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1 Introduction

Feature extraction and selection are two fundamental problems in machine learning re-

search. Not only can their proper design reduce system complexity and processing time,

but they can also enhance system performance in many cases.

Suppose we are given a training dataset D={(xn, yn)}N
n=1∈X×Y , where X ∈ RI is

the pattern space, I is the feature dimensionality, and Y is the label space. A commonly

used method for feature extraction and selection is to pre-multiply a projection matrix to

pattern vectors with the aim to optimize a certain criterion function

L(P) =

N
∑

n=1

ℓ(PTxn, yn) , (1)

where ℓ(·) is a criterion function, and P is a projection matrix. By convention, pattern

vector xn is denoted as a column. For example, in feature selection, the off-diagonal ele-

ments of a projection matrix are all set to zero, and the diagonal elements are restricted to

take values from the set {0, 1}. Based on the criterion functions used in search for infor-

mative features, feature selection algorithms are traditionally categorized as wrapper and

filter methods [1]. In wrapper methods, a classification algorithm is employed to evaluate

the goodness of a selected feature subset, whereas in filter methods criterion functions eval-

uate feature subsets by their information content, typically interclass distance (e.g., Fisher

score) or statistical measures (e.g., p-value of t-test), instead of optimizing the performance

of any specific learning algorithm directly. Hence, filter methods are computationally much

more efficient, but usually do not perform as well as wrapper methods. In addition to a

criterion function, a search strategy is also needed. An exhaustive search is optimum but

quickly becomes computationally infeasible with the increase of problem size. Therefore,

some heuristic combinational searches, such as forward and/or backward selection [2], are

usually employed. These algorithms have shown some successes in practical applications.

However, none of them can provide any guarantee of optimality. For more detailed discus-

sions, interested readers can refer to [3, 4] and the references therein.

The counterpart to feature selection is feature weighting, wherein the diagonal elements
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of a projection matrix are allowed to take real-valued numbers instead of from the limited

set {0, 1}. This strategy has many advantages. For example, there is no need to pre-specify

the number of relevant features. Also, standard optimization techniques (e.g., gradient

descent) can be used to avoid combinatorial search. Among the existing feature weighting

algorithms, the RELIEF algorithm [5] is considered one of the most successful ones due to its

simplicity and effectiveness [6]. RELIEF has been long regarded as a heuristic filter method

until recently we have mathematically proved that RELIEF is an online learning algorithm

that solves a convex optimization problem aimed at maximizing a margin-based objective

function [7]. The margin is defined based on one-nearest-neighbor classifier. Compared

with filter methods, RELIEF usually performs better due to the performance feedback

of a nonlinear classifier when searching for useful features; compared with conventional

wrapper methods, by solving a convex problem, RELIEF avoids any exhaustive or heuristic

combinatorial search, and thus can be implemented efficiently. These two merits clearly

explain the success of RELIEF in practical applications.

One major shortcoming of feature weighting and selection, however, is their inability

to capture the interaction of correlated features [8]. In some applications, such as face

recognition, where to preserve the meaning of individual features is not needed, feature

extraction is more appropriate than feature weighting and selection. Starting from the

mathematical interpretation that RELIEF represents an implementation of a convex op-

timization problem, we propose a novel feature extraction algorithm, referred to as LFE,

as a natural generalization of RELIEF by lifting the diagonal constraints on a projection

matrix. LFE collects discriminant information through local learning and can be solved

as an eigenvalue decomposition problem with a closed-form solution. A fast implementa-

tion of LFE is also derived. We demonstrate that LFE can be implemented easily with a

comparable computational cost to that of principal component analysis (PCA). As with

RELIEF, LFE learns a distance metric matrix to approximately optimize the leave-one-out

accuracy of a nearest neighbor classifier, and thus has an explicit mechanism to remove ir-

relevant features. Experiments on synthetic and real-world data are presented. The results
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demonstrate the effectiveness of the proposed algorithm.

The remainder of the paper is organized as follows. In Section 2, we provide a math-

ematical interpretation of RELIEF. In Section 3, we propose a new feature extraction

algorithm, referred to as LFE. A fast implementation of LFE is derived and computa-

tional complexity is discussed. In Section 4, we extend the algorithm to address multiclass

problems. In Section 5, some related work are briefly reviewed. In Section 6, numerical

experiments are performed using both synthetic and real-world data, and finally the paper

is concluded in Section 7.

2 Optimization Approach to RELIEF

We first present a brief review of RELIEF. At the moment, we only consider binary prob-

lems, while multiclass problems are addressed in Section 4. The pseudo-code of RELIEF

is presented in Fig. 1. The basic idea of RELIEF is to iteratively estimate feature weights

according to their ability to discriminate between neighboring patterns. In each itera-

tion, a pattern x is randomly selected and then two nearest neighbors of x are found,

one from the same class (termed the nearest hit or NH) and the other from the different

class (termed the nearest miss or NM). The weight of the i-th feature is then updated

as: wi = wi + |x(i) − NM(i)(x)| − |x(i) − NH(i)(x)|, where x(i) is the i-th component of

pattern x. After a feature weight vector is learned, the features are ranked based on their

corresponding weight values, and usually only the features with positive weights are used

for classification.

We below present a mathematical interpretation for the seemingly heuristic RELIEF

algorithm to show why it works. Following the margin definition in [9], we define the

margin for pattern xn as

ρn = d(xn − NM(xn)) − d(xn − NH(xn)) , (2)

where NM(xn) and NH(xn) are the nearest miss and hit of pattern xn, respectively, and

d(·) is a distance function. For the purpose of this paper, we define d(x) =
∑

i |xi|,
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Algorithm 1: RELIEF Algorithm

Input : Data D = {(xn, yn)}N
n=1, number of iterations T

Output: Feature weights w

Initialization: Set w(0) = 0, t = 1 ;1

repeat2

Randomly select a pattern x from D;3

Find the nearest hit NH(x) and miss NM(x) of x;4

for i = 1 : I do5

wi = wi + |x(i) − NM(i)(x)| − |x(i) − NH(i)(x)|;6

end7

t = t + 1;8

until t > T ;9

Figure 1: Pseudo-code of RELIEF

which is consistent with the distance function used in the original RELIEF algorithm.

Other distance functions may also be used. Note that ρn > 0 if only if xn is correctly

classified by the one-nearest-neighbor classifier using the training data excluding pattern

xn. One natural idea then is to scale each feature, and thus obtain a weighted feature space,

parameterized by a nonnegative vector w, so that the leave-one-out error
∑N

n=1 I(ρn(w) <

0) in the induced feature space is minimized, where I(·) is the indicator function and

ρn(w) is the margin of xn computed with respect to w. Since the indicator function is

not differentiable, we instead use a linear utility function so that the averaged margin in a

weighted feature space is maximized:

max
w

N
∑

n=1

ρn(w) =

N
∑

n=1

(

I
∑

i=1

wi|x(i)
n − NM(i)(xn)| −

I
∑

i=1

wi|x(i)
n − NH(i)(xn)|

)

subject to ‖w‖2
2 = 1,w > 0 ,

(3)

where the constraint ‖w‖2
2 = 1 prevents the maximization from increasing without bound,

and w > 0 ensures that the learned weight vector induces a distance measure. By defining
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z =
∑N

n=1(|xn −NM(xn)| − |xn −NH(xn)|), where | · | is the point-wise absolute operator,

Eq. (3) can be simplified to read

max
w

wTz

subject to ‖w‖2
2 = 1,w > 0 .

(4)

The Lagrangian of Eq. (4) is

L = −wTz + λ(‖w‖2
2 − 1) +

I
∑

i=1

θi(−wi) , (5)

where λ and θ > 0 are Lagrangian multipliers. Taking the derivative of L with respect to

w and setting it to zero yield

∂L

∂w
= −z + 2λw − θ = 0 ⇒ w =

1

2λ
(z + θ) . (6)

Below, we derive a closed-form solution for w. We first make an assumption that there

exists zi > 0. This assumption is very weak since if it does not hold (i.e., z ≤ 0), it simply

says that on average the distance between a pattern and its nearest miss is smaller than the

distance of the pattern from its nearest hit, which is very rare in real applications. In this

case, machine learning algorithms that make decisions based on neighborhood information

(e.g., KNN and SVM with RBF kernel) will perform poorly. With the above assumption,

we prove that λ > 0 by contradiction. Suppose λ < 0. Since there exists zi > 0, then

zi + θi > 0 and wi = (zi + θi)/2λ < 0, which contradicts the constraint w ≥ 0. By using

the Karush-Kuhn-Tucker (KKT) condition [10], namely
∑

i θiwi = 0, it is easy to verify

the following three cases:

• Case 1: zi = 0 ⇒ θi = 0, wi = 0;

• Case 2: zi > 0 ⇒ zi + θi > 0 ⇒ wi > 0 ⇒ θi = 0;

• Case 3: zi < 0 ⇒ θi > 0 ⇒ wi = 0 ⇒ zi = −θi.

It immediately follows that the optimum solution of w can be calculated in the following

closed form:

wi =







0 if zi ≤ 0

1
2λ

zi if zi > 0
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and

w∗ = w/‖w‖2 = (z)+/‖(z)+‖2 , (7)

where (zi)
+ = max(zi, 0). By comparing the expression of w∗ with the weight update rule

of RELIEF (line 6 in Fig. 1), we conclude that RELIEF is an online learning algorithm

that solves the optimization scheme of Eq. (3). This is true except when w∗
i = 0 for zi < 0,

which usually corresponds to irrelevant features.

RELIEF maximizing the averaged margin was first observed in [9], but no mathematical

proof was provided. In the literature, RELIEF is usually regarded as a filter method.

From our analysis, we find that RELIEF is a feature weighting algorithm that utilizes the

performance of a nonlinear classifier when searching for useful features, yet results in a

simple convex problem with a closed-form solution. This clearly explains the simplicity

and effectiveness of RELIEF in real applications.

3 Learning Distance Metric Matrix

A natural extension of RELIEF is to use a full distance metric matrix instead of a diagonal

one. Let us now consider the following optimization problem:

max
W

N
∑

n=1

ρn(W) =
N
∑

n=1

mT
nWmn −

N
∑

n=1

hT
nWhn

subject to ‖W‖2
F = 1,W > 0 ,

(8)

where ρn(W) is the margin of pattern xn computed with respect to W, mn = xn−NM(xn),

hn = xn − NH(xn), and ‖W‖F is the Frobenius norm of W, defined as
√

∑

i,j w2
i,j =

√
∑

i λ
2
i , with {λi}I

i=1 being the set of eigenvalues of W. The optimization problem in

Eq. (8) has the same physical meaning as that in Eq. (3).

The direct optimization of Eq. (8) is computationally arduous. We therefore derive a

closed-form solution. Some organization is merited. First, since W is required to be a

distance metric matrix, it is symmetric positive and semidefinite, and thus can be written

as W = PPT , where P = [p1, · · · ,pI ]. We further assume that {pi}I
i=1 are pairwise
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orthogonal, that is, 〈pi,pj〉 = 0, for any i 6= j. This can be easily done through the

eigenvalue decomposition of W as follows:

W = ΦΛΦT = ΦΛ
1

2Λ
1

2Φ ,

= [
√

λ1φ1, · · · ,
√

λIφI ][
√

λ1φ1, · · · ,
√

λIφI ]
T ,

(9)

Here, {φi}I
i=1 and {λi}I

i=1 are the eigenvectors and eigenvalues of W, respectively. Let

P = [p1, · · · ,pI ]=[
√

λ1φ1, · · · ,
√

λIφI ] . (10)

The task then is to solve for the set {pi}I
i=1. The term

∑N

n=1 mT
nWmn in Eq. (8) can be

rearranged as
∑N

n=1 mT
nWmn

= tr
(

W
∑N

n=1 mnm
T
n

)

,

= tr (WΣm) , (Σm ,
∑N

n=1 mnm
T
n )

= tr
(

Σm

∑I

i=1 pip
T
i

)

,

=
∑I

i=1 pT
i Σmpi .

(11)

Hence, the objective function of Eq. (8) can be expressed as follows:

∑N

n=1 mT
nWmn −∑N

n=1 hT
nWhn ,

=
∑I

i=1 pT
i (Σm − Σh)pi . (Σh ,

∑N

n=1 hnh
T
n )

(12)

Similarly, the optimization constraint can be expressed as a function of the column vectors

{pi}I
i=1:

‖W‖2
F =

∑

s,t w
2
s,t =

∑

s,t

(

∑

i p
(s)
i p

(t)
i

)2

,

=
∑

i,j

(

∑

s p
(s)
i p

(s)
j

)2

=
∑

i,j

(

pT
i pj

)2
,

(13)

where p
(s)
i is the s-th component of vector pi. An equivalent optimization problem of Eq.

(8) can thus be formulated as

max
{pi}I

i=1

∑I

i=1 pT
i (Σm − Σh)pi ,

subject to
∑

i,j

(

pT
i pj

)2
=
∑

i

(

pT
i pi

)2
= 1 ,

(14)

where the equality in the constraint is due to the orthogonality of {pi}I
i=1. Though we do

not list the orthogonality constraint explicitly in the optimization, we will later see that
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this constraint is automatically fulfilled. The Lagrangian of Eq. (14) is:

L = −
I
∑

i=1

pT
i (Σm − Σh)pi + λ

(

I
∑

i=1

(

pT
i pi

)2 − 1

)

. (15)

We define Σmh , Σm − Σh to simplify the notation. Taking the derivative of L with

respect to pi and setting it to zero yield:

∂L/∂pi = −2Σmhpi + 4λpT
i pipi = 0 ,

⇒ Σmhpi/‖pi‖2 = 2λ‖pi‖2
2pi/‖pi‖2 ,

⇒ Σmhp̄i = 2λ‖pi‖2
2p̄i , (Assume ‖pi‖2 6= 0.)

(16)

where p̄i = pi/‖pi‖2. If we define σi = 2λ‖pi‖2
2, then Σmhp̄i = σip̄i is the eigen-system of

Σmh. Note that the above equation also holds if pi = 0. Therefore, the solutions {pi}I
i=1

can be written as

pi =
√

βip̄i, βi ≥ 0, 1 ≤ i ≤ I . (17)

Substituting Eq. (17) into Eq. (14), we obtain an optimization problem of the following

form:

maxβ βTσ ,

subject to ‖β‖2
2 = 1, β > 0 .

(18)

This problem is identical to the one expressed by Eq. (4). Hence, the conclusion drawn in

the last section can be directly applied here:

For {i|σi > 0, 1 ≤ i ≤ I}:
βi = σi/

√

∑

{j|σj>0}

σ2
j (19)

pi = p̄i

√

√

√

√σi/

√

∑

{j|σj>0}

σ2
j (20)

For {i|σi ≤ 0, 1 ≤ i ≤ I}:
βi = 0 and pi = 0 . (21)

Finally, note that the orthogonality constraint of {pi}I
i=1 is automatically fulfilled.
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3.1 Feature Extraction

One direct application of Eq. (8) is for feature extraction. The physical meaning of

Eq. (8) is that we project the data onto a subspace spanned by {pi} so that the aver-

age margin 1
N

∑N

n=1 ρn(W) in the projected subspace is maximized. Recall that principal

component analysis (PCA) determines the projection directions so that the mean-squared

reconstruction error is minimized. The solutions are the eigenvectors of a covariance ma-

trix corresponding to the largest eigenvalues, and the reconstruction error is simply the

sum of the discarded eigenvalues. Similarly, we can regard the objective function of Eq.

(8) as the discriminant power, which can be shown to be
√

∑

{i|σi>0} σ2
i by plugging Eqs.

(19), (20) and (21) into Eq. (18). Forming a projection matrix P by only using {pi}
corresponding to the largest eigenvalues of Σmh, the suffered discriminant power loss is

proportional to the sum of the squared positive eigenvalues that are discarded. More pre-

cisely, let σ1 ≥ · · · ≥ σT > 0 > σT+1 ≥ · · · ≥ σI . By using the first t eigenvectors with

t < T , the discriminant power loss is:

T
∑

i=t+1

σ2
i /

√

∑

{j|σj>0}

σ2
j . (22)

We name the newly proposed algorithm as Local Feature Extraction, or LFE for short,

since the discriminant information is collected through local learning. LFE may be viewed

as the counterpart of LLE [11] in the context of supervised learning. LLE is a manifold

learning algorithm used to reduce data dimensionality in unsupervised learning. Though

both algorithms differ completely in their motivations and detailed algorithm derivations,

it is interesting to note that both LLE and LFE perform learning locally and end up with

an eigenvalue decomposition problem.

LFE has several nice properties. First, since local learning is a nonlinear process, LFE

is capable of extracting nonlinear discriminant information. It examines the nearest miss

and hit of each training sample, and pools the local discriminant information over all

points of the training data into matrix Σmh to determine a projection matrix, a procedure

similar to that of the DANN algorithm proposed by [12]. This property is empirically
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verified in Fig. 3. Second, the implementation of LFE is very easy. We will later show

that the computational cost of LFE is of the same order as that of PCA. Third, as with

PCA, the discriminant power of the features extracted by LFE can be ranked based on

the magnitude of the corresponding eigen-values. This property offers some computational

savings in the estimation of the optimum number of features: one first learns a full distance

metric matrix W, and then sequentially includes the projection vectors {pi} based on

their discriminant power (i.e., eigen-value σi) into a projection matrix and evaluates its

classification performance by using a cross-validation method until the optimum number of

features is found. Fourth, LFE has an explicit mechanism to eliminate irrelevant features,

a nice property inherited from RELIEF. It can be explained as follows: if W in Eq. (8)

was constrained to be a diagonal matrix, then the solution of Eq. (8) is the same as

that of Eq. (3). Hence, one would expect that, when the diagonal constraint is lifted,

the diagonal elements of W are approximately equal to the weights learned by RELIEF.

This is empirically demonstrated in Fig. 5. This means that LFE is capable of removing

irrelevant features by assigning them small values near zero. Also note that some βi’s in

Eqs. (19) and (21) may take the value of zero, which means that LFE is an incomplete

linear transformation and can automatically null out the noise subspaces that contain little

discriminant information. This property is experimentally verified in our experiment (see

Fig. 5).

3.2 Fast Implementation of LFE

The major computation complexity of LFE comes from the eigenvalue decomposition of

Σmh. Therefore, LFE has the same computational complexity as PCA. However, in many

practical applications, such as face recognition (c.f. Table 1), the data dimensionality is

much larger than the number of available training samples. Both PCA and LFE can be

implemented efficiently since the information is encoded in a much smaller subspace. The

derivation of the fast PCA implementation is straightforward, and we herein only present

a fast implementation for LFE.

11



We first denote X = [x1, · · · ,xN ]. For notational simplicity, we also assume that the

data has been centered, that is,
∑N

n=1 xn = 0. Let XXT = Ψ∆ΨT be the eigenvalue

decomposition of the scatter matrix XXT , where the eigenvalues in ∆ are sorted in a

decreasing order. The pattern x can then be expressed as x = Ψ1y, where Ψ1 contains the

eigenvectors corresponding to the first N largest eigenvalues of XXT and y = ΨT
1 x. Then,

Eq. (16) can be expressed as

Ψ





Σmhy 0

0T 0



ΨT p̄i = σip̄i , (23)

where Σmhy is the same as Σmh, but is computed with y. Defining p̃i = ΨT p̄i and pre-

multiplying ΨT to both sides of Eq. (23) yield





Σmhy 0

0T 0









p̃i,1

p̃i,2



 = σi





p̃i,1

p̃i,2



 . (24)

It immediately follows that Σmhyp̃i,1 = σip̃i,1 and p̃i,2 = 0. Note that Σmhy is an N × N

matrix that has much smaller dimensions than Σmh, and both matrices share the same set

of non-zero eigenvalues. With p̃i computed, p̄i = Ψp̃i = Ψ1p̃i,1.

We now discuss the computational complexity of LFE and PCA. If N > I, the com-

plexity of LFE and PCA is O(NI2) + O(I3), where the first term is for the computation

of a scatter matrix and the second term is for the eigenvalue decomposition. If N < I, the

complexity of PCA and LFE are O(IN2)+O(N3) and O(IN2)+ 2O(N3), respectively. In

both cases, LFE has a comparable computational cost to PCA.

4 Extension to Address Multiclass Problems

The newly proposed LFE algorithm can be easily extended to address multiclass problems.

A natural extension of the margin defined in Eq. (2) to multiclass problems is [13]:

ρn(w) = min
{c∈Y ,c 6=yn}

d(xn, NM(c)(xn)|w) − d(xn, NH(xn)|w) ,

= min
xi∈D\Dyn

d(xn,xi|w) − d(xn, NHn|w) ,
(25)
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where Y is the set of class labels, NM(c)(xn) is the nearest neighbor of xn from class c, and

Dc is a subset of D containing only samples from class c. The derivation of our feature

extraction algorithm for multiclass problems by using the margin defined in Eq. (25) is

straightforward.

5 Related Work

In this section, we briefly review some feature extraction algorithms that we will compare

to LFE in our experiments. PCA is probably one of the most commonly used algorithms

in the literature for feature extraction, largely because it has a clear physical meaning

and can be implemented easily. One major drawback of PCA, however, is that the top

ranked principal components are not necessarily the ones containing the most discriminant

information. We do not consider other PCA-type algorithms (e.g., kernel PCA [14]) in

the experiment because these algorithms, though performing better than PCA in detecting

nonlinear embedding, all ignore class label information in a learning process and thus suffer

from the same problems as PCA. Linear discriminant analysis (LDA) tries to overcome

this problem of PCA by projecting data onto a subspace such that the ratio between

the determinant or trace of the between-class scatter matrix and that of the within-class

scatter matrix in the projected subspace is maximized. However, LDA fails when the

feature dimensionality is larger than the sample size. To overcome this limitation, a new

algorithm, referred to as MMC, is recently proposed in [15]. MMC maximizes the trace

of the between-class scatter matrix minus the within-class scatter matrix. It avoids the

inversion of the within-class scatter matrix, and thus works well in problems with a small

sample size. However, as with LDA, MMC can at most generate C − 1 features, which

do not necessarily encode all of the discriminant information, where C is the number of

classes. Moreover, when the number of samples exceeds the data dimensionality, MMC is

equivalent to LDA [15].

In [12], a local learning based feature extraction algorithm, referred to as DANN, is

proposed. DANN projects data onto a subspace corresponding to the largest eigenvectors
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of the average local between-class scatter matrices. Therefore, DANN is highly related to

LDA. Favorable results have been reported in [12, 16], indicating that DANN has the capa-

bility to extract discriminant information while filtering out irrelevant features. However,

the objective function optimized by DANN is not directly related to the performance of

any specified learning algorithm. Hence, DANN can be regarded as a filter method in the

context of feature extraction. We will later see in the experiment that the performance of

DANN relies heavily on the correct estimate of the number of extracted features.

More recently, a distance metric learning algorithm named neighborhood component

analysis (NCA) is proposed in [17]. The basic idea of NCA is to estimate a distance

metric matrix (or equivalently a projection matrix) to minimize the error probability under

stochastic neighborhood assignment. Our work shares the similar basis to NCA in the

sense that both learn a projection matrix based on local information. However, unlike

LFE, NCA is a non-convex optimization problem, and its implementation completely relies

on gradient descent. Therefore, NCA does not scale well to a classification problem with a

large feature dimensionality. For example, in a face recognition problem that we consider

in our experiment (c.f. Table 1), the images are of size 85 × 60. To learn a full metric

matrix, NCA essentially performs gradient-descent search in a space of size 5100 × 5100,

which is computationally infeasible.

Another related algorithm is LMNN [18]. Unlike NCA, LMNN is posed as a convex

problem, and thus the reach of the global solution is guaranteed. However, a special

optimization solver is needed for efficient implementation. It is reported that LMMN

performs similarly to NCA [18].

Two local-learning based classification algorithms, namely ADAMENN [19] and LAMANNA

[20], are worthy of mention. Similar to LFE, both algorithms have an embedded adaptive

mechanism that learns discriminant information locally. However, both algorithms perform

feature weighting, instead of feature extraction, which is the main focus of the paper. More-

over, the way that both ADAMENN and LAMANNA use to determine feature relevance is

very different from LFE. For example, LAMANNA first trains a SVM to construct a deci-
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Table 1: Data Summary

data sets train test features classes

banana 400 4900 2 2

twonorm 400 7000 20 2

waveform 400 4600 21 2

ringnorm 400 7000 20 2

splice 1000 2175 60 2

thyroid 140 75 5 2

USPS (3 vs 5) 1214 326 256 2

face 500 1456 5100 2

11 Tumors 174 / 12533 11

9 Tumors 60 / 5726 9

Brain Tumors 1 90 / 5920 5

Brain Tumors 2 90 / 10367 4

Leukemia 1 72 / 5327 3

Leukemia 2 72 / 11225 3

Lung Cancer 203 / 12600 5

DLBCL 77 / 5469 2

sion boundary, then estimates a feature weighting vector for each test sample by computing

the gradient vector of the closest point of the test sample on the decision boundary, and

finally the feature weighting vector is used to classify the test sample by using a K-nearest

neighbor classifier. Another major difference is that the two algorithms are designed for

classification purposes while LFE is a data preprocessing method. For this reason, we do

not perform a comparison between LFE and the two algorithms in our experiments.
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Figure 2: USPS handwritten digits: “3” (top row) and “5” (bottom row), and face: female

(top row) and male (bottom row).

6 Experiments

In this section, we conduct some experiments to demonstrate the effectiveness of LFE using

a wide variety of synthetic and real-world data.

6.1 Experiments on UCI Datasets

We first compare LFE with RELIEF, PCA, NCA, MMC, and DANN on six UCI data

sets [21], including banana, twonorm, waveform, ringnorm, thyroid, and splice. The data

information is summarized in Table 1. In order to demonstrate that LFE has an explicit

mechanism to eliminate irrelevant features, we add 10 independent Gaussian distributed

irrelevant features to each pattern. The code of NCA is downloaded from [17], and the

default settings are used throughout the study. We compare RELIEF and LFE to illus-

trate when and how LFE can improve classification performances of RELIEF. It should be

emphasized that feature weighting and extraction are used in different scenarios. In the

experiment, we actually use RELIEF-F [22], which uses M , instead of just one, nearest

hits and misses in computing margins to ensure greater robustness of the algorithm against

noise. For the same reason, we search for multiple nearest neighbors in LFE. The value of

M is found through 10-fold cross-validation on training data.

KNN is used to estimate the classification errors for each algorithms for two reasons.

First, KNN is a very simple yet effective classifier. Given a proper distance metric used to

identify nearest neighbors, KNN often yields competitive results to some advanced machine

learning algorithms. For this reason, many distance metric learning algorithms (e.g., [17,
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Table 2: The testing errors and STDs (%) on six UCI datasets. When the difference between

weighted and unweighed approaches (KNN performed on noisy data) are more than three

STDs, the results are boldfaced. 0.01+(0.01−) means LFE performs better (worse) than

RELIEF or NCA at 0.01 p-value level.
Data KNN KNN RELIEF MMC DANN NCA LFE p-value p-value

(clean data) (noisy data) (LFE/RELIEF) (LFE/NCA)

banana 11.6(0.6) 37.1(2.1) 12.3(0.7) 47.7(1.0) 23.0(4.4) 25.4(4.4) 18.2(2.5) < 0.001− < 0.001+

splice 26.7(2.0) 26.6(1.8) 11.4(0.9) 16.9(4.1) 14.1(0.7) 13.9(0.4) 12.0(0.7) 0.02− 0.002+

waveform 11.4(0.5) 12.6(0.7) 10.8(0.5) 17.4(3.6) 11.1(0.8) 10.9(0.5) 9.8 (0.6) < 0.001+ < 0.001+

ringnorm 34.7(1.7) 39.2(1.3) 31.3(2.8) 33.8(2.1) 24.1(2.7) 26.8(1.2) 22.0(1.3) < 0.001+ < 0.001+

twonorm 3.3(0.2) 3.9(0.3) 3.5(0.4) 2.6(0.3) 2.9(0.3) 3.8(0.5) 2.6(0.2) < 0.001+ < 0.001+

thyroid 4.4(2.4) 17.0(3.0) 9.5(3.0) 13.7(8.5) 8.8(3.4) 7.0(2.6) 6.2(2.8) 0.001+ 0.36+

Table 3: CPU time (second) per run (Pentium4 2.80GHz with 2.00GB RAM)

Dataset NCA DANN LFE PCA MMC

banana 12.6 3.6 3.3 3.0 3.1

twonorm 41.6 4.7 4.8 4.7 4.7

waveform 38.8 4.4 4.3 4.2 4.2

ringnorm 39.4 4.7 4.7 4.7 4.7

splice 383.6 8.4 8.4 4.8 4.9

thyroid 4.9 3.2 3.3 3.2 3.2

USPS 1120 22.3 21.5 4.2 4.6

face 185.7 24.9 23.8 8.6 8.7

18]) are specifically designed to improve the performance of KNN. Second, using KNN

makes our experiment computationally feasible. KNN is certainly not an optimal classifier

for each dataset. However, the focus of this paper is not on the optimal classifier design but

on feature extraction. KNN provides us with a platform where we can compare different

feature extraction algorithms with a reasonable computational cost. The number of the

nearest neighbors is estimated through 10-fold cross-validation using training data. In

Section 6.2, we perform an experiment on using LFE to improve the performance of SVM.

To eliminate statistical variations, each algorithm is run 20 times for each dataset. In

each run, a dataset is randomly partitioned into training and testing, and 10 irrelevant

17
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Figure 3: The original banana data and the top two features extracted by PCA, DANN,

NCA, and LFE using corrupted banana data. The top two features extracted by LFE

faithfully reconstruct the original data except for some minor distortions and rotation.
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Figure 4: Classification errors of PCA, LFE, NCA, MMC and DANN on six UCI datasets.
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features are added. The testing errors of DANN, NCA, LFE and PCA as a function of the

number of extracted features for each dataset, averaged over 20 runs, are plotted in Fig. 4.

MMC can extract only one feature since all of the UCI data are binary problems. In Table

2, the testing errors and the standard deviations (STDs) are reported. For RELIEF, after

finding feature weights, we first remove the features corresponding to the negative weights,

and then perform classification on the weighted feature space [8]. For both DANN and

LFE, the optimum number of features used in KNN is estimated through cross-validation.

For NCA, due to computational reasons, we simply record the minimum value of the av-

erage error of each dataset. For a rigorous comparison of LFE with RELIEF and NCA, a

Student’s paired two-tailed t-test is also performed. The p-value of the t-test reported in

Table 2 represents the probability that two sets of compared samples come from distribu-

tions with equal means. The smaller the p-value, the more significant the difference of the

two average values is, and a p-value of 0.05 is considered statistically significant. As a ref-

erence, the classification errors of KNN on the clean data (without irrelevant features) and

noisy data are also reported. From these experimental results, we arrive at the following

observations:

(1) The performance of KNN is degraded significantly in the presence of irrelevant

features, as reported in the literature.

(2) The original banana data is distributed in a two-dimensional space. This toy example

provides us with an opportunity to examine the capability of each algorithm to extract

nonlinear discriminant information by plotting the top two extracted features. We do not

consider MMC here since MMC can extract only one feature. As can be seen from Fig.

3, the top two features extracted by LFE remove nearly all of the noise, and faithfully

reconstruct the original data except for some minor distortions and rotation. While the

original shape of banana is still recognizable from the result of NCA, it is not the case for

both PCA and DANN. This is because some non-discriminant noise enters the top two

features, leading to a severe distortion of the distribution of the original data.

(3) From Fig. 4, we observe that with respect to classification errors and the effectiveness
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in reducing data dimensionality, LFE performs the best, DANN and NCA the second, MMC

and PCA the worst. The feature extracted MMC clearly does not encode all of the useful

information. The performance of DANN is conditioned heavily on the correct estimate of

the number of extracted features, whereas both LFE and NCA are very robust against this

parameter, which makes model selection easy in real applications. Compared with NCA,

LFE performs significantly better on five out of six datasets (p-value < 0.01, Table 2).

(4) In Table 3, we report the CPU time per run of PCA, NCA, MMC and LFE for each

dataset. We observe that NCA is much more computationally expensive than DANN and

LFE, while the latter two has a comparable computational cost to PCA and MMC.

(5) Both RELIEF and LFE can significantly improve the performance of KNN per-

formed on noisy data. However, the performance of feature weighting and extraction

largely depends on the characteristic of the studied datasets. We particularly examine

four datasets that have significant performance differences between RELIEF and LFE. As

one moves from banana to splice, waveform, and ringnorm, and then to twonorm, the degree

of correlation increases significantly, manifested in the learned distance metric matrices W

plotted in Fig. 5. As a result, LFE performs worse than RELIEF on the first two datasets,

but significantly better on the last three ones (p-value < 0.001). From this experiment,

we conclude that when there exists feature interaction, LFE has a clear advantage over

RELIEF.

(6) An important feature of LFE, compared to other feature extraction algorithms

such as PCA and DANN, is that LFE is capable of eliminating irrelevant features, a nice

property inherited from RELIEF. We observe in the plotted distance metric matrices in

Fig. 5 that the lower right corner (the last 10 rows and columns) that corresponds to

artificially added irrelevant features takes small values near zero. This becomes even more

clearer when the diagonal elements of a distance metric matrix are plotted against the

feature weights learned by RELIEF. The irrelevant features have been largely removed by

LFE. This explains why LFE becomes flatten after reaching the minimum classification

errors in almost all datasets (Fig. 4). However, the diagonal elements of W corresponding
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to irrelevant features, though small, are not exactly equal to zero. This leads to a minor

overfitting problem in some datasets (e.g., ringnorm). However, compared to PCA and

DANN, overfitting in LFE is much alleviated.

6.2 Experiments on USPS and Face Datasets

We then compare LFE with DANN, NCA, MMC and PCA on two real-world problems: the

USPS handwritten digit recognition (USPS) dataset [23] and the AR face recognition (face)

[24] dataset. These are two most studied object-recognition problems. Due to the high

feature dimensionality, one of the main purposes of feature extraction in these studies, in

addition to improving classification accuracy, is to reduce the precessing time in a classifier

system. For the USPS dataset, we choose only two classes, namely “3” and “5”, as they

represent two of the most challenging digits to classify, and for the face dataset, the task

is to classify female against male (see Fig. 2 for some sample images). Note that in the

face dataset the data dimensionality significantly outnumbers the training samples. For

both face and USPS, it is computationally infeasible to directly apply NCA to the original

feature space. We therefore first perform PCA that projects data onto its leading 50

principal components and then perform NCA.

The testing results of DANN, PCA and LFE as a function of the top 50 extracted

features, averaged over 20 runs, are plotted in Fig. 6. Due to the high computational

cost associated with NCA, we only perform NCA on four levels of feature numbers (i.e.,

10, 20, 30, 40, 50). The results are quite consistent with those of the UCI datasets. For

both data sets, LFE reaches the minimum classification errors around 20 features, both

DANN and PCA perform worse than LFE for nearly all feature numbers, and MMC is

the worst one. NCA performs similarly to LFE on USPS but much worse on face. With

20 features, the classification errors (STDs) of LFE, NCA, DANN, and PCA for USPS

are 2.0 (0.7)%, 2.3(0.8)%, 2.6 (0.9)% and 2.7 (1.0)%, respectively, and for face 8.0 (1.0)%,

11.8(1.8)%, 11.4 (0.7)% and 13.5 (1.3)%, respectively. For both data sets, the difference

in performance between PCA and LFE is approximately equal to or much larger than one
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Figure 5: Distance metric matrices W learned on (a) banana, (b) splice, (c) waveform,

(d) ringnorm, and (e) twonorm. The lower right corner (the last 10 rows and columns)

that corresponds to artificially added irrelevant features takes small values near zero. The

diagonal elements of distance metric matrices are plotted against the feature weights learned

by RELIEF.
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error bar (p-value< 0.01).

In Table 3, we list the CPU time of LFE, DANN, NCA, MMC and LFE. We note that

both LFE and DANN are computationally expensive than PCA and MMC. The added

computational cost comes from the search for the nearest neighbors and the computation

of PCA that projects data onto a subspace on which DANN and LFE are performed.

Nevertheless, both DANN and LFE are computationally much more efficient than NCA,

though NCA is only performed on a 50-dimensional PCA subspace.

We have so far shown that LFE can significantly improve the performance of KNN

(Table 2). In fact, any classification algorithm that uses a distance function to define

similarities among patterns can benefit from distance metric learning. For example, in

SVM with RBF kernel, the classification performance relies on the accurate estimation

of a kernel matrix, the ij-th entry of which is computed as Kij = exp(−‖xi − xj‖2/δ)

where δ is the kernel width. It is difficult to directly learn a distance metric in the SVM

framework since the margin maximized by SVM is nonlinearly related to a distance metric

through a kernel matrix. Below, we conduct an experiment on using LFE to improve

the performance of SVM. Due to the huge computation involved in the estimation of the

structural parameters of SVM1, we only perform SVM on the face dataset using the first 20

and 50 features. With 20 features, the testing errors (STDs) of LFE, DANN and PCA are

5.9 (0.9)%, 6.6 (1.0)% and 7.5 (0.9)%, respectively, and with 50 features, 4.1 (0.8)%, 4.5

(0.8)% and 4.9 (0.8)%, respectively. Though the performance difference between PCA and

LFE is diminished, largely due to the noise resistance of SVM, LFE performs significantly

better than PCA (p-value < 0.01).

1The structural parameters of SVM include the kernel width and the regularization parameter. These

parameters are determined by grid searching over 5 levels of kernel widths {0.1, 0.2, 0.5, 1, 1.5} and 5 levels

of regularization parameters {1, 10, 100, 500, 1000} using 10-fold cross-validation on the training data for

each feature extraction algorithms.
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Figure 6: Classification errors of KNN on the USPS and face datasets.

6.3 Experiments on Microarray Data

We finally compare LFE with DANN, MMC and PCA on eight microarray data. In the

literature, feature selection and weighting are more commonly used for the purpose of

identifying disease related genes [25, 26]. However, in this paper, we use microarray data

to illustrate how our algorithm performs on real-world data with a wide range of sample

sizes, data dimensionality and class labels (see Table 1). For all microarray data sets,

the feature dimensionality is much larger than the number of samples. A more detailed

description of these microarray data sets can be found in [27].

Due to the small sample size, the leave-one-out cross validation (LOOCV) method is

used to evaluate the performance of each algorithm. As can be seen from the previous

sections, NCA does not have much advantage over LFE in terms of performance and

computational efficiency. Moreover, it is very computationally expensive to perform NCA

with LOOCV. Hence, we omit NCA in the experiment. Unlike the data we consider in the

previous experiments, all microarray data sets except for DLBCL are multiclass problems.

Hence, MMC can extract more than one feature.

The classification errors of KNN as a function of the top 50 extracted features are

presented in Fig. 7. We observe that with respect to classification performance and the

effectiveness of reducing data dimensionality, LFE performs the best, MMC the second,
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DANN and PCA the worst. Since in each iteration of LOOCV, KNN classifies a test

sample either correctly or incorrectly (i.e., 0 or 1), we are unable to perform a t-test to

quantify the performance of each algorithm, as we did in the previous experiments. MMC

performs very well in these small sample-size problems, which is consistent with the results

reported in [15]. However, it is clear from the figure that MMC does not extract all of the

discriminant information. For example, in 9-Tumors, the classification error of MMC is

48% with 8 features compared to 40% for LFE with 15 features.

7 Conclusion

We have provided a very easy-to-understand interpretation for RELIEF that clearly ex-

plains its success in practical applications. The new interpretation motivated us to pro-

pose a new feature extraction algorithm referred to as LFE as a natural generalization of

RELIEF. LFE collects discriminant information locally and results in an eigenvalue de-

composition problems. Similar to PCA, LFE also has a clear physical meaning and can

be implemented easily with a comparable computational cost. Unlike PCA, LFE has an

explicit mechanism to remove irrelevant features, and thus can provide a very good gener-

alization capability. We have experimentally demonstrated that LFE performs significantly

better than PCA, NCA, MMC and DANN. Given the popularity of PCA and the superior

performance of LFE, we believe that our algorithm should find widespread use in similar

applications.
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