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AdaBoost rarely suffers from overfitting problems in low noise data cases. However, re-
cent studies with highly noisy patterns have clearly shown that overfitting can occur.
A natural strategy to alleviate the problem is to penalize the data distribution skew-
ness in the learning process to prevent several hardest examples from spoiling decision
boundaries. In this paper, we pursue such a penalty scheme in the mathematical pro-
gramming setting, which allows us to define a suitable classifier soft margin. By using
two smooth convex penalty functions, based on Kullback-Leibler divergence (KL) and l2
norm, we derive two new regularized AdaBoost algorithms, referred to as AdaBoostKL

and AdaBoostNorm2, respectively. We prove that our algorithms perform stage-wise gra-
dient descent on a cost function, defined in the domain of their associated soft margins.
We demonstrate the effectiveness of the proposed algorithms through experiments over
a wide variety of data sets. Compared with other regularized AdaBoost algorithms, our
methods achieve at least the same or better performance.

Keywords: adaptive boosting (AdaBoost); minimax problem; margin; soft margin; reg-
ularization.

1. Introduction

The adaptive boosting (AdaBoost) algorithm is considered one of the most im-
portant developments in the classification methodology in recent years. It has been
used with great success in many applications.1,2,3 In the low noise regime, empirical
evidence indicates that AdaBoost rarely suffers from overfitting problems. One lead-
ing explanation to understand this phenomenon is contemplated to be the margin
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concept.4 It has been empirically observed that AdaBoost can effectively increase
the margin, and a large margin, in turn, is usually conducive to good generalization,
in the sense that if a large margin can be achieved with respect to given data, an
upper bound on the generalization error is small.5 Recent studies with highly noisy
patterns,6,7,8,9 however, have shown that overfitting may occur. Therefore, in the
light of AdaBoost’s increasing popularity, it is important to examine the overfitting
phenomenon, and to seek effective solutions, which would enhance the performance
of AdaBoost in noisy settings.

It has been reported that the main reason for poor classification results of
AdaBoost in the high-noise regime is that the algorithm produces a skewed data
distribution, by assigning too much weight onto a few hard-to-learn examples.7

Therefore, one natural strategy is to introduce a regularization term into the algo-
rithm, which would control the data distribution skewness. Based on this principle,
one of the earliest proposed algorithms is AdaBoostReg.9 It is a heuristic algorithm
based on an intuitive idea of controlling the tradeoff between the margin and the
sample influences to achieve a soft margin. In comparison with other available reg-
ularized boosting algorithms, AdaBoostReg yields among the best generalization
results on noisy data. However, since the regularization is introduced on the algo-
rithm level, it is difficult to analyze its underlying optimization scheme, and the
ultimate goal of the algorithm is obscure. 1,8.

Since it is not straightforward to include a regularization term into AdaBoost,
a potentially better way to design new regularized boosting algorithms may be
to exploit the close relationship between AdaBoost and the well-known minimax
problem. As an advantage of this approach, some of the well-studied mathematical
programming techniques can be directly utilized. One typical representative of this
strategy is LPreg-AdaBoost, which constitutes the underlying optimization scheme
of ν-Arc,10 and C-Barrier algorithms.8 In LPreg-AdaBoost, slack variables are in-
troduced into an optimization problem in the primal domain, similar to Support
Vector Machine (SVM) in the non-separable data case. In the dual domain, we
show this algorithm is equivalent to constraining the data distribution to a box. As
such, this algorithm can be understood as a penalty scheme with a zero penalty
within the box and infinity outside the box. In this sense, the scheme is somewhat
heuristic, and may be too restrictive.

In this paper, we instead consider controlling the skewness of data distributions
by adding a convex penalty function to the objective function of the minimax prob-
lem. By the means of the generalized minimax theorem, we show that the penalty
scheme can be pursued equivalently in the dual domain, wherein we specify the gen-
eral framework of the proposed regularization. This general framework gives rise to
a range of regularized boosting algorithms, differing in a particular specification of
the penalty function. For example, we show that LPreg-AdaBoost can be derived
from the outlined framework if the penalty is defined as a hard-limited function,
which is a novel interpretation of the algorithm. We study two penalty functions
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that are based on the Kullback-Leibler (KL) divergence, and lp norm. From the
minimax optimization problem, where these two penalty functions are introduced,
we derive the soft margin, and two novel regularized AdaBoost algorithms, referred
to as AdaBoostKL and AdaBoostNorm2. These two algorithms can be viewed as an
extension of AdaBoostReg; the main difference is in specification of the soft mar-
gin. We believe that the soft margin in our methods is more reasonable than that
in AdaBoostReg with respect to two criteria. First, we prove that our algorithms
perform the stage-wise gradient descent of a cost function, defined in the domain
of the soft margin, whereas AdaBoostReg does not have such property. Second,
AdaBoostKL and AdaBoostNorm2 outperform AdaBoostReg. To demonstrate the ef-
fectiveness of our algorithms, we report experiments on a wide variety of artificial
and real-world data sets, where we compare the performance of our algorithms with
that of AdaBoostReg, ν-Arc, C-Barrier and SVM. We record that the classification
results of AdaBoostKL and AdaBoostNorm2 are among the best.

The rest of the paper is organized as follows. First, in Section 2 we present a
brief review of AdaBoost. In Section 3 we propose two new algorithms, namely
AdaBoostKL and AdaBoostNorm2. In Section 4, we report experiments on a wide
variety of data sets, where we compare the performance of our algorithms with that
of AdaBoostReg, ν-Arc, C-Barrier and SVM. We conclude the paper in Section 5.

Throughout, a vector is denoted as a boldface low-case letter, and a matrix, as
a boldface upper-case letter. The ij-th entry of a matrix Z is written as zij . z.i and
zj. are the i-th column and j-th row of Z, respectively. The un-normalized vector
of a is denoted as ã, that is, a = ã/‖ã‖1, where ‖ · ‖p is the p-norm.

2. AdaBoost

In this section, we briefly review AdaBoost, as well as its interpretation as a func-
tional gradient-descent procedure. For a thorough description, the interested reader
is referred to a good tutorial paper,1 and references therein.

Suppose we are given a training data set D = {(xn, yn)}N
n=1 ∈ X×Y, where X is

a pattern space and Y={±1} is a label space. Given a class of hypothesis functions
H = {h(x) : x → ±1}, called weak learners or base learners, we are interested
in finding an ensemble function F (x) =

∑
t α̃tht(x), or f(x)=

∑
t αtht(x), such

that a certain cost function is minimized, where αt , α̃t/
∑

t α̃t. Both the vector
of combination coefficients α̃ and hypothesis functions ht(x) are learned in the
learning process. Several ensemble methods have been developed for this purpose,
among which AdaBoost is the most popular.3 The pseudo code of AdaBoost is
presented in Fig. 1.

AdaBoost can be viewed as an algorithm performing stage-wise gradient descent
of a cost function of margins G defined as

G , 1
N

∑N
n=1 exp (−ynF (xn)) ,

= 1
N

∑N
n=1 exp (−ρ(xn)

∑
t α̃t) , (4)
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AdaBoost
Initialization: D = {(xn, yn)}N

n=1, maximum number of iteration steps T , d
(1)
n =

1/N , n = 1, · · · , N

for t = 1 : T

1. Train the weak learner with respect to distribution d(t) and get
hypothesis
ht(x) : x → {±1}.
2. Calculate the weighted training error εt of ht:

εt =
N∑

n=1

d(t)
n I(yn 6= ht(xn)) , (1)

where I(·) is the indicator function.
3. Compute the combination coefficient:

α̃t =
1
2

ln
(

1− εt

εt

)
, (2)

4. Update weights for n = 1, · · · , N :

d(t+1)
n = d(t)

n exp (−α̃tynht(xn)) /Ct (3)

where Ct is the normalization constant, such that
∑N

n=1 d
(t+1)
n = 1.

end
Output : F (x) =

∑T
t=1 α̃tht(x)

Fig. 1. Pseudo code of AdaBoost.

where ρ(xn) , ynf(xn) denotes the margin of sample xn with respect to f(xn). At
the t-th iteration, the negative functional derivative of G at Ft−1 is given by

−∇G(Ft−1)(x) =
{

0 , if x 6= xn
1
N yn exp(−ynFt−1(xn)) , if x = xn, n = 1, · · · , N

(5)

Eq. (5) represents the direction, in which the cost function most rapidly decreases.
Since the choice of the new ht is constrained to H, it may not be possible to choose
ht = −∇G(Ft−1)(x).11 Instead, the search for ht is conducted such that the inner
product given by

〈−∇G,ht〉 =
1
N

N∑
n=1

exp(−ynFt−1(xn))ynht(xn) ,

=
∑N

i=1 exp(−ynFt−1(xn))
N

N∑
n=1

exp(−ynFt−1(xn))∑N
i=1 exp(−yiFt−1(xi))

ynht(xn) ,(6)



Reducing Overfitting of AdaBoost by Controlling Distribution Skewness 5

is maximized.12 By unravelling Eq. (3) in Fig. 1, we get

d(t)
n = d(t−1)

n exp(−α̃t−1ynht−1(xn))/Ct−1 =
exp(−ynFt−1(xn))∑N
i=1 exp(−yiFt−1(xi))

. (7)

From Eqs. (6) and (7), it immediately follows that ht(x) is chosen to minimize the
weighted error in Eq. (1). After ht(x) is selected, coefficient α̃t can be found by a
line search to minimize the intermediate cost function:

G(t) =
1
N

N∑
n=1

exp

(
−yn

(
t−1∑

i=1

α̃ihi(xn) + α̃tht(xn)

))
. (8)

In the binary classification case, i.e., H = {h(x) : x → ±1}, α̃t can be computed
analytically as a solution to ∂Gt/∂α̃t = 0, which is equal to the closed form in Eq.
(2).

It has been empirically observed that AdaBoost can effectively increase the
margin.4 For this reason, since the invention of AdaBoost, it has been conjectured
that AdaBoost, in the limit (i.e., t →∞), solves the following linear programming
(LP) problem:

max ρ ,

s.t. ρ(xn) ≥ ρ, n = 1, · · · , N ,
(9)

where the margin is directly maximized. In the recent paper, however, the equiva-
lence of the two algorithms has been proven not to hold always.13 Nevertheless, these
two algorithms are closely connected in the sense that both algorithms try to max-
imize the margin. This observation motivates researchers to design new ensemble
classifiers either directly in the mathematical optimization setting, 6,14 or by bor-
rowing ideas from the optimization setting, and introducing them in boosting.8,9,10

Thereby, some of the well-studied optimization techniques can be utilized as novel
boosting techniques.

3. Regularized AdaBoost

We begin the derivation of our regularization scheme by investigating the mini-
max problem. The connection between the well-known minimax problem,15 and
AdaBoost was first noted by Breiman,16 and Freund and Schapire.17 They deter-
mined the maximum achievable margin, given a hypothesis class, by exploiting the
duality relationships in linear programming. For the time being, we assume that the
cardinality of the set of hypothesis functions, H, is finite and equal to T . We define
a gain matrix, Z, where znt = ynht(xn) is the margin of sample xn with respect
to the t-th hypothesis function ht. Let us, now, examine the following minimax
optimization problem:

max
α∈ΓT

min
d∈ΓN

dTZα (10)

where ΓT is the distribution simplex defined as ΓT = {α : α ∈ RT ,
∑T

t=1 αt =
1, α ≥ 0}. The optimization scheme in Eq. (10) can be interpreted as finding a set
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of combination coefficients α, such that the performance of the ensemble classifier
in the worst case is optimized. It is straightforward to show that this optimization
scheme leads to the maximum margin scheme in Eq. (9).

Generally speaking, a large margin is usually conducive to good generalization;
however, for noisy data, where the data samples are highly overlapped and/or a
few samples are mislabelled, the maximum margin scheme can be easily misled by
outliers, yielding a classifier with suboptimal performance. Note that in Eq. (10) the
minimization takes place over the entire probability space of the data distribution,
which is not sufficiently restrictive. A natural strategy, therefore, is to constrain the
data distribution, or add a penalty term to the cost function to control the skewness
of the data distribution. Thereby, the algorithm will not be allowed to waste all of
its resources dealing with a few hard-to-learn samples. Below, we present three
regularized AdaBoost algorithms that fall into this framework.

3.1. LPreg-AdaBoost

By constraining the distribution to a box 0 ≤ d ≤ c, we obtain the following
optimization problem:

max
α∈ΓT

min
{d∈ΓN ,d≤c}

dTZα , (11)

where c is a constant vector, and usually takes a form of c = C1 with C being
a predefined parameter, and 1 ∈ RN being a vector of all ones. The optimization
scheme in Eq. (11) can be understood as finding a set of combination coefficients α,
such that the classification performance, in the worst case, within the distribution
box, is maximized. The LP equivalent to Eq. (11) is

max(ρ,λ,α) ρ−∑N
n=1 cnλn ,

subject to
∑T

t=1 αtznt ≥ ρ− λn, n = 1, · · · , N ,

λn ≥ 0, n = 1, · · · , N, α ∈ ΓT .

(12)

LPreg-AdaBoost is a special case of Eq. (12) obtained by setting c1 = c2 = · · · =
cN = C.9 A similar scheme is also used in Support Vector Machine for nonseparable
data cases.18 The optimization scheme in Eq. (12) introduces a nonnegative slack
variable λn into the optimization problem to achieve the soft margin, ρs(xn), of
pattern xn, defined as

ρs(xn) = ρ(xn) + λn . (13)

The relaxation of the hard margin allows some patterns to have a smaller margin
than ρ. Consequently, the algorithm does not classify all of the patterns according
to their associated class labels.

The dual of Eq. (12) is given by

min(γ,d) γ ,

subject to
∑N

n=1 dnznt ≤ γ, t = 1, · · · , T ,

d ≤ c, d ∈ ΓN .

(14)
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By working directly in the dual domain, we lose the clarity of pursuing regulariza-
tion through the margin concept. Yet, the dual domain proves advantageous, since
the primal domain is not suitable for specifying the soft margin, except in the case
defined in Eq. (13).

For convenience, we reformulate Eq. (11) as

max
α∈ΓT

min
d∈ΓN

dT Zα + β(‖d‖∞) , (15)

where ‖ · ‖p is the p-norm, and β(P ) is a function defined by

β(P ) =
{

0 , if P ≤ C ,

∞ , if P > C .
(16)

Note that the box defined by {d : ‖d‖∞ ≤ C,d ∈ ΓN} is centered at the distribution
center d0 = [1/N, · · · , 1/N ]. Also, the parameter C reflects to some extent the
distribution skewness between the box boundary and d0. Eq. (15) indicates that
LPreg-AdaBoost is a penalty scheme with a zero penalty within the box, and infinity,
outside the box. In this sense, this scheme is somewhat heuristic and may be too
restrictive.

With respect to the implementation of LPreg-AdaBoost, we note that in practice
the cardinality of H can be infinite. Consequently, the gain matrix Z may not exist
in an explicit form. As a result, the linear programming cannot be implemented
directly. To overcome the problem, several algorithms have been proposed. Two
typical examples are ν-Arc,10 and C-Barrier algorithms.8

In the following sections, we use |H| to denote the cardinality of the hypothesis
function set, and reserve T as the number of iteration steps in AdaBoost.

3.2. AdaBoostKL

Motivated by Eq. (15), one plausible strategy to control the skewness of the data
distribution is to add a penalty term, P (d), to the cost function in Eq. (10). The
penalty can be defined as a function of the distance between query distributions d
and distribution center d0. This leads to the following optimization problem:

max
α∈Γ|H|

min
d∈ΓN

dT Zα + βP (d) , (17)

where β > 0 is a predefined parameter controlling the penalty strength. With a
mild assumption that P (d) is a convex function of d, it can be shown that Eq. (17)
is equivalent to (Generalized Minimax Theorem19):

min(γ,d∈ΓN ) γ + βP (d) ,

subject to
∑N

n=1 dnznj ≤ γ, j = 1, · · · , |H| .
(18)

We refer to the formulation in Eq. (18) as regularized scheme in the dual domain.
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One commonly used distance metric for two discrete distributions is the
Kullback-Leibler (KL) divergence.20 In our case, we have

KL(d,d0) =
N∑

n=1

dn ln
dn

1/N
. (19)

KL(d,d0) is convex over the region d > 0, because its Hessian matrix is positive
definite.

By substituting Eq. (19) into Eq. (18), we derive

min(γ,d∈ΓN ) γ + β
∑N

n=1 dn ln dn

1/N ,

subject to
∑N

n=1 dnznj ≤ γ, j = 1, · · · , |H| . (20)

which can be reformulated as

min(γ,d∈ΓN ) γ ,

subject to
∑N

n=1 dnznj + β
∑N

n=1 dn ln dn

1/N ≤ γ, j = 1, · · · , |H| . (21)

The above optimization problem is illustrated in Fig. 4(a) (|H| = 2). To facilitate
the following discussions, we introduce the following auxiliary terms:

sj(d) =
N∑

n=1

dnznj + β

N∑
n=1

dn ln
dn

1/N
, (22)

s(d) = max
1≤j≤|H|

sj(d) . (23)

Note that s(d) is also a convex function.
Suppose now we are given a set of query distributions {d(t)}T

t=1. For each query
distribution d(t), we can define a supporting hyperplane to the epigraph of s(d),
given by

γ = s(d(t)) + ∂s(d(t))(d− d(t)) , (24)

Due to the convexity of s(d), a supporting hyperplane gives an underestimate of s.
More precisely, Eq. (24) can be written as

γ = max
1≤j≤|H|

sj(d(t)) + ∂s(d(t))(d− d(t)) ,

= zT
.td

(t) + β

N∑
n=1

d(t)
n ln

d
(t)
n

1/N
+


z.t + β




ln d
(t)
1

1/N + 1
...

ln d
(t)
N

1/N + 1







T

(d− d(t)) ,

=
(
z.t + β ln

d(t)

1/N

)T

d , (25)

where

z.t = [y1ht(x1), · · · , yNht(xN )]T , (26)
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and

ht = arg max
h∈H

N∑
n=1

d(t)
n h(xn)yn . (27)

Let us, now, define:

Z̃ = Z + β

[
ln

d(1)

1/N
, · · · , ln

d(T )

1/N

]
, (28)

whose t-th column reads z̃.t = z.t + β ln d(t)

1/N , where z.t is given by Eq. (26). Note

that Z̃ can be interpreted as a new gain matrix. This means that adding a penalty
function to Eq. (10) results in a modification of the gain matrix that encodes the
distribution information into the hypothesis decisions. By using Eq. (28), the opti-
mization problem in Eq. (21) can be approximated as

min(γ,d∈ΓN ) γ ,

subject to z̃T
.td ≤ γ, t = 1, · · · , T .

(29)

Eq. (29) represents a linear programming problem that is much easier to deal with
than the original one in Eq. (21). However, this is only a linear approximation that
becomes better as more constraints are added. The above linear approximation
process is illustrated in Fig. 4(b).

The only remaining problem to be considered is the generation of the query
distributions. The distributions can be obtained by using a standard technique
called column generation.21 However, there are several drawbacks associated with
the column generation approach. Usually, it exhibits slow convergence due to the
degeneracy of Eq. (29). Moreover, a highly efficient LP solver is needed to compute
Eq. (29) iteratively. Therefore, to find d, we use another strategy in which we change
the domain of our optimization problem, by deriving the dual form of Eq. (29) as

max(ρ,α∈ΓT ) ρ ,

subject to
∑T

t=1 αtznt + β
∑T

t=1 αt ln d(t)
n

1/N ≥ ρ, n = 1, · · · , N .
(30)

The above formulation gives rise to a new definition of the soft margin of pattern
xn, which can be defined as

ρs(xn) =
T∑

t=1

αtznt + β

T∑
t=1

αt ln
d
(t)
n

1/N
. (31)

Here, the term β
∑T

t=1 αt ln d(t)
n

1/N can be interpreted as “mistrust” in data samples.
Note that the mistrust is calculated with respect to the initial uniform distribution
d(1) = [1/N, . . . , 1/N ]. This implies that if, for example, for all query distributions
of xn, d

(t)
n ≤1/N , t=1, · · · , T , then the mistrust can take negative values. As a result,

the soft margin provides the mechanism to penalize difficult-to-learn samples, and at
the same time to award easy-to-learn samples. It has been experimentally observed
that AdaBoost increases the margin of the most hard-to-learn examples at the cost
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of reducing the margins of the rest of the data.9,4 Therefore, by defining the soft
margin as in Eq. (31), we seek to reverse the AdaBoost process to some extent, the
strength of which is controlled by β.

The concept of soft margin allows us to formulate a novel regularized AdaBoost
algorithm, which we refer to as AdaBoostKL. Recall that AdaBoost can be viewed
as an algorithm performing stage-wise gradient descent of the cost function defined
in Eq. (4). In light of the relationship between AdaBoost and LP, we use the LP
formulation in Eq. (30) to define a new cost function, GKL, in the domain of the
soft margin:

GKL =
N∑

n=1

exp{−ρs(xn)
∑

t

α̃t} ,

=
N∑

n=1

exp

{
−

[∑
t

αtznt + β
∑

t

αt ln
d
(t)
n

1/N

] ∑
t

α̃t

}
. (32)

To minimize the cost function, in each iteration step t, we first find ht as the
one minimizing the weighted training error, and then calculate the combination
coefficient α̃t as

α̃t = arg min
α̃t≥0

G
(t)
KL

= arg min
α̃t≥0

N∑
n=1

exp



−




t∑

j=1

αjznj + β

t∑

j=1

αj ln
d
(j)
n

1/N




t∑

j=1

α̃j



 . (33)

It is difficult to compute α̃t analytically from Eq. (33). Therefore, we resort to
an iterative line search. The line search, in this case, is very efficient, because
∂2G

(t)
KL/∂2α̃t ≥ 0. Further, similar to the derivation steps in prior work,9,16 to

update d
(t+1)
n , we find the derivative of G

(t)
KL with respect to ρs(xn) as

d(t+1)
n =

∂GKL/∂ρs(xn)∑
j ∂GKL/∂ρs(xj)

=
d
(t)
n

Ct
exp

{
−α̃tht(xn)yn − βα̃t ln

d
(t)
n

1/N

}
, (34)

where Ct is the normalization constant, such that
∑N

n=1 d
(t+1)
n = 1. The pseudo

code of AdaBoostKL is summarized in Fig. 2.
Note that for β = 0 AdaBoostKL reduces to the original AdaBoost algorithm.

Moreover, if β →∞, in Appendix we provide the proof that the ensemble classifier
will only include the first hypothesis, h1, that is, αt = 0, for t ≥ 2, which corresponds
to the single classifier design. It means that, by varying the values of parameter β,
we are able to control the boosting strength of the learning process, mitigating the
overfitting of AdaBoost.

3.3. AdaBoostnorm2

As discussed in Introduction, by employing different convex penalty terms to the
objective function of the minimax problem in Eq. (10), we can derive various types
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AdaBoostKL

Initialization: D = {(xn, yn)}N
n=1, maximum number of iteration steps T , d

(1)
n =

1/N , n = 1, · · · , N , parameter β.
for t = 1 : T

1. Train the weak learner with respect to distribution d(t) and get
hypothesis
ht(x) : x → {±1}.
2. Calculate the coefficient α̃t of ht as

α̃t = arg min
α̃t≥0

N∑
n=1

exp



−




t∑

j=1

αjznj + β

t∑

j=1

αj ln
d
(j)
n

1/N




t∑

j=1

α̃j



 .

4. Update weights:

d(t+1)
n =

d
(t)
n

Ct
exp

{
−α̃tht(xn)yn − βα̃t ln

d
(t)
n

1/N

}
,

where Ct is the normalization constant, such that
∑N

n=1 d
(t+1)
n = 1.

end
Output : F (x) =

∑T
t=1 α̃tht(x).

Fig. 2. Pseudo code of AdaBoostKL.

of the soft margin, resulting in different regularized AdaBoost algorithms. In this
section, we consider the lp norm, ‖d − d(1)‖p , as the penalty function, which is
a convex function of d. More specifically, we focus only on the l2 norm; however,
generalization of the derivation steps below is straightforward.

Similar to the derivations in Section 3.2, from the optimization problem in
Eq. (17), we obtain the following regularized scheme in the dual domain:

min(γ,d∈ΓN ) γ + β‖d− d0‖2 ,

subject to
∑N

n=1 dnznj ≤ γ, j = 1, · · · , |H| .
(35)

which can be linearly approximated as

min(γ,d∈ΓN ) γ ,

subject to z̃T
.td ≤ γ, t = 1, · · · , T ,

(36)

where z̃.t is the t-th column of the new gain matrix, Z̃, defined as

Z̃ = Z + β

[
d(1) − d0

‖d(1) − d0‖2
, · · · ,

d(T ) − d0

‖d(T ) − d0‖2

]
. (37)
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The dual form of Eq. (36) reads

max(ρ,α∈ΓT ) ρ ,

subject to
∑T

t=1 αtznt + β
∑T

t=1 αt
d(t)

n −1/N

‖d(t)−d0‖2 ≥ ρ, n = 1, · · · , N ,
(38)

which gives rise to the soft margin of pattern xn, ρs(xn), defined as

ρs(xn) =
T∑

t=1

αtznt + β

T∑
t=1

αt
d
(t)
n − 1/N

‖d(t) − d0‖2
. (39)

Similar to the discussion in Section 3.2, β
∑T

t=1 αt
d(t)

n −1/N

‖d(t)−d0‖2 can be interpreted
as “mistrust” in samples with respect to the center distribution. The term in the
denominator, ‖d(t) − d0‖2, can be roughly understood as follows: the closer the
query distribution to the center distribution, the more trust the outcome of the
hypothesis deserves. Interestingly, the soft margin in Eq. (39) resembles that of
AdaBoostReg,8 defined as

ρReg(xn) =
T∑

t=1

αtznt + β

T∑
t=1

αtd
(t)
n . (40)

Obviously, from Eqs. (39) and (40), the main difference is that our soft margin is
computed with respect to the center distribution.

Now, following the same strategy used in deriving AdaBoostKL, we reformulate
the optimization problem in Eq. (38) into an AdaBoost-like algorithm, which we
call AdaBoostnorm2. To this end, we define a new cost function, Gnorm2, as

Gnorm2 =
N∑

n=1

exp

{
−

[∑
t

αtznt + β
∑

t

αt
d
(t)
n − 1/N

‖d(t) − d0‖2

] ∑
t

α̃t

}
. (41)

To minimize the cost function, in each iteration step t, we first find ht as the
one minimizing the weighted training error, and then calculate the combination
coefficient α̃t as

α̃t = arg min
α̃t≥0

G
(t)
norm2

= arg min
α̃t≥0

N∑
n=1

exp



−




t∑

j=1

αjznj + β

t∑

j=1

αj
d
(j)
n − 1/N

‖d(j) − d0‖2




t∑

j=1

α̃j



 , (42)

The updated distribution d(t+1)(xn) is computed as the derivative of Gnorm2 with
respect to ρs(xn)

d(t+1)
n =

∂G/∂ρs(xn)∑
j ∂G/∂ρs(xj)

=
d
(t)
n

Ct
exp

{
−α̃tht(xn)yn − βα̃t

d
(t)
n − 1/N

‖d(t) − d0‖2

}
, (43)

where Ct is the normalization constant, such that
∑N

n=1 d
(t+1)
n = 1. The pseudo

code of AdaBoostnorm2 is summarized in Fig. 3.
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AdaBoostnorm2

Initialization: D = {(xn, yn)}N
n=1, maximum number of iteration steps T , d

(1)
n =

1/N , n = 1, · · · , N , parameter β.
for t = 1 : T

1. Train the weak learner with respect to distribution d(t) and get
hypothesis
ht(x) : x → {±1}.
2. Calculate the coefficient α̃t of ht as

α̃t = arg min
α̃t≥0

N∑
n=1

exp



−




t∑

j=1

αjznj + β

t∑

j=1

αj
d
(j)
n − 1/N

‖d(j) − d0‖2




t∑

j=1

α̃j



 ,

4. Update weights:

d(t+1)
n =

d
(t)
n

Ct
exp

{
−α̃tht(xn)yn − βα̃t

d
(t)
n − 1/N

‖d(t) − d0‖2

}
,

where Ct is the normalization constant, such that
∑N

n=1 d
(t+1)
n = 1.

end
Output : F (x) =

∑T
t=1 α̃tht(x).

Fig. 3. Pseudo code of AdaBoostnorm2.

3.4. General Framework

In this subsection, we summarize the proposed regularization of boosting algo-
rithms by constraining their data distributions d. The general formulation of such
regularization can be specified as the following optimization problem in the dual
domain:

min(γ,dΓN ) γ + β(P )P (d)
subject to zT

.jd ≤ γ, j = 1, · · · , |H| , (44)

where P (d) is a penalty function, and β(P ) is a function of P (d).
Depending on the specification of P (d) and β(P ), it is possible to derive a

range of regularized boosting algorithms. For example, if β(P ) = β is a predefined
constant, and P (d) is the KL divergence, or Euclidean distance between d and
the center distribution d0, we obtain AdaBoostKL or AdaBoostNorm2, respectively.
Then, if we specify P (d) = ‖d‖∞, and β(P ) = 0 if P ≤ C, and β(P ) = ∞ if
P > C, we get LPreg-AdaBoost. We point out that this is a novel interpretation of
LPreg-AdaBoost. Note that both ν−Arc and C-Barrier algorithms, although being
implemented in a different manner than the above algorithms, also fall into this
category.
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3.5. Analysis on AdaBoostKL and AdaBoostNorm2

In this section, we show that both AdaBoostKL and AdaBoostNorm2 perform the
gradient descent on a cost function of the soft margin. Recall that adding two
different penalty terms to the minimax problem in Eq. (10) yields two modified
gain matrices in Eqs. (28) and (37), respectively. By expressing the elements of Z̃
as z̃nt = ynh̃(xn;d(t)), one can imagine that the two proposed algorithms operate
in a new hypothesis space H̃, whose elements h̃(x;d) are defined as:

h̃(xn;d) = h∗(xn) + βyn ln
dn

1/N
, for AdaBoostKL

h̃(xn;d) = h∗(xn) + βyn
dn − 1/N

‖d− d0‖2 , for AdaBoostnorm2

(45)

where h∗(xn) = arg maxh∈H
∑N

n=1 dnh(xn)yn. Recall that the algorithms do not
explicitly search for the optimal direction in H̃ space. Therefore, it is necessary to
prove that the direction obtained in each iteration is indeed the one that maximally
decreases the cost functions in Eqs. (32) and (41). Below, we present the proof.

We first consider AdaBoostKL. From Eq. (32), after the (t− 1)-th iteration, we
have

G
(t−1)
KL =

N∑
n=1

exp



−yn




t−1∑

j

α̃j h̃j(xn)






 . (46)

In the t-th iteration, the optimal direction h̃t(xn) in which the cost function most
rapidly decreases, subject to ht(xn) ∈ H, is computed, such that the inner product

〈−∇G
(t−1)
KL , h̃t(xn)〉 ∝

N∑
n=1

d(t)
n ynh̃t(xn) =

N∑
n=1

d(t)
n ynht(xn) + β

N∑
n=1

d(t)
n ln

dn

1/N

(47)
is maximized, similar to the derivation in Section 2. It is straightforward to prove
that Eq. (47) attains the maximum when h̃t(x) = h̃(x;d(t)), that is, when d = d(t),
which follows from the well-known properties of the KL divergence.20

In the case of AdaBoostnorm2, by following the derivation steps in Section 2,
we arrive at a similar expression to that in Eq. (47). To show that in the t-th
iteration the optimal direction h̃t(x) = h̃(x;d(t)), we only need to shown that∑

n d
(t)
n

(dn−1/N)
‖d−d0‖2 is maximized when d = d(t):

(d− d0)T

‖d− d0‖2 d(t) =
(d− d0)T(d(t) − d0)

‖d− d0‖2 ≤ |(d− d0)T(d(t) − d0)|
‖d− d0‖2 ≤ ‖d(t) − d0‖2 .

(48)
From the Cauchy-Schwartz inequality, the equality in Eq. (48) holds when d = d(t).
This completes the proof.

In summary, AdaBoostKL and AdaBoostNorm2 perform the stage-wise gradient
descent in the new hypothesis space H̃ instead of in H. The new hypothesis space,
H̃, encodes the information on the data distribution skewness with respect to the
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center distribution. From Eq. (45), it follows that for implementation of the two
algorithms it is not necessary to explicitly construct H̃.

Considering our discussion in Section 3.1, one may also construct a similar new
hypothesis space for AdaBoostReg. However, AdaBoostReg cannot be explained as
a gradient-descent algorithm in that space, because the direction the algorithm
searches for in each iteration is not the one that maximally decreases the associated
cost function.

4. Experimental Results

We report the results of a large scale experiment, where the proposed algorithms
are compared with AdaBoostReg, ν-Arc, C-Barrier, RBF (radial basis function),
and SVM (RBF kernel). For fairness sake, our experimental setup is the same as
the one used for evaluation of AdaBoostReg by Rätsch et al.9 We use 13 artificial
and real-world data sets originally from the UCI, DELVE and STATLOG bench-
mark repositions: banana, breast cancer, diabetis, flare solar, german, heart, image
ringnorm, splice, thyroid, titanic, twonorm, and waveform. Each data set has 100
realizations of training and testing data. For each realization, a classifier is trained
and the test error is computed. The detailed information about the experimental
setup and the benchmark data sets can also be found in Ref. 22.

The RBF net is used as the weak learner. All of the RBF parameters are the
same as those used in Ref. 9. To avoid repeating the report on the numerous RBF
parameters, for details we refer the reader to Ref. 9. We use cross-validation to
estimate the optimal parameter β. The maximum number of iterations, T , is chosen
to be 200.

Below, we present several tests, which illustrate the properties of the proposed
algorithms. First, we show classification results on banana data set, whose samples
are characterized by two features. In Fig. 5, we plot the decision boundaries of
AdaBoost, AdaBoostnorm2, and AdaBoostKL in the two-dimensional feature space.
From the figure, it is obvious that AdaBoost tries to classify each pattern cor-
rectly according to its associated label, forming a zigzag shaped decision boundary,
which indicates the overfitting of AdaBoost. In contrast, both AdaBoostnorm2 and
AdaBoostKL produce smooth decision boundaries by ignoring some hard-to-learn
samples. Note that the boundaries of our algorithms are very similar.

Second, we present the classification results, and margin plots of three methods:
AdaBoost, AdaBoostnorm2, and AdaBoostKL, on one realization of the waveform
data. From Fig. 6a-b, we observe that AdaBoost tries to maximize the margin,
thereby effectively reducing the training error to zero; however, it also quickly leads
to overfitting. It is reported that the simple early stopping method could alleviate
the overfitting of AdaBoost. However, in this example (and many other examples on
other data sets) we find that the early stopping method is not applicable. In contrast
to AdaBoost, AdaBoostnorm2 and AdaBoostKL try to maximize the soft margin,
allowing a few hard-to-learn samples to have a small (even negative) sample margin.
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The two regularized algorithms effectively overcome the overfitting problem.
For a more comprehensive comparison, in Table Appendix A, we provide the

average classification results, with standard deviations, over the 100 realizations of
the 13 data sets. The best results are marked in boldface, while the second best, in
italics. By analyzing the results in Table Appendix A, we conclude the following:

• AdaBoost performs worse than a single RBF classifier in almost all cases,
due to the overfitting of AdaBoost. In ten out of thirteen cases AdaBoostReg

performs significantly better than AdaBoost, and in ten cases AdaBoostReg

outperforms a single RBF classifier.
• Except for heart, both AdaBoostnorm2 and AdaBoostKL prove better than

AdaBoostReg.
• In comparison with ν-Arc and C-Barrier, our algorithms also perform better

in most cases. This may be explained due to a hard limited penalty function
used in the underlying optimization scheme of ν-Arc and C-Barrier.

• In almost all cases, the standard deviations of AdaBoostnorm2 and
AdaBoostKL are smaller than those of the single RBF classifier and
AdaBoost.

• The results for ringnorm, thyroid, and twonorm suggest that the regularized
AdaBoost algorithms are effective even in the low noise regime.

For a more rigorous comparison, a 90% significant test is reported in Table Ap-
pendix A. In the table, ‘0’ means the test accepts the null hypothesis:“no significant
difference in average performance”; ‘+’ denotes the test accepts the alternative hy-
pothesis: “AdaBoostKL is significantly better”; finally, ‘-’ indicates: “AdaBoostKL

is significantly worse.” For some data sets the performance differences between
AdaBoostKL and AdaBoostReg are small (e.g. titanic). This is because AdaBoostReg

is already a good classifier, which has been reported to be slightly better than Sup-
port Vector Machine (RBF kernel).9 Nevertheless, significant improvements are
observed for AdaBoostKL in five datasets out of thirteen (Table Appendix A).

5. Conclusions

In this paper, we have studied strategies to regularize AdaBoost, in order to reduce
its overfitting, which has been reported to occur in high-noise regimes. By exploiting
the connection between the minimax optimization problem, and the AdaBoost algo-
rithm, we have explained that the impressive generalization capability of AdaBoost
in low-noise settings may stem from the fact that the ensemble classifier tries to op-
timize the performance in the worst case. Due to this very mechanism, we speculate
the overfitting of AdaBoost is inevitable in noisy data cases.

We have proposed to alleviate the problem by penalizing the data distribution
skewness in the learning process. In this manner, a few outlier samples are pre-
vented from spoiling decision boundaries. More specifically, to control the skewness,
we have proposed to add a convex penalty function to the objective of the minimax
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problem. By the means of the generalized minimax theorem, we have shown that
the regularization scheme can be pursued equivalently in the dual domain, wherein
we have specified the general framework of the proposed regularization. This gen-
eral framework gives rise to a range of regularized boosting algorithms, differing
in a particular specification of the penalty function. Thus, we have pointed out
that LPreg-AdaBoost can be derived from the outlined framework if the penalty is
defined as a hard-limited function, which represents a novel interpretation of the
algorithm.

We have proposed to use two smooth convex penalty functions, one based on the
KL divergence and the other on the Euclidean distance between the query and the
center data distribution; thereby, we have derived two novel regularized algorithms
AdaBoostKL and AdaBoostnorm2, respectively. We have proved that the proposed
algorithms perform a stage-wise gradient-descent procedure on the cost function of
the corresponding soft margin.

We have demonstrated the effectiveness of our algorithms by conducting ex-
periments on a wide variety of data. In comparison with AdaBoostReg, ν-Arc, and
C-Barrier, our AdaBoostKL and AdaBoostNorm2 achieve at least the same, or better
classification performance.

Appendix A. Proof of Lemma 1

Lemma 1. Suppose in each iteration the learning algorithm can find a hypothesis
such that Eq. (27) holds. If β → ∞, only the first hypothesis h1 will be kept in
AdaBoostKL, i.e., αt = 0, for t ≥ 2.

Proof. Suppose AdaBoostKL found h1 and the corresponding combination coeffi-
cient α1. Also, suppose it found h2, as well, and it is about to determine α2 by a
line search. The intermediate cost function is given by:

G
(2)
KL =

N∑
n=1

exp (−F1(xn)yn) exp
{
−α2h2(xn)yn − α2β ln(d(2)

n N)
}

=
N∑

j=1

exp (−F1(xj)yj)
N∑

n=1

d(2)
n exp

{
−α2h2(xn)yn − α2β ln(d(2)

n N)
}

.

α2 can be computed by taking a derivative of G
(2)
KL with respect to α2, and setting

it to zero. For simplicity, we drop the constant terms.

∂G
(2)
KL/∂α2

=
N∑

n=1

d(2)
n exp

{
−α2h2(xn)yn − α2β ln(d(2)

n N)
}{

−h2(xn)yn − β ln(d(2)
n N)

}

=
N∑

n=1

d(2)
n exp (−α2h2(xn)yn) (d(2)

n N)−α2β
{
−h2(xn)yn − β ln(d(2)

n N)
}

= 0
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By setting α2 = 1/β and letting β →∞, we have:

lim
β→∞

∂G
(2)
KL/∂α2 = lim

β→∞

N∑
n=1

1
N

exp(−h2(xn)yn

β
)
{
−h2(xn)yn − β ln(d(2)

n N)
}

> 0

The last inequality follows from the fact that
∑N

n=1
1
N ln(d(2)

n N) < 0 for d(2) 6= d0.
By setting α2 = 1/β2 and letting β →∞, we have:

lim
β→∞

∂G
(2)
KL/∂α2

= lim
β→∞

N∑
n=1

(d(2)
n )1−1/βN−1/β exp(−h2(xn)yn

β2
)
{
−h2(xn)yn − β ln(d(2)

n N)
}

< 0

The last inequality follows from the fact that
∑N

n=1 d
(2)
n ln(d(2)

n N) > 0 for d(2) 6= d0.
Therefore, when β →∞, α2 ∈ ( 1

β2 , 1
β ) → 0.
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Table 1. Classification Errors and standard deviations of eight algorithms.

RBF AB ABR ABKL ABnorm2 νArc C-Bar SVM

waveform 10.7±1.1 10.8±0.6 9.8±0.8 9.4±0.6 9 .5±0 .4 10.0±0.7 9.7±0.5 9.9±0.4
thyroid 4.5±2.1 4 .4±2 .2 4.6±2.2 4.3±1.9 4 .4±2 .2 4 .4±2 .2 4.5±2.2 4.8±2.2
banana 10.8±0.6 12.3±0.7 10.9±0.4 10.7±0.4 10.6±0.4 10.8±0.5 10.9±0.5 11.5±0.7
Bcancer 27.6±4.7 30.4±4.7 26.5±4.5 26.1±4.4 26.0±4.4 25.8±4.6 25 .9±4 .4 26.0±4.7
diabetis 24.3±1.9 26.5±2.3 23.8±1.8 23.5±1.8 23.6±1.8 23.7±2.0 23.7±1.8 23.5±1.7
german 24.7±2.4 27.5±2.5 24.3±2.1 24.2±2.2 24.1±2.2 24.4±2.2 24.3±2.4 23.6±2.1
heart 17.6±3.3 20.3±3.4 16.5±3.5 16.9±3.2 17.0±3.1 16.5±3.5 17.0±3.4 16.0±3.3
ringnorm 1.7±0.2 1.9±0.3 1.6±0.1 1.5±0.1 1.6±0.1 1.7±0.2 1.7±0.2 1.7±0.1
Fsolar 34.4±2.0 35.7±1.8 34.2±2.2 34.1±1.6 34.1±1.7 34.4±1.9 33.7±1.9 32.4±1.8
titanic 23.3±1.3 22.6±1.2 22.6±1.2 22 .5±0 .9 22 .5±1 .2 23.0±1.4 22.4±1.1 22.4±1.0
splice 10.0±1.0 10.1±0.5 9.5±0.7 9.2±0.6 9.5±0.5 N/A N/A 10.9±0.7
image 3.3±0.6 2.7±0.7 2.7±0.6 2.7±0.6 2.7±0.5 N/A N/A 3.0±0.6
twonorm 2.9±0.3 3.0±0.3 2 .7±0 .2 2.6±0.2 2 .7±0 .2 N/A N/A 3.0±0.2

Table 2. 90% significant test comparing AdaBoostKL with the other algorithms.

ABKL/RBF ABKL/AB ABKL/ABR ABKL/νArc ABKL/C-Bar ABKL/SVM

waveform + + + + + +
thyroid 0 0 0 0 0 +
banana + + + + + +
Bcancer + + 0 0 0 0
diabetis + + 0 0 0 0
german + + 0 0 0 −
heart 0 + 0 0 0 −
ringnorm + + + + + +
Fsolar 0 + 0 0 0 −
titanic + 0 0 0 0 0
splice + + + N/A N/A +
Image + 0 0 N/A N/A +
twonorm + + + N/A N/A +
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Fig. 4. (a) Illustration of the optimization problem in Eq. (21) in the case of |H| = 2 . (γ∗,d∗) is
the optimum solution; (b) Linear approximation of Eq. (21). (γ̂∗, d̂∗) is obtained by solving Eq.
(29), which is the approximate solution to the original problem.
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Fig. 5. The decision boundaries of three methods: AdaBoost, AdaBoostnorm2 and AdaBoostKL

based on one realization of the banana data. AdaBoost tries to classify each pattern according to
its associated label and forms a zigzag decision boundary, which gives a straightforward illustration
of the overfitting phenomenon of AdaBoost. Both AdaBoostnorm2 and AdaBoostKL give smooth
and similar decision boundaries.
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Fig. 6. Training and testing results, and margin plots of three methods: AdaBoost, AdaBoostnorm2

and AdaBoostKL based on the waveform data. AdaBoost quickly leads to overfitting while the
regularized methods effectively alleviate this problem.


