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GAMES OF SCHOOL CHOICE UNDER UNCERTAINTY 
 

 

This paper examines the Nash equilibrium characteristics of the preference revelation 
game induced by the Boston mechanism under the informational circumstances that arise 
in major school districts using this mechanism in the U.S. The results indicate that three 
significant findings of the previous literature fail to hold under the real-world 
informational setting due to the uncertainty created by the lotteries used in tie-breaking. 
First, under this setting, the set of Nash equilibrium outcomes under the Boston 
mechanism do not necessarily correspond to the set of stable assignments under students’ 
true preferences. Second, switching to one of the alternative mechanisms called the 
student-optimal stable mechanism, such as in the recent transition in Boston, may result 
in efficiency losses in practice. Third, assuming that there is at least one sincere student 
who always reveals public school preferences truthfully, a strategic student who plays 
best response might weakly prefer the student-optimal stable mechanism to the Boston 
mechanism. An important policy implication is that the findings of the previous literature 
can not be used as arguments for or against replacing the Boston mechanism in these 
school districts.    
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GAMES OF SCHOOL CHOICE UNDER UNCERTAINTY 

 

1. Introduction 

School choice reforms and their effectiveness in improving the quality of the public 

school system in the U.S. remain a major topic of debate among policy makers and 

researchers. The main objective for most of these school choice reforms is to provide as 

equal access to quality education as possible for all students regardless of their socio-

economic status. Along these lines, inter-district and intra-district school choice 

programs, which allow parents to choose schools outside of the neighborhood they reside, 

have become increasingly popular in the last decade1. 

Along with increased parental choice has come the need to implement ‘well-

behaving’ public school-student assignment procedures. Public school assignment 

mechanisms have been evaluated along four desirable properties: 

1. Explicit Rules: A public school assignment mechanism should have explicit rules 

in order to remove any ambiguity in assignment decisions. The absence of such 

explicit rules creates potential conflicts between school authorities and parents 

who question the fairness of school assignments, providing incentives for parents 

to seek legal action to overturn their school assignments2.  

2. Strategy-proofness: A preferred public school assignment mechanism avoids 

creating incentives for parents to play complicated games. Hence, truthful 

parental ranking of schools should be a dominant strategy. Strategy-proofness of 

the assignment mechanism is then desirable. 

                                                 
1 According to the estimates from the 1999-2000 school year, 71 percent of the school districts in the West, 
63 percent in the Midwest, 44 percent in the South and 19 percent in the Northeast employed these school 
choice programs in the U.S. (NCES, 2006). 
2 Abdulkadiroglu and Sonmez (2003) cite cases in Mississippi and Wisconsin where the assignment 
decisions were overruled due to the ambiguity created by the school assignment mechanism. 
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3. Stability: An assignment set is defined to be stable if there is no school-student 

pair (i,s) such that student i prefers school s to her current assignment and either 

school s prefers student i to at least one of the students assigned to it or school s 

has at least one empty seat. Absent stability, there exists ‘justified envy’ in the 

assignments providing incentives for parents to seek legal action to overturn 

school assignments. 

4. Efficiency: For the public school assignment problem in the context of this 

paper3, only the welfare of students is considered for Pareto efficiency, since the 

schools are regarded as objects to be consumed by students. Pareto efficient 

assignments are obviously desirable. 

One of the most commonly used student assignment mechanisms is the Boston 

mechanism, so named because of its use until recently in Boston. This mechanism is still 

being used in other major school districts including Cambridge (MA), Charlotte (NC), 

Denver (CO), Hillsborough (Tampa, FL), Miami-Dade (FL), Minneapolis (MN), Seattle 

(WA) and Pinellas (St.Petersburg, FL)4. This mechanism has the virtue of removing the 

ambiguity in assignment decisions by imposing explicit rules. However, the mechanism 

has a major weakness: it is not strategy-proof (Abdulkadiroglu and Sonmez, 2003). In 

                                                 
3 For the public school assignment problem discussed in this paper, priority categories mandated by the 
school districts are employed along with student preferences to determine the public school assignments. 
Since these rankings do not necessarily correspond to schools’ preferences, only the students’ preferences 
are considered for efficiency. On the contrary, there are cases such as the high school assignments in NYC 
where schools determine their own priorities. In that case, school preferences as well as student preferences 
might be taken into account for welfare considerations. 
4 In 2003, over one million students were enrolled in public schools within the boundaries of these school 
districts. The assignments for a significant number of public schools are determined using the Boston 
mechanism in these districts. For instance, in Denver, this mechanism is used for traditional public school 
assignments (approximately 79% of all public schools), whereas, in Seattle, the assignments for every 
public school in the district are decided with the use of the Boston mechanism. 
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other words, the Boston mechanism induces parents to play a difficult preference 

revelation game in these school districts, the details of which are discussed below. 

Despite this weakness of the Boston mechanism, Ergin and Sonmez (2006) show that 

the Boston mechanism will result in stable assignments in equilibrium. They further show 

that the set of stable assignments under students’ true preferences corresponds to the set 

of Nash equilibrium assignments under the Boston mechanism. This is perhaps surprising 

since, in equilibrium, preferences of students are not truthfully revealed in general. 

Nevertheless, the assignments satisfy the stability property in equilibrium. The crucial 

assumptions leading to these results are that the preference revelation game takes place 

under a complete informational setting where schools have strict priority rankings over 

students that are common knowledge. 

 In fact, in all of the major school districts using the Boston mechanism, public school 

preferences over students are determined by broad priority categories mandated by the 

school district (e.g. sibling already in the school). This generates the need to break the 

ties between students in the same priority categories before the assignment algorithm can 

be applied. In all of the aforementioned school districts, the ties between students are 

broken in some random fashion and the assignments are determined using the Boston 

algorithm after all of the student applications are received. Therefore, under the Boston 

mechanism, games of school choice, in reality, take place in the presence of uncertainty 

about schools’ strict priority rankings over students.  

One point of this paper is to show that, under the real-world informational setting, the 

stability property does not hold. Hence, the Boston mechanism might lead to unstable 

assignments and provide parents incentives to seek legal action to overturn their school 
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assignments in these school districts. Furthermore, the results indicate that the stable 

assignments under students’ true preferences are not necessarily Nash equilibrium 

outcomes.  

Another mechanism that has been proposed and recently implemented is the student-

optimal stable (SOS) mechanism5. Compared to the Boston mechanism, the SOS 

mechanism has the desirable feature of being strategy-proof6. In addition, it guarantees 

stable assignments, though Pareto efficiency is not guaranteed7.  

Ergin and Sonmez (2006) also show that even though neither the Boston mechanism 

nor the SOS mechanism guarantee Pareto efficiency, the assignments achieved by the 

latter will always weakly Pareto dominate the Boston mechanism assignments. Following 

this result, they state that a transition to the SOS mechanism may result in significant 

efficiency gains in the major school districts using variants of the Boston mechanism. 

The second result of this paper indicates that, in reality, due to the uncertainty created 

by the tie-breaking, a transition to the SOS mechanism does not necessarily lead to a 

weak Pareto improvement in these school districts; there are even cases where such a 

transition results in Pareto inferior assignments. This implies that neither the transition in 

                                                 
5 After pointing out the weakness of the Boston mechanism, Abdulkadiroglu and Sonmez (2003) propose 
two alternative assignment mechanisms: the SOS mechanism and the top-trading cycles (TTC) mechanism. 
After the publication of this paper, Boston Public Schools contacted the authors to design a new public 
school assignment mechanism. In 2006, the SOS mechanism was implemented in Boston, replacing the 
Boston mechanism (Abdulkadiroglu et. al. (2005) and Abdulkadiroglu et. al. (2006)). 
6 See Dubins and Freeman (1981) and Roth (1982). Recently, Abdulkadiroglu et. al. (2007) examine the 
impact of two different tie-breaking methods on the efficiency and strategy-proofness of the SOS 
mechanism; single tie breaking where each student is given a random number to be used at every school 
and multiple tie-breaking where each student is assigned a different random number to be used at each 
school. Their main theoretical result indicates that a SOS mechanism that uses single tie-breaking is not 
dominated by any other mechanism that is strategy-proof for students. 
7 It has been well documented in the previous literature that given strict student preferences and strict 

school priorities, there exists no other stable assignment that Pareto dominates the assignment produced by 
the SOS mechanism; however overall Pareto efficiency is not guaranteed. Erdil and Ergin (forthcoming) 
show that when there are indifferences in school priorities as in the public school assignment problem 
discussed in this paper, there may exist another stable assignment that Pareto dominates the SOS outcome. 
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Boston guaranteed efficiency gains nor would such a transition in other major school 

districts using the Boston mechanism necessarily be beneficial in terms of efficiency8. 

Given the numerous aspects along which the SOS mechanism is superior to the 

Boston mechanism as shown in the previous literature, there has been an increasing 

curiosity among researchers as to why other school districts have not yet followed the 

footsteps of Boston Public Schools and replaced the Boston mechanism. Recently, Pathak 

and Sonmez (forthcoming) suggest the existence of important stakeholders who benefit 

from the Boston mechanism as a possible explanation to this puzzle. Specifically, their 

main result indicates that the school to which a strategic student who plays a best 

response is assigned under the Pareto-dominant equilibrium of the Boston mechanism is 

weakly better than her outcome under the SOS mechanism when there is at least one 

sincere student who always reveals her public school preferences truthfully. In other 

words, in the presence of sincere students, strategic players weakly prefer the Boston 

mechanism to the SOS mechanism if they can coordinate to achieve the Pareto-dominant 

assignment set under the Boston mechanism9. 

The third point of this paper is to show that the latter finding does not necessarily 

hold under the real-world informational setting. In other words, even if they manage to 

coordinate, strategic players may end up being assigned to worse schools under the 
                                                 
8 In the last section of their article, Ergin and Sonmez (2006) examine a case where the complete 
information assumption is violated. They discuss a scenario where there is uncertainty about the strict 
preference ordering of a student. Finding the Nash equilibrium given this incomplete information setting, 
they show that all Nash equilibrium outcomes are not necessarily stable and a student may be better-off 
under the Boston mechanism than under the SOS mechanism. This study enhances these results in two 
ways. First, identifying the real-world informational structure, the results obtained in this paper provide 
more practical policy implications. Furthermore, this study not only confirms these results under this 
setting, but also extends them in some important aspects indicated by the three main results mentioned 
earlier. 
9 It is a well-known fact that the games of school choice induced by the Boston mechanism might have 
multiple equilibria and the Pathak and Sonmez (fortcoming) result regards the equilibrium wherein the 
strategic players obtain their Pareto-dominant assignments among these Nash equilibria with some sincere 
players. 
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Boston mechanism than under the SOS mechanism. Therefore, the existence of important 

stakeholders who are strategic players is not a valid explanation to the aforementioned 

mystery in practice. 

This paper demonstrates the failure of three important findings of the previous 

literature about the equilibrium characteristics of the Boston mechanism versus the SOS 

mechanism in practice. An important policy implication is that these findings must be 

carefully considered by the policy-makers if the Boston mechanism is to be abandoned, 

since they might provide misleading policy suggestions in these school districts. 

The analysis proceeds as follows. Section 2 provides a background on the public 

school assignment problem, details the Boston and the SOS mechanisms as they are 

applied in major school districts, and shows how the resulting assignments would differ 

using an example. Section 3 evaluates the discussed Nash equilibrium properties of the 

preference revelation game induced by the Boston mechanism under the real-world 

informational setting, and Section 4 concludes. 

2. Public School Assignment Problem and the Two Assignment Mechanisms 

Open enrollment programs, which allow parents to send their children to the public 

schools outside of the neighborhood they reside, have become increasingly popular in the 

United States during the last two decades. Under the first-best setting, open enrollment 

programs allow parents to send their kids to any public school within the boundaries of a 

given region that contains, but is not limited to, the household’s neighborhood. Therefore, 

under this scenario, public school assignments are trivial; each student is assigned to the 

public school of her choice within these boundaries. However, in practice, aside from 

these boundaries, parents are typically limited in their public school choices by 
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constraints especially public school capacities. The presence of such constraints 

necessitates other parents’ public school preferences to be taken into account in order to 

determine the public school assignment of a given student, which turns the public school 

assignment into a large-scale problem and obligates the use of centralized assignment 

mechanisms by the school districts. 

In a public school assignment problem, there are n students and k public schools each 

of which has a given number of slots available. Equilibrium assignments depend on 

students’ reported preferences, priorities of schools over students, and the assignment 

mechanism. It is assumed that each student has a utility function over the k public schools 

with strict preferences, which is here assumed to be common knowledge. Students first 

submit their preferences, i.e., a strict ranking of the k schools, and the assignments use the 

set of submitted (ordinal) rankings. Schools have priority rankings of students, based on 

broad priority categories mandated by the school district (e.g., residing in a walk zone), 

and lotteries are used to break the ties between the students in the same priority 

categories. Students know school capacities, the rules of the assignment mechanism, and 

the priority categories of schools when they submit their rankings. We focus on the fact 

that the outcomes of the lotteries are not known when students submit their preferences, 

while we also compare such equilibria to the case in the literature where schools have 

strict rankings of students as if lotteries were first publicly conducted. How the submitted 

preferences and school priorities interact to yield assignments depend on the rules of the 

assignment mechanism, the details of which we discuss next10. Students submit their 

preferences to maximize their expected utilities in Nash equilibrium. 

                                                 
10 School priorities and the assignment mechanism are given so schools are not players in the game. This is 
in contrast to some two-sided matching problems as discussed in Gale and Shapley (1962). 
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 2.1. The Boston Mechanism 

The school assignment mechanism known as the Boston mechanism is currently 

being used in some major school districts such as Cambridge, Charlotte, Denver, 

Hillsborough County, Miami-Dade County, Minneapolis, Seattle and Pinellas County. It 

had also been used in Boston between 1999 and 2006. Under the Boston mechanism, a 

student who is not assigned to his first choice is considered for his second choice only 

after the students who ranked that student’s second choice as their first choices. More 

specifically, all of these major school districts employ the following general scheme in 

their public school assignments11; 

• First step: School districts announce the assignment algorithm, the priority 

categories, and the way the lottery will be conducted12 to break the ties between 

students in the same priority category. The major school districts using the Boston 

mechanism differ considerably in their choices and definitions of priority 

categories; however, the most commonly used are sibling and ‘attendance zone’ 

priorities. For instance, in Boston, the following priority categories are currently 

being used; 

1) Students who have siblings currently attending that school and who live in the 

‘walk zone’ of the school. 

2) Students who have siblings currently attending that school. 

3) Students who live in the ‘walk zone’ of the school. 

                                                 
11 Documentation and more detailed information on the public school assignment procedures in the school 
districts listed are available upon request. 
12 The school districts differ significantly in the ways they use the priority categories along with the lottery 
outcome to rank the applicants. In Boston, the applicants for a given school are first ranked with respect to 
the priority categories and then the outcome of the lottery is used to rank those within the same priority 
category. In Miami-Dade, on the other hand, a weighted lottery is conducted where more random numbers 
are generated for those in higher priority categories. The rankings are then constructed using the best 
random number for each applicant. 
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4) Students who do not fall into the three categories above. 

• Second step: Observing these, each student submits a ranking of her preferred 

schools. The outcome of the tie breaking is unknown at this time. 

• Third step: Given the applicant pool, the lottery is conducted and each applicant is 

ranked according to the pre-specified priority categories and the outcome of the 

tie-breaking. 

• Fourth step: The assignment of students based on the student preferences and the 

strict school priorities. 

o In the first round, only the first choices of students are considered. Based 

on the schools’ priority rankings of students, the seats at each school are 

assigned one at a time. 

o In the nth round, only the nth choices of the students who could not be 

placed in the (n-1)st round are considered. The procedure is terminated 

when there are no unassigned students remaining. 

The crucial point in this public school assignment procedure for this analysis is the 

timing of the lottery to break the tie between students in the same priority category. In all 

of the school districts listed, the students are required to submit their school preference 

rankings before the tie-breaking takes place. Therefore, there is uncertainty about 

schools’ priority rankings over students at the time when the school choice game among 

students takes place. As demonstrated in the third section, this seemingly minor detail has 

serious consequences. 

To illustrate how the Boston mechanism works, consider the following example by 

Roth (1982): 
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Example 1: Assuming complete information13 and that the students truthfully reveal 

preferences, consider the following preferences and the priority rankings of the three 

students (i1, i2, i3) and three schools (a, b, c) each of which has only one seat. 

  i1: b – a – c     a: i1 – i3 – i2    
  i2: a – b – c     b: i2 – i1 – i3    
  i3: a – b – c     c: i2 – i1 – i3  

Applying the Boston mechanism to this example, we get the assignments (i1, b), (i2, c) 

and (i3, a)14. Note that this example demonstrates how the Boston mechanism might 

induce students to misrepresent their preferences. If i2 had misrepresented her preferences 

by listing b as her first choice, the school in which she has the highest priority, she would 

have been assigned to b instead of c and would have been better-off. Hence, the Boston 

mechanism is not strategy-proof in this case.  

2.2. The Student-Optimal Stable (SOS) Mechanism 

Unlike the Boston mechanism, none of the assignments are guaranteed until the 

assignment algorithm terminates using the SOS mechanism. The SOS mechanism is very 

similar to the solution to the college admissions problem by Gale and Shapley (1962), the 

Gale-Shapley deferred acceptance algorithm. The fourth step of the assignment procedure 

in the Boston mechanism is modified as follows: 

• Step 1: Each student’s first choice is considered. Each school puts all applicants 

into a queue unless the number of applicants is higher than its capacity, or rejects 

the ones ranked lower than its capacity in its priority ranking otherwise, while 

placing the rest in its queue. 
                                                 
13 Under complete information, as in the previous literature, we assume that the students observe the strict 
priority rankings of schools and the true preferences of other students. This implies that when making their 
school choices, students know the applicant pool, each applicant’s true preferences and the outcome of the 
tie-breaking in addition to the assignment procedure. 
14 Only the first choices are considered; given the priorities, i3 is assigned to a and i1 is assigned to b. i2 is 
rejected from a and is assigned to c, since the only seat available in school b is occupied by i1. 
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• Step k: The rejected applicants’ next choices are considered. Comparing the new 

applicants with the applicants already in the queue, each school replaces the 

students on its queue based on its priority rankings. The process terminates when 

no student is rejected and each student is assigned to the school whose queue she 

belongs to when the algorithm terminates. 

The main advantage of this approach over the Boston mechanism is that it is strategy-

proof. It also implies stable assignments, but Pareto efficiency is not guaranteed (Roth, 

1982). When applied to Example-1, the SOS mechanism yields the stable assignment set 

(i1, a), (i2, b) and (i3, c)15. However, note that the matching (i1, b), (i2, a) and (i3, c) is 

Pareto superior to the previous outcome. The first three columns of Table-1 summarize 

the key properties of the two assignment mechanisms under complete information. 

3. Preference Revelation Game Induced by the Boston Mechanism 

As illustrated in Example-1, the Boston mechanism induces the students to play a 

preference revelation game where the payoffs are determined by the preferences of the 

students over schools, the priorities of schools over students, and the rules of the 

mechanism. In this section, the following three Nash equilibrium properties of this game 

are evaluated under the real-world informational setting: 

i. Stability in equilibrium (Ergin and Sonmez, 2006): The set of Nash equilibrium 

outcomes of the preference revelation game induced by the Boston mechanism 

corresponds to the set of stable matchings under students’ true preferences. 

                                                 
15 At the end of step 1, i2 gets rejected from a, i3 is in the queue of a and i1 is in the queue of b. i2 goes to b; 
at the end of step-2, i1 gets rejected from b, i2 is in the queue of b and i3 is in the queue of a. i1 goes to a; at 
the end of the step-3, i3 gets rejected from a, i1 is in the queue of a and i2 is in the queue of b. i3 goes to b; at 
the end of the step-4, i3 gets rejected from b, i2 is in the queue of b and i1 is in the queue of a. i3 goes to c; at 
the end of the step-5, nobody gets rejected, i1 is assigned to a, i2 is assigned to b and i3 is assigned to c, and 
the process terminates. 
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ii. Transition to the SOS mechanism (Ergin and Sonmez, 2006): A transition from 

the Boston mechanism to the SOS mechanism would lead to unambiguous 

efficiency gains (i.e. weak Pareto improvements). 

iii. Sincere vs. strategic students in equilibrium (Pathak and Sonmez, forthcoming): 

In the presence of sincere students who always reveal their public school 

preferences truthfully, the school that a strategic student receives under the 

Pareto-dominant equilibrium (among the possibly multiple equilibria) of the 

Boston mechanism is weakly better than her outcome under the SOS mechanism. 

Furthermore, if there are multiple equilibria of the school choice game played by 

the strategic students under the Boston mechanism, a sincere student will receive 

the same assignment under all of these equlibria. 

The key assumption behind these results is that the students have complete 

information about their relative priority positions at each school when making their 

school choices. In other words, the students are assumed to be acting as if they know the 

results of the tie-breaking lotteries before reporting their preferences. However, in reality, 

students have to take into account the uncertainty created by the lotteries when making 

their choices. The following subsections show that this uncertainty overturns the validity 

of the aforementioned equilibrium properties of the Boston mechanism. 

3.1. Stability in Equilibrium 

Example 2: Assume that there are three students (i1, i2, i3) and three schools (a, b, c) each 

of which has only one seat. Assume further that i1 and i2 fall into the same priority 

category for a, and i2 has higher priority than i1 for b. Also assume that i3 has lower 

priority than i1 and i2 for both a and b, but has a higher priority than the others for school 
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c. Consider the following student preferences and school preferences corresponding to 

these priorities: 

  i1 : a – b – c     a: i2 – i1 – i3 or i1 – i2 – i3   

  i2 : a – b – c     b: i2 – i1 – i3    

  i3 : b – c – a     c: i3 – i1 – i2  

The utilities of the students from being assigned to each school are as follows: 

 a b c 

i1 a1 b1 c1 

i2 a2 b2 c2 

i3 a3 b3 c3 

 

   where  

333

222

111

acb

cba

cba

>>

>>

>>

 

 
Notice that there are two states of nature; the one where the tie between i1 and i2 for 

school a is broken in favor of i1, and the one where i1 loses the lottery. There are six 

possible assignments in this example: 

 i1 i2 i3 

A1 a b c 

A2 a c b 

A3 b a c 

A4 b c a 

A5 c a b 

A6 c b a 

 
Among these assignments, A1 and A3 are stable under students’ true preferences and the 

pre-lottery priorities.  

 Since there are 3 schools to choose from, each student has 6 strategies, i.e. 6 ways to 

rank the schools. For each state of nature, we have six 6x6 matrices with the 

corresponding payoffs (utilities) as determined by the assignments of the Boston 
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mechanism. Table-2 gives the expected payoff matrices under this scenario where the 

row player is i1, the column player is i2, the matrix player is i3 and 

( )

( )

( )
jjj

jjj

jjj

cbf

cae

bad

+=

+=

+=

2

1
2

1
2

1

 j = 1, 2, 3. 

Consider the first implication of the stability property: all Nash equilibrium outcomes 

are stable. In order for this statement to hold, there should not exist a Nash equilibrium 

strategy set that results in an unstable assignment. Looking at Table-2, given students i2 

and i3 report school a and school b as their first choices respectively (play axx
16

 and bxx 

respectively), the strategy set of student i1 yields the following expected utilities: 

abc acb bac bca cab cba 

e1 e1 b1 b1 c1 c1 

 

Therefore, if 11 be > , then student i1 will always report school a as her first choice 

and play axx given i2 and i3 play axx and bxx respectively. If i1 plays axx and i3 plays bxx, 

the strategy set of i2 results in the following expected utilities: 

abc acb bac bca cab cba 

e2 e2 b2 b2 c2 c2 

 

Likewise, if 22 be > , then student i2 will always play axx given i1 and i3 play axx and 

bxx respectively. Finally, if both i1 and i2 play axx, i3 will always be guaranteed a seat at 

her most preferred option, school b, if she reports school b as her first choice. Hence, 

given i1 and i2 play axx, i3 will always play bxx. 

                                                 
16 i2 playing axx means that she either plays abc or acb. 
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This implies that, if the following conditions hold: 

( ) 111
2

1
bca >+      (1) 

( ) 222
2

1
bca >+      (2) 

then i1: axx, i2: axx and i3: bxx will be a subset of the set of all Nash equilibrium strategies 

for the overall game. There are two possible sets of assignments for this case: 

1. If i1 wins the lottery, the Boston mechanism will result in the following 

assignments: (i1, a), (i2, c), (i3, b).  

2. If i2 wins the lottery, the Boston mechanism will result in the following 

assignments: (i1, c), (i2, a), (i3, b). 

Notice that the Nash equilibrium assignments obtained above are neither stable under 

the pre-lottery priorities and true preferences nor under the post-lottery priorities and true 

preferences; if i1 wins the lottery, i2 prefers b to her assignment (school c) and school b 

prefers i2 to i3. If i2 wins the lottery, i1 prefers b to her assignment (school c) and school b 

prefers i1 to i3. Therefore, given conditions (1) and (2), this example shows that all Nash 

equilibrium assignments are not necessarily stable under the real-world informational 

setting. 

Now consider the second implication: all stable assignments under students’ true 

preferences are Nash equilibrium outcomes. In our context, this implies that both A1 and 

A3 are Nash equilibrium assignments. In order to see if this condition is satisfied in this 

example, we need to check whether all strategy combinations that result in assignments 

A1 and A3 are Nash equilibrium strategies.     

Assume that the conditions (1) and (2) are still satisfied. This implies that; 
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33333

222222

111111

aecfb

cfbeda

cfbeda

>>>>

>>>>>

>>>>>

 

Finding the Nash equilibria of the overall game, one can observe17 that the strategy 

set i1: axx, i2: axx and i3: bxx is not only a subset of the set of Nash equilibrium strategies 

as shown earlier, but this set of strategies corresponds to the set of all Nash equilibrium 

strategies of the overall game as indicated by the bold-faced expected utilities in Table-2. 

Since this set of strategies yields the assignments A2 or A5 depending on the outcome of 

the lottery, neither A1 nor A3 can occur as a result of Nash equilibrium strategies. 

Therefore, the stable assignments under students’ true preferences are not Nash 

equilibrium outcomes no matter how the tie is broken between i1 and i2. 

Combining these two results, given conditions (1) and (2), this example demonstrates 

how the uncertainty created by the lottery changes the stability property obtained under 

the complete information assumption. The set of Nash equilibrium outcomes, {(i1, a), (i2, 

c), (i3, b); (i1, c), (i2, a), (i3, b)} and the set of stable assignments under students’ true 

preferences, {(i1, a), (i2, b), (i3, c); (i1, b), (i2, a), (i3, c)} are two distinct sets. Therefore, 

the Boston mechanism, in practice, might result in unstable assignments providing 

parents incentives to seek legal action to overturn their assignments. 

3.2. Transition to the SOS Mechanism 

Example 3:  Assume that there are four students (i1, i2, i3, i4) and four schools (a, b, c, d) 

each of which has only one seat. Assume further that i2 and i3 fall into the same priority 

category for a. Consider the following student preferences and school rankings: 

 

 

                                                 
17 The derivation is given in the Appendix. 
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  i1: b – a – c – d   a: i1 – i3 – i2 – i4  or i1 – i2 – i3 – i4 

   i2: a – b – c – d   b: i2 – i1 – i3 – i4    

  i3: a – c – b – d   c: i3 – i1 – i2 – i4     

  i4: c – d – b – a  d: i4 – i3 – i1 – i2 
        

The utilities of the students from being assigned to each school are as follows: 

 a b c d 

i1 a1 b1 c1 d1 

i2 a2 b2 c2 d2 
i3 a3 b3 c3 d3 
i4 a4 b4 c4 d4 

 

   where  

4444

3333

2222

1111

abdc

dbca

dcba

dcab

>>>

>>>

>>>

>>>

 

 

Under the Boston mechanism, in the case where all players report their most 

preferred schools as their first choices, i3 has a 0.5 chance of being assigned to school a 

(if she wins the lottery) and 0.5 chance of being assigned to school d (if she loses). 

Therefore, the expected payoff from playing axxx for i3 in the case where i1, i2 and i4 

report their most preferred schools as their first choices is )(
2

1
33 da + . On the other hand, 

if she does not reveal truthfully and report school c as her first choice, she will be 

assigned to school c no matter what the other players do. Given all other players reveal 

their first choices truthfully, i3’s best reply will be not to reveal truthfully and play cxxx if 

333 )(
2

1
cda <+

18. Building on this intuition, we now construct a Nash equilibrium. 

Given that i1 plays bxxx, and i3 and i4 play cxxx, i2’s best reply will be to play axxx, since 

                                                 
18 Notice that given that all other players reveal their first choices truthfully, student i3 will definitely be 
assigned to school d if she reports school b or school d as her first choice. Therefore, given all other players 

reveal their first choices truthfully, student i3 will never report school b or school d as her first choice. 
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by doing so, she is guaranteed a seat at her favorite school. Furthermore, if i2 and i4 report 

schools a and c as their first choices respectively, and i3 plays cxxx, there is no risk for i1 

to reveal her most preferred option truthfully and she will play bxxx. Finally, given that i1 

and i2 reveal truthfully and i3 plays cxxx, i4 will always be assigned to school d no matter 

what she reveals; hence she is indifferent between all of her strategies. Hence, i1: bxxx, i2: 

axxx, i3: cxxx and i4: cxxx constitutes a set of Nash equilibrium strategies given 

333 )(
2

1
cda <+  which results in the assignments (i1, b), (i2, a), (i3, c) and (i4, d).  

On the other hand, when applied to this example, the SOS mechanism will result in 

the assignments (i1, a), (i2, b), (i3, c) and (i4, d) if the tie is broken in favor of i3 or the 

assignments (i1, b), (i2, a), (i3, c) and (i4, d) otherwise. However, note that the 

assignments achieved by the Boston mechanism weakly Pareto dominate the SOS 

mechanism outcomes if 333 )(
2

1
cda <+ .  

This result is particularly important since a transition from the Boston mechanism to 

the SOS mechanism has currently been made in Boston. Even though student stable-

optimal mechanism is superior to the Boston mechanism in terms of being strategy proof, 

the result obtained above shows that switching from the Boston mechanism to the SOS 

mechanism in the major school districts using the Boston mechanism does not guarantee 

a Pareto improvement; it may even cause a Paretian loss. The last three columns of 

Table-1 summarize the first two results obtained in this article by revising the properties 

of the two assignment mechanisms under the real-world informational setting. 
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3.3. Sincere vs. Strategic Students 

Example 4: Assume that there are three students (i1, i2, i3) and three schools (a, b, c) each 

of which has only one seat. Consider the following student preferences and priority 

rankings: 

  i1: b – a – c     a: i1 – i2 – i3 or i1 – i3 – i2   
  i2: a – b – c     b: i2 – i1 – i3    
  i3: a – b – c     c: i2 – i1 – i3  

Suppose that i3 is a sincere player who always reveals her public school preferences 

truthfully whereas i1 and i2 are strategic players. There are two states of nature; the one 

where the tie between i2 and i3 is broken in favor of i2, and the one where i3 wins the 

lottery. Given that i3 always plays abc, Table-3 provides the expected payoff matrix of 

this game under the Boston mechanism where the row player is i1, the column player is i2 

and the payoffs are defined the same way as in Example-2. 

Given that 22 be >  , there are two sets of Nash equilibrium in this game under the 

Boston mechanism characterized by i1: axx, i2: bxx and i1: bxx, i2: axx. The Boston 

mechanism then results in the following assignments in equilibrium: 

 i1: axx, i2: bxx i1: bxx, i2: axx 
If the tie is broken in favor of i2 (i1, a), (i2, b), (i3, c) (i1, b), (i2, a), (i3, c) 
If the tie is broken in favor of i3 (i1, a), (i2, b), (i3, c) (i1, b), (i2, c), (i3, a) 

 

Notice that the former set of Nash equilibrium strategies provides expected payoffs of 

1a  and 2b  whereas the latter produces 1b  and 2e  for students i1 and i2 respectively. 

Therefore, given that 22 be > , the Pareto-dominant equilibrium strategy set for the two 

strategic students under the Boston mechanism is i1: bxx, i2: axx.  On the other hand, 

when applied to this example, the SOS mechanism yields the assignments (i1, b), (i2, a), 

(i3, c) if the tie is broken in favor of i2 or (i1, a), (i2, b), (i3, c) if i2 loses the lottery. 



 20 
 

Two points are worth noting. First, in the state of nature where the tie is broken in 

favor of i3, the two Nash equilibria under the Boston mechanism yield different 

assignments for the sincere student. Hence, multiplicity is an issue for sincere students 

under the Boston mechanism in practice. Second, the schools that the strategic student i2 

are assigned to under the Pareto-dominant equilibrium outcome of the Boston mechanism 

are weakly worse than the SOS mechanism assignments. Therefore, even if the two 

strategic students coordinate to achieve the Pareto-dominant assignment set under the 

Boston mechanism, i2 will weakly prefer the SOS mechanism to the Boston mechanism 

in this case. 

Despite the convincing evidence that the Boston mechanism is dominated by the SOS 

mechanism along almost all of the desirable properties of a ‘well-behaving’ mechanism, 

the major school districts using the Boston mechanism have been reluctant to abandon 

this mechanism in favor of the alternative. The third result in this paper suggests that the 

existence of important stakeholders who are strategic players is not a valid explanation to 

this mystery, since the strategic players might weakly prefer the SOS mechanism in these 

school districts. 

4. Conclusions 

One of the most commonly used student assignment mechanisms with explicit rules is 

the Boston mechanism, so named because of its use until recently in Boston. Even though 

this mechanism is superior to some other pre-existing public school assignment 

mechanisms, it has a major weakness: it is not strategy-proof. In other words, under the 

Boston mechanism, some students may benefit from misrepresenting their true 

preferences. As a result, the Boston mechanism induces students to play a complicated 
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preference revelation game where students’ payoffs depend on others’ revealed 

preferences, school priorities and the rules of the mechanism.  

This paper demonstrates the failure of three important findings of the previous 

literature about the equilibrium characteristics of this preference revelation game induced 

by the Boston mechanism under the informational circumstances that arise in the major 

school districts using variants of this mechanism. First, in practice, the Boston 

mechanism might result in unstable assignments providing parents incentives to seek 

legal action to overturn their assignments. Second, a transition to one of the proposed 

alternatives called the student-optimal stable mechanism may result in efficiency losses 

under the real-world informational setting. Third, in the presence of sincere students who 

always reveal truthfully, the school a strategic student receives under the Pareto-dominant 

outcome of the Boston mechanism, in reality, might be weakly worse than the outcome 

under the student-optimal stable mechanism. An important policy implication of these 

illustrations is that such findings of the recent literature must be carefully considered by 

the policy-makers if the Boston mechanism is to be abandoned, since they might provide 

misleading policy suggestions in these school districts. 
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Appendix 

Proposition: Given the conditions (1) and (2), i1: axx, i2: axx and i3: bxx represents the 

set of all (pure-strategy) Nash equilibrium strategies of the game defined in Example-2. 

Proof: Looking at Table-2, given the conditions (1) and (2), consider the following set of 

strategies that can not be Nash equilibrium: 

1. Given i3 plays axx, i1 never plays bxx or cxx and i2 never plays bxx or cxx. 

2. Given i3 plays bxx,  

i1 never plays cxx ⇒  i2 never plays bxx or cxx ⇒  i1 never plays bxx or cxx. 

3. Given i3 plays cxx,  

i2 never plays bxx ⇒  i1 never plays bxx ⇒  i2 never plays bxx or cba ⇒  i1 never 

plays bxx or cxx ⇒  i2 never plays bxx or cxx. 

4. Given i1 and i2 never play bxx or cxx, i3 never plays cxx. 

5. Given i1 plays acb and i3 plays, i2 never plays acb ⇒  Given i1 and i2 never play 

bxx or cxx, i3 never plays axx or cxx.  

Therefore, the only possible set of Nash equilibrium strategies is i1: axx, i2: axx and i3: 

bxx. We know from the previous discussion that i1: axx, i2: axx and i3: bxx is a set of Nash 

equilibrium strategies. Therefore, i1: axx, i2: axx and i3: bxx represents the set of all (pure-

strategy) Nash equilibrium strategies of the game defined in Example-2. 
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Table 1 

The Key Equilibrium Properties of the Two Assignment Mechanisms 

 Under Complete Information Under Uncertainty 
  Guarantees  Guarantees 

 
Strategy-

Proof 
Stable 

Assignments 

Pareto 
Efficient 

Assignments 
Strategy-

Proof 
Stable 

Assignments 

Pareto 
Efficient 

Assignments 
The Boston 
Mechanism 

No Yes No No No No 

The SOS 
Mechanism 

Yes Yes No1 Yes Yes No2 

1 Even though neither mechanism guarantees Pareto efficient assignments, the SOS mechanism 
assignments always weakly Pareto dominate the Boston mechanism assignments under complete 
information. 
2 The SOS mechanism assignments do not necessarily weakly Pareto dominate the Boston 
mechanism assignments under student uncertainty. There are even cases as discussed in this study 
where the Boston mechanism assignments weakly Pareto dominate the SOS mechanism 
assignments. 
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Table 2 

The Expected Payoff Matrices of the Preference Revelation Game for Example-2 

   abc      acb    

 abc acb bac bca cab cba abc acb bac bca cab cba 

abc  (d1,d2,c3)
1 

(d1,e2,f3)
3 

(a1,b2,c3) (a1,b2,c3) (a1,c2,b3) (a1,c2,b3) (d1,d2,c3)
1 

(d1,d2,c3)
1 

(a1,b2,c3) (a1,b2,c3) (a1,c2,b3) (a1,c2,b3) 

acb (e1,d2,f3)
2 

(e1,e2,b3)
4 

(a1,b2,c3) (a1,b2,c3) (a1,c2,b3) (a1,c2,b3) (d1,d2,c3)
1 

(d1,d2,c3)
1 

(a1,b2,c3) (a1,b2,c3) (a1,c2,b3) (a1,c2,b3) 

bac (b1,a2,c3) (b1,a2,c3) (c1,b2,a3) (c1,b2,a3) (b1,c2,a3) (b1,c2,a3) (b1,a2,c3) (b1,a2,c3) (c1,b2,a3) (c1,b2,a3) (b1,c2,a3) (b1,c2,a3) 

bca (b1,a2,c3) (b1,a2,c3) (c1,b2,a3) (c1,b2,a3) (b1,c2,a3) (b1,c2,a3) (b1,a2,c3) (b1,a2,c3) (c1,b2,a3) (c1,b2,a3) (b1,c2,a3) (b1,c2,a3) 

cab (c1,a2,b3) (c1,a2,b3) (c1,b2,a3) (c1,b2,a3) (c1,b2,a3) (c1,b2,a3) (c1,a2,b3) (c1,a2,b3) (c1,b2,a3) (c1,b2,a3) (c1,b2,a3) (c1,b2,a3) 

cba (c1,a2,b3) (c1,a2,b3) (c1,b2,a3) (c1,b2,a3) (c1,b2,a3) (c1,b2,a3) (c1,a2,b3) (c1,a2,b3) (c1,b2,a3) (c1,b2,a3) (c1,b2,a3) (c1,b2,a3) 

   bac      bca    

 abc acb bac bca cab cba abc acb bac bca cab cba 

abc (e1,e2,b3)
4 

(e1,e2,b3)
4 (a1,b2,c3) (a1,b2,c3) (a1,c2,b3) (a1,c2,b3) (e1,e2,b3)

4 
(e1,e2,b3)

4 (a1,b2,c3) (a1,b2,c3) (a1,c2,b3) (a1,c2,b3) 

acb (e1,e2,b3)
4 

(e1,e2,b3)
4 (a1,b2,c3) (a1,b2,c3) (a1,c2,b3) (a1,c2,b3) (e1,e2,b3)

4 
(e1,e2,b3)

4 (a1,b2,c3) (a1,b2,c3) (a1,c2,b3) (a1,c2,b3) 

bac (b1,a2,c3) (b1,a2,c3) (a1,b2,c3) (a1,b2,c3) (b1,c2,a3) (b1,c2,a3) (b1,a2,c3) (b1,a2,c3) (a1,b2,c3) (a1,b2,c3) (b1,c2,a3) (b1,c2,a3) 

bca (b1,a2,c3) (b1,a2,c3) (c1,b2,a3) (c1,b2,a3) (b1,c2,a3) (b1,c2,a3) (b1,a2,c3) (b1,a2,c3) (a1,b2,c3) (a1,b2,c3) (b1,c2,a3) (b1,c2,a3) 

cab (c1,a2,b3) (c1,a2,b3) (c1,b2,a3) (c1,b2,a3) (c1,a2,b3) (c1,a2,b3) (c1,a2,b3) (c1,a2,b3) (c1,b2,a3) (c1,b2,a3) (c1,a2,b3) (c1,a2,b3) 

cba (c1,a2,b3) (c1,a2,b3) (c1,b2,a3) (c1,b2,a3) (c1,a2,b3) (c1,a2,b3) (c1,a2,b3) (c1,a2,b3) (c1,b2,a3) (c1,b2,a3) (c1,a2,b3) (c1,a2,b3) 

   cab      cba    

 abc acb bac bca cab cba abc acb bac bca cab cba 

abc (d1,d2,c3)
1 

(d1,d2,c3)
1 

(a1,b2,c3) (a1,b2,c3) (a1,b2,c3) (a1,b2,c3) (d1,d2,c3)
1 

(d1,d2,c3)
1 

(a1,b2,c3) (a1,b2,c3) (a1,b2,c3) (a1,b2,c3) 

acb (d1,d2,c3)
1 

(d1,d2,c3)
1 

(a1,b2,c3) (a1,b2,c3) (a1,b2,c3) (a1,b2,c3) (d1,d2,c3)
1 

(d1,d2,c3)
1 

(a1,b2,c3) (a1,b2,c3) (a1,b2,c3) (a1,b2,c3) 

bac (b1,a2,c3) (b1,a2,c3) (a1,b2,c3) (a1,b2,c3) (b1,a2,c3) (b1,a2,c3) (b1,a2,c3) (b1,a2,c3) (a1,b2,c3) (a1,b2,c3) (b1,a2,c3) (b1,a2,c3) 

bca (b1,a2,c3) (b1,a2,c3) (a1,b2,c3) (a1,b2,c3) (b1,a2,c3) (b1,a2,c3) (b1,a2,c3) (b1,a2,c3) (a1,b2,c3) (a1,b2,c3) (b1,a2,c3) (b1,a2,c3) 

cab (b1,a2,c3) (b1,a2,c3) (a1,b2,c3) (a1,b2,c3) (d1,d2,c3)
1 

(a1,b2,c3) (b1,a2,c3) (b1,a2,c3) (a1,b2,c3) (a1,b2,c3) (d1,d2,c3)
1 

(a1,b2,c3) 

cba (b1,a2,c3) (b1,a2,c3) (a1,b2,c3) (a1,b2,c3) (b1,a2,c3) (a1,b2,c3) (b1,a2,c3) (b1,a2,c3) (a1,b2,c3) (a1,b2,c3) (b1,a2,c3) (a1,b2,c3) 
1 Whoever wins the lottery is assigned to school a whereas the ‘loser’ is assigned to school b. 
2 If i1 wins the lottery, assignments are (i1, a), (i1, b) and (i3, c). If i2 wins the lottery, assignments are (i1, c), (i2, a) and (i3, b). 
3 If i1 wins the lottery, assignments are (i1, a), (i2, c) and (i3, b). If i2 wins the lottery, assignments are (i1, b), (i2, a) and (i3, c). 
4 If i1 wins the lottery, assignments are (i1, a), (i2, c) and (i3, b). If i2 wins the lottery, assignments are (i1, c), (i2, a) and (i3, b). 
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Table 3 

Expected Payoff Matrix for Example-4 

 abc acb bac bca cab cba 

abc (a1,b2,c3) (a1,c2,b3) (a1,b2,c3) (a1,b2,c3) (a1,c2,b3) (a1,c2,b3) 

acb (a1,b2,c3) (a1,c2,b3) (a1,b2,c3) (a1,b2,c3) (a1,c2,b3) (a1,c2,b3) 

bac (b1,e2,e3)
1 

(b1,e2,e3)
1 (c1,b2,a3) (c1,b2,a3) (b1,c2,a3) (b1,c2,a3) 

bca (b1,e2,e3)
1 

(b1,e2,e3)
1 (c1,b2,a3) (c1,b2,a3) (b1,c2,a3) (b1,c2,a3) 

cab (c1,d2,d3)
2 

(c1,d2,d3)
2 

(c1,b2,a3) (c1,b2,a3) (b1,c2,a3) (b1,c2,a3) 

cba (c1,d2,d3)
2 

(c1,d2,d3)
2 

(c1,b2,a3) (c1,b2,a3) (b1,c2,a3) (b1,c2,a3) 
1 Whoever wins the lottery is assigned to school a whereas the loser is assigned to c. 
2 Whoever wins the lottery is assigned to school a whereas the loser is assigned to b. 


