Q,

(1)

whereQAC is the net heat gained by the room due to the ventilation air circulating
through it. This heat gain equals to the enthalpy of supply air minus the enthalpy
of exhaust air [22]:

QAC = hin−hout

= mCp(Ts−T)+m[Ws(hwe+CpwTs)−W(hwe+CpwT)]
(2)

whereCp is the specific heat of air,Cpw is the specific heat of water vapor,hwe is
the evaporation heat of water at 0◦C, andWs andW are the humidity ratios of sup-
ply air and room air. In this paper we assume thatWs(t)≡W(t) (see Remark 1).
ThenQAC can be simplified toQAC = m(Ts−T)(Cp+WsCpw). In addition,Cp is
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an order of magnitude larger than theWsCpw terms under normal indoor condition,
so we ignore them in the model. As a result, in the remainder ofthe paper we use

QAC = mCp(Ts−T). (3)

The dynamics of the wall nodes of each wall have similar structure, and are ob-
tained by heat balance:

C∗,inṪ∗,in = (−
1

R∗,in
−

1
R∗,mid

)T∗,in+
T

R∗,in
+

T∗,out

R∗,mid

C∗,outṪ∗,out = (−
1

R∗,mid
−

1
R∗,out

)T∗,out+
T∗,in

R∗,mid
+

T∗
R∗,out

(4)

For each surface, there are three resistances and two capacitances, which results
in 30 parameters for all six surfaces. Together with the roomcapacitance and
window resistance, there are a total of 32 parameters in the model. Thus, the
full-scale model is of the classMRC(13,9,32).

Remark 1. The assumption that Ws(t)≡W(t) only holds if there is no source or
sink for water vapor in the room. We ensure this is the case during model cali-
bration by only collecting data during unoccupied times andensuring there are
no plants or other sources of water vapor. Under such circumstance, the unknown
humidity inputs to the model vanish, making parameter estimation easier. Once
parameters are calibrated, they can be used for prediction with all inputs pre-
sented. This method introduce no loss of generality since inputs do not change the
value of parameters. �

2.2. Second-order models

We now consider low-order models that still employs the R-C network analogy
of heat transfer as the full-scale model described above, but with fewer states and
parameters. The response of the room temperatureT to changes in mass flow rate
and temperature of the supply air is usually faster than its response to changes in
the surrounding temperatures. To reproduce this two time scales of the process, at
least two capacitors are required, which results in a second-order model.

2.2.1. Second-order differential boundary model
To make the model composible, we still assign each surface a different resistor.

One capacitor (room capacitanceCr ) is used for the thermal mass of the air and
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CwCr

Rwin RwT TwTa

Tf

Tc

Th

Rf

Rc

RhQAC,Q

Figure 3: Second-order differential boundary model structure.

other objects in the room, and the other (wall capacitanceCw) is used for the
heat capacity of all the walls combined. A different resistors is assigned to each
surface. The model structure is shown in Figure 3.

The dynamics of this model are:

Cr Ṫ =
Ta−T
Rwin

+
Tw−T

Rw
+QAC+Q

CwṪw =
T −Tw

Rw
+

Tf −Tw

Rf
+

Tc−Tw

Rc
+

Tm−Tw

Rm
+

Tn−Tw

Rn
+

Th−Tw

Rh

(5)

whereRw is assumed to equal to the effective resistance of all the surfaces resis-
tance connected in parallel, i.e.,1

Rw
= 1

Rf
+ 1

Rc
+ 1

Rm
+ 1

Rn
+ 1

Rh
. In this model, we

have 2 statesx= [T,Tw]
T , the same 9 inputs as in the first-order model, and 1 new

parameterCw. Thus, it is of the classM (2,9,8).

2.2.2. Second-order lumped boundary model
In this model, all surrounding spaces are combined into one integrated wall

and a 2R-1C element is used to model that wall, which leads to the structure in
Figure 4. Since the effect of different surrounding spaces are not distinguished in
this model, we cannot easily combine individual room modelsto form a model of
the building. Though not composable, this lumped boundary model will help in
the model calibration of the differential boundary model, which will be described
in Section 3.3.

11



CwCr

Rwin RinT TwTa To
Rout

QAC,Q

Figure 4: Second-order lumped boundary model structure.

The dynamics of this model are:

Cr Ṫ =
Ta−T
Rwin

+
Tw−T

Rin
+QAC+Q

CwṪw =
T −Tw

Rin
+

To−Tw

Rout

(6)

whereTw is the temperature of the wall node. This model has 2 statesx= [T,Tw]
T ,

5 inputs u = [Ta,To,Ts,m,Q]T , and 5 parametersθ = [Cr ,Cw,Rwin,Rin,Rout]
T .

Thus, it is of classM (2,5,5).

2.3. General model for both door-open and door-closed cases

When the door is kept open, a large open area is created, through which large
heat exchange between the hallway and the room may occur. We use a resistor to
capture this phenomenon. The addition heat transfer term is:

Qh =
1

Rod
(Th−T) (7)

whereRod is the effective resistance of open door. The new room thermal dynam-
ics with an open door are given by:

Cr Ṫ =
Ta−T
Rwin

+
Tw−T

Rw
+QAC+Q+Qh

CwṪw =
T −Tw

Rw
+

Tf −Tw

Rf
+

Tc−Tw

Rc
+

Tm−Tw

Rm
+

Tn−Tw

Rn
+

Th−Tw

Rh

(8)

A general model can be obtained by augmenting the door-closed model with
the new door-open resistor and a switch, which can be used forprediction in both
door-open and door-closed scenarios. To illustrate the idea, the new model struc-
ture of the second-order differential boundary model is shown in Figure 5. All
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CwCr

Rwin RwT TwTa

Tf

Tc

Th

Rf

Rc

RhQAC,Q

Rod

Figure 5: Second-order differential boundary model with a switch and an additional resistor be-
tween the hallway and the room to model the effect of open door.

the model structures discussed before can be augmented withresistor and door
switch in the same manner to obtain general model. When the switch is closed,
the resistor is connected, which models the door-open scenario; when the switch
is open, the model changes back to the original door-closed case. Although simple
in structure, it turns out that this model is sufficient to provide good prediction;
more detail is provided in Section 4.

Remark 2. Note also that, in all the models mentioned above, the QAC term is the
only nonlinear term in the models. When the supply air flow rate, m, is constant,
the QAC term becomes linear in the state T and input Ts. The system then becomes
LTI:

ẋ= Fx+Gu, T = Hx, (9)

where the state x and input u varies depending on which of the three models is un-
der consideration. The output is the room temperature T since it can be measured,
but the output matrix H depends on the choice of model. The matrix F depends
on the parameter m. The number of inputs is reduced by one for each class, since
m has been moved from being an input to a known constant parameter.

2.4. Frequency domain comparison

In this section, we will compare two models: full-scale model MRC(13,9,32)
and second-order differential boundary modelMRC(2,9,8). We do not deal with
calibration in this section. Instead, we first fix the parameters of a full-scale model.
Then we construct low order models from this full-scale model through anad-
hoc model reductionprocedure, whereupon these models are compared among
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themselves. The motivation for doing so is the following: ifa model obtained from
an ad-hoc procedure can reproduce full-scale model behavior, a model of same
structure but with parameters calibrated from a more methodological approach
will do better.

The parameters in the low-order models are obtained from those in the full-
scale model as follows. First, the room capacitance and the resistance of the
windows remain the same as in the full-scale model. Second, the integrated wall
capacitance is calculated by aggregating each surface as parallel component, i.e.,
the total capacitance is the sum of capacitances of each surface. Third, since
low-order models retain the differential boundary structure, the resistance of each
surface is also kept at the same value as in the full-scale model.

To determine the parameters of the full-scale model as well to obtain input
signals, a typical office in the second floor of a University ofFlorida building
(Pugh Hall) is used as a prototype. This room, referred to as the target roomin
the sequel, is of the configuration shown in Figure 1. It has a dimension of 15f t×
15f t ×9.25f t, and its climate is controlled by a dedicated VAV terminal box. To
determine resistance and capacitance values, we refer to ASHRAE handbook [7]
and available construction information.

By examining data from Pugh hall for several months, we find that the supply
air temperature has the fastest change rate among all input signals. It can change
from its minimum value to maximum value in 5 minutes. Assuming that the
largest period we consider is 5 hours, we choose the frequency of interest to be

1
5 hours (≈ 10−4rad/s) to 1

5 mins (≈ 10−2rad/s). The discrepancy between models
was found to increase with increasing value of supply air flowrate. The flow
rate is therefore set tom= 0.1(Kg/s), which is the maximum value for the target
room.

First, we consider the magnitude frequency response. Amongall the inputs,Ts

is seen to have the largest gain, and its magnitude frequencyresponse are shown
in Figure 6 left. Outside temperatureTa has smaller gain to the output compared
to the other inputs, which is consistent with the fact that commercial buildings are
usually well-insulated. Gain for surrounding temperatures lie between the gain
for Ta andTs, which is determined by the thermal properties of the surfaces. As
shown Figure 6 left, for the range of frequencies deemed of interest, the second
order model is almost as accurate as the 13-th order model.

The prediction in response to an input depends not only on thetransfer func-
tion but also on the magnitude of the input. The variation inTs and surrounding
space temperatures can be significantly different from eachother. The error in the

14



10
−4

10
−2

0

0.05

0.1

 

 

Full−scale
2nd order

10
−4

10
−2

0

0.5

1

1.5

 

 

2nd order

ω(rad/s)ω(rad/s)

|H
T s
(
jω

)|

e T
s(
◦
F)

Figure 6: Frequency domain comparison for the input supply air temperatureTs. Left: gain com-
parison; right: prediction difference.

prediction ofT may be different due to the difference in magnitudes of the inputs
even though their transfer functions might have the same gain. Therefore we next
examine theprediction difference with respect to i-th input, which is defined as:

ei(ω) =
∣

∣

∣
|H f ull

i ( jω)|− |H low
i ( jω)|

∣

∣

∣
δui , (10)

whereH f ull
i (·) andH low

i (·) correspond to the transfer function of full-scale and
low-order models from thei-th input to output, andδui is the maximum varia-
tion in the i-th input. By examining the data from Pugh Hall, we observe that
the largest variations in supply air temperature and surrounding room tempera-
tures are 45◦F and 10◦F. However, if more intelligent control strategy is applied,
controller may let the room temperatures vary more to save energy[2, 19, 23, 4].
In that case the temperature difference between adjacent rooms may grow bigger.
Thus we useδuo = 20◦F for the surrounding temperature inputs. The ambient
temperature is assumed to have a maximum variation of 30◦F in the frequency of
interest.

It turns out that the input with most significant prediction difference is stillTs.
The differenceei as a function of frequency for this input is shown in Figure 6
right. We see from the figure that for the second order model, the maximum
difference is less than 1.2◦F. These conclusions provide us initial confidence in
the second-order differential boundary model.

3. Model calibration (Q2)

Since the second-order differential boundary model has farfewer parameters
than the full-scale model (8 vs. 32) and the predictive powerof the two models is
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quite similar, as seen in the previous section, we limit our attention to the second
order modelMRC(2,9,8) for the purpose of identification.

3.1. Identifiability

First we address the question of local identifiability of thesecond-order model
MRC(2,9,8) in the sense defined in [24] for LTI systems. We consider a con-
stant supply air flow rate, which ensures the model is LTI (seeRemark 2). Since
varying flow rate provides more information, if the model with constant flow rate
is identifiable, the model with varying flow rate is likely to be so as well. With
constant supply air flow rate, the discrete version of system(5) can be written as:

x(k+1) = F(θ)x(k)+G(θ)u(k)
y(k) = H(θ)x(k)

(11)

Local identifiability is defined as follows: a model is locally identifiable atθ0, if in
the neighborhood ofθ0 there does not exist two distinct parameters which produce
the same input-output behavior. By Proposition 2 in [24], wecan determine the
identifiability of the model by computing the rank of the information matrix. The
precise statement is as follows: consider the matrix

Sr(θ), [M(1,θ),M(2,θ), · · · ,M(r,θ)]

whereM( j,θ) is the jth Markov parameter of the system (11) organized row-wise:

M( j,θ) = [M1( j,θ),M2( j,θ), · · · ,Mp( j,θ)]

whereMn( j,θ) is thenth row of the corresponding Markov parameter. The model

is locally identifiable atθ0 if for large enoughr, rank(∂Sr(θ )
∂θ ) equals to the number

of parameters atθ0. The minimum number of Markov parameters requiredr
is given by the sum of the observability index and controllability index of the
system (11). We letθ0 take the value discussed in Section 2.4. It turns out that
r = 3 suffices and the model is locally identifiable atθ0.

3.2. Cost function formulation

Identification will be performed by minimizing a cost function that captures
how well a model (with a given set parameters) predicts measured outputs. To
solve the minimization problem applying available numerical optimization tools,
we need a discrete time representation of the dynamics. Applying forward Euler
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approximation to the continuous-time model (5) and (6), thediscretized system
model is given by:

xk+1 = xk+ ts(Axk+Buk+ fk)

Tk =Cxk
(12)

wherets is the sampling time,xk,uk is the state and input att = kts, fk := f (kts),
andTk is room temperature predicted from the model. For a given model structure
with fixed parameters, we define theprediction error cost Jas:

J =
τ

∑
k=1

(Tm
k −Tk)

2 (13)

whereTm
k is the measured room temperature at timek, Tk is the room temperature

at timek predicted by the model with a given set of parameter values, and τ is a
user-specified time interval. The optimal parameters are those that minimize the
prediction error costJ:

θ̂∗ = argmin
θ∈Rp+

J (14)

Solution of the minimization problem yields an estimate of the parameters. In this
paper we solve the optimization problem (14) numerically using the quasi-Newton
BFGS (Broyden - Fletcher - Goldfarb - Shanno) method [25].

3.3. Calibration of second-order differential boundary model

3.3.1. Method
The calibration is carried out in two steps:

1. Identify the room capacitance and window resistance (Cr andRwin) by cali-
brating the second-order lumped boundary model described in Section 2.2.2
by prediction error cost minimization.

2. Identify other 6 parameters in the second-order differential boundary model
with Cr andRwin values obtained from step 1.

There are two advantages of starting from the lumped boundary model instead
of directly calibrating the differential boundary model. First, the room capaci-
tance and window resistance remain the same no matter the surrounding surfaces
are combined to one or kept separate. Thus, we can reduce the number of param-
eters to be estimated in the differential boundary model by using the estimates of
those two parameters obtained from calibrating the lumped boundary model. This
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Data sets Date of collection Description
A 08/02/2011 Normal building operation during summer time.
B 12/05/2011 Normal building operation during winter time.
C 10/24/2011 Forced response test. First the target room was

heated up and surrounding rooms are cooled
down to generate a temperature difference; then
the air supply to the target room is shut down.

D 12/01/2012 Forced response test. The temperature in the
surrounding rooms were made to be different
from each other.

E 12/03/2012 Forced response test. Besides the features in
data set D, the average surrounding room tem-
peratures were made to be different from the tar-
get room temperature.

Table 1: Description of experimental data sets (obtained with door closed).

will reduce the dimension of the optimization problem, which lowers the number
of possible local minima, as well as computation time. Second, we have fewer
parameters to determine in the lumped boundary model, so it is convenient for
preliminary investigation.

3.3.2. Data description
For model calibration and validation we collected field datafrom the target

room. All data are collected from 6pm in the evening to 6am next morning, when
the room is unoccupied to eliminate the effect of occupancy and humidity dynam-
ics; see Remark 1. The data sets are described in Table 1. The room temperature
and a few of the inputs for these data sets are shown in Figure 7.

Richness of the inputs are important for model calibration.Persistency of exci-
tation is a concept that is usually used to describe the richness of input. From [12],
an input vectorx(t)∈R

q, q≥ 1, is calledexcitingover the time interval[t0, t0+σ ],
t0,σ > 0, if there existsα > 0 such that

∫ t0+σ

t0
x(τ)x(τ)Tdτ ≥ αI .

Among the 5 data sets we collected, inputs in set A, D, and E areexciting. How-
ever, we’ll see in the next section that it is not enough to have exciting inputs to
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Figure 7: Room temperatureT and surrounding spacesTm andTn for the 5 data sets. Other inputs
including supply air flow rate and other surrounding space temperatures are not shown to avoid
clutter.

obtain reliable parameter estimates.

3.3.3. Results
In the initial investigation, data sets A, B, and C are used tocalibrate the

second-order lumped model. We found that the model with parameters calibrated
with data set A predicts the room temperature well for both data set A and B,
though set A is collected in summer and set B in winter. However, it fails to predict
data set C accurately; see Figure 8. The reason for the failure was found to be the
input data; see Figure 7. In the calibration data (data set A), the temperatures of
the surrounding spaces are almost the same as that of the target room. So the best
fit resistance values are small: the resulting room temperature essentially follows
the temperature of the surroundings, leading to small prediction error. In data set
B, though the room temperature profile is quite different from that in set A, the
surrounding room temperatures are still close to the targetroom’s temperature, so
the model with small resistances predicts measurements well again. However, in
data set C, the surrounding space temperatures are significantly different from the
room temperature, so the model fails to predict measurements well. Only data
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set C, obtained from a forced response test, reveals that thecalibrated parameter
values are incorrect.
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Figure 8: Calibration and (in)validation when data set A is used for calibration; good prediction
for data set A and B, poor prediction for data set C.

The best fit parameters for the second-order differential boundary model when
data sets C, D, and E are used for calibration, respectively,are shown in Table 2.
Also shown in the table for reference are the ASHRAE values for the param-
eters, which are calculated by the ad-hoc model reduction method described in
Section 2.4. Validation simulations are performed with all5 data sets; results are
shown in Figure 9. We found that though the parameter values calibrated from
data set C are close to ASHRAE values, they leads to poor prediction in some
scenarios; see Figure 9 (v). The reason is that in data set C, surrounding spaces
have similar temperatures. A model calibrated to C is not able to differentiate the
effects of the surrounding spaces. The inaccuracy in the model becomes evident
when it is asked to provide prediction in scenarios where individual surrounding
spaces have different temperatures, as in data set E. Data set D does not suf-
fer from this problem since each surrounding space has a different temperature.
However, when it is used in calibration, two of the wall resistances,Rf andRn,
turn out to be an order of magnitude lower than their ASHRAE values. The pre-
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diction is also poor, as can be seen in Figure 9 (iii, v). We believe the reason for
this failure is that even though the surrounding spaces havedifferent temperatures,
their average resembles the target room’s temperature. Lowresistances cause the
room temperature to follow the average surrounding temperature, which leads to
a small prediction error. As a result, prediction error minimization leads to a small
resistance. This is similar to the problem encountered withdata set A.

Data set E was created to avoid all of these issues: all surrounding space tem-
peratures are commanded to be lower or higher than the targetroom’s temperature
while ensuring that their mean is not equal to the room’s temperature; see Figure 7.
We see from Figure 9 that the model calibrated with data set E predicts all four
data sets (A,B,C,D) well. Also, Table 2 shows that the parameters obtained from
data set E are the closest to the ASHRAE values. We can now claim that the
model calibrated with data set E is alow-order differential boundary model with
reasonable accuracy.
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Figure 9: Validation of model calibrated from data set E and invalidation of model calibrated from
data set C and D.
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Parameter Data set C Data set D Data set E ASHRAE value
Cw(J/K) 1.6×106 1.6×107 1.1×106 2.2×106−2.3×106

Rf (K/W) 0.39 0.0012 0.78 −
Rc(K/W) 0.11 0.42 0.13 −
Rm(K/W) 0.2 0.79 0.02 0.021−0.145
Rn(K/W) 0.025 0.0042 0.02 0.021−0.145
Rh(K/W) 0.028 0.015 0.0069 -
Cr(J/K) 5.2×105 1.6×106 8.1×105 -
Rwin(K/W) 0.059 0.03 0.14 0.05−0.15

Table 2: Best fit parameters for the second-order differential boundary model calibrated with
different data sets.

4. Effect of open door and its modeling

The first question regarding the open door is whether openingthe door can
cause significant changes to the room’s temperature that thedynamic model needs
to take the door into account. We first show that this is indeedthe case, by per-
forming another forced response experiment in the target room on Apr. 20th,
2012. During the test, a temperature difference between theroom and the hallway
is created by commanding the supply air temperature and flow rate in the target
room while leaving the corresponding commands for the hallway untouched. The
door is kept closed for some time until the temperatures settled down; then it was
opened. To see how well our door-closed model (calibrated with data set E) pre-
dicts the room temperature in the door open case, the model was simulated with
the inputs measured during the experiment. The simulation result is shown in Fig-
ure 10. It is clear from the figure that, while the predicted temperature matches
the measured temperature well before the door was opened, afterwards it is no
longer the case: the predicted temperature decreases whilethe measured temper-
ature increases. This divergence indicates that the effectof opening the door is
significant enough that a model calibrated with “door closed” data is ineffective
for predicting “door open” scenarios.

Recall the model structure discussed in Section 2.3. An exhaustive search is
used to obtain the best-fit value ofRod while all other parameters are fixed at values
obtained from calibration discussed in Section 3.3.3. There is only one resistance
to determine and we know that it should not be larger than thatof a solid surface of
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Figure 10: Prediction of door-open data with door-closed model. Vertical line indicates the time
door was opened.

the same size, so exhaustive search is both feasible and convenient. The estimated
Rod turns out to be 0.0043(K/W).

To check the door-open model so obtained, we perform a validation door-
open experiment in the target room on May 3rd, 2012, in which the door was
kept closed first for some time and then opened, but the temperatures of the target
room and the hallway were different from those in the previous door-open test
(the one used for calibration ofRod). The following simulation is performed to
compare our model prediction with experimental data: the door-closed model is
used for simulation until the door was open; after that we switch to the door-open
model. The result is shown in Figure 11. As shown in the figure,we see that the
calibrated door-closed and door-open models are able to predict room temperature
in an independent test when the room transitions from door closed to door open. It
should be noted that even with the calibrated door-closed and -open models, real
time prediction of the room’s temperature will require knowledge of whether the
door is open or closed in any given instant.

5. Summary and future work

We examined two questions regarding models of single room ina commercial
building that can be used for predictive control: required model complexity and
parameter identification. We examined models of varying complexity within the
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Figure 11: Measured room temperature and temperature predicted from door-open model in vali-
dation experiment.

popular class of non-linear R-C network models. We concludethat a second-order
model can closely approximate the input-output behavior ofthe full-scale, 13th
order model. Thus, the need for complex models with high state dimension and
large number of resistance/capacitance parameters are questionable for control
purposes.

The work reported here on parameter identification of low-order models from
experimental data has revealed that calibrating the parameters of the R-C network
model to normal operation data from a building is likely to lead to grossly in-
accurate parameter estimates. A single plot of prediction versus measured data,
as often shown in many papers, is virtually meaningless. An incorrect set of pa-
rameters may predict certain data sets quite well. Our results identified features
that the data should have to enable “correct” identification. These features seem
to be possible to ensure only through forced response tests.An algorithm is pre-
sented that is able to identify parameter values that lead toa reliable model when
such data is used for calibration. By reliable we mean that itis able to reproduce
the observed output (room temperature) in a wide range of situations that involve
large variations between the output and measurable disturbances. Interestingly,
this reliability is seen to come at the cost of accuracy - the prediction error of the
temperature is larger for the more reliable model. It raisesthe question: what is
the fundamental limit on the accuracy of a non-linear R-C network model? This
is still an open question.

Since specially designed forced response tests are required for calibrating the
model of a room, calibrating multiple zones simultaneouslycould reduce the num-
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ber of experiments required. An interesting direction of future work is to design
such tests so that the desired data features are guaranteed for each zone.

Our results also reveal that an open door has such a significant effect on room
thermal dynamics that one needs to use distinct model structures for the two sit-
uations: door-open and door-closed. This has implicationson the cost of appli-
cation of model predictive control in practice, since a sensor to measure the door
open/close state will be required to obtain model predictions, and therefore by
such a controller.

This work presents model calibration of a room whose all surrounding tem-
peratures can be measured—this is important for simulations since these temper-
atures appear as inputs to the model. The target room was chosen to be in the
second floor of a three-story building to satisfy these requirements. In case of a
room in the first floor that is in contact with the building foundation, especially if
there is significant ground coupling, the situation is more complicated. It is not
clear how to obtain the “ground temperature” measurements required for predic-
tion and identification.
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