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Abstract
We propose a series of new feature weighting al-
gorithms, all stemming from a new interpretation
of RELIEF as an online algorithm that solves
a convex optimization problem with a margin-
based objective function. The new interpreta-
tion explains the simplicity and effectiveness of
RELIEF, and enables us to identify some of its
weaknesses. We offer an analytic solution to mit-
igate these problems. We extend the newly pro-
posed algorithm to handle multiclass problems
by using a new multiclass margin definition. To
reduce computational costs, an online learning
algorithm is also developed. Convergence theo-
rems of the proposed algorithms are presented.
Some experiments based on the UCI and mi-
croarray datasets are performed to demonstrate
the effectiveness of the proposed algorithms.

1. Introduction
Feature selection is one of the fundamental problems in ma-
chine learning. The role of feature selection is critical, es-
pecially in applications involving many irrelevant features.
Yet, compared to classifier design, much rigorous theoret-
ical treatment to feature selection is needed. Most feature
selection algorithms rely on heuristic searching and thus
cannot provide any guarantee of optimality. This is largely
due to the difficulty in defining an objective function that
can be easily optimized by some well-established optimiza-
tion techniques. It is particularly true for the wrapper meth-
ods that use nonlinear classifiers to evaluate the goodness
of selected feature subsets. This problem can to some ex-
tent be alleviated by using feature weighting, which assigns
to each feature a real-valued number, instead of a binary
one, to indicate its relevance to a learning problem. Among
the existing feature weighting algorithms, RELIEF [Kira
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& Rendell, 1992] is considered one of the most success-
ful ones due to its simplicity and effectiveness [Dietterich,
1997]. We have shown that RELIEF is an online solution
to a convex optimization problem, maximizing a margin-
based objective function. The margin is defined based on a
1-NN classifier. Therefore, compared with filter methods,
RELIEF usually performs better due to the performance
feedback of a nonlinear classifier when searching for useful
features; compared with wrapper methods, by optimizing a
convex problem, RELIEF avoids any exhaustive or heuris-
tic combinatorial search and thus can be implemented very
efficiently. These two merits make RELIEF particularly
suitable for large-scale problems such as DNA microarray.

The new interpretation of RELIEF allows us to identify
some weaknesses of the algorithm and to propose some so-
lutions to fix them. One major drawback of RELIEF is that
it makes an implicit assumption that the nearest neighbors
of a pattern found in the original feature space are the ones
in the weighted space, which is highly unlikely in practi-
cal applications. Moreover, RELIEF lacks a mechanism to
eliminate outlier data. We offer an analytic solution to mit-
igate theses two issues. In Section 3, we propose a new fea-
ture weighting algorithm, referred to as I-RELIEF, by fol-
lowing the principle of the EM algorithm. I-RELIEF treats
the nearest neighbors and identity of a pattern as hidden
random variables, and iteratively estimates feature weights
until convergence. We provide a convergence theorem for
I-RELIEF, which shows that under certain conditions, I-
RELIEF converges to a unique solution regardless of initial
starting points. In Section 4, we extend I-RELIEF to multi-
class problems by using a new multiclass margin definition.
In order to speed up learning process, in Section 5, we de-
velop an online I-RELIEF algorithm and prove its conver-
gence. Finally, in Section 6, we conduct some experiments
based on UCI and microarray datasets to demonstrate the
effectiveness of the proposed algorithms.

2. Optimization Approach to RELIEF
We first present a brief review of RELIEF. Let D =
{(xn, yn)}N

n=1∈RI×{±1} denote a training dataset. The
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key idea of RELIEF is to iteratively estimate the feature
weights according to their ability to discriminate between
neighboring patterns. In each iteration, a pattern x is ran-
domly selected and then two nearest neighbors of x are
found, one from the same class (termed the nearest hit or
NH) and the other from the different class (termed the near-
est miss or NM). The weight of the i-th feature is then up-
dated as: wi = wi + |x(i)−NM(i)(x)|−|x(i)−NH(i)(x)|.
Below we present a new interpretation of RELIEF from the
optimization point of view. We first define the margin for
pattern xn as ρn = d(xn − NM(xn))− d(xn − NH(xn))
[Gilad-Bachrach et al., 2004], where d(·) is a distance func-
tion defined as d(x) =

∑
i |xi|. Note that ρn > 0 if only

if xn is correctly classified by 1-NN. One natural idea is
to scale each feature such that the averaged margin in a
weighted feature space is maximized:

maxw

∑N
n=1

(∑I
i=1 wi|x(i)

n − NM(i)(xn)|
−∑I

i=1 wi|x(i)
n − NH(i)(xn)|

)
,

s.t. ‖w‖22 = 1,w > 0 ,

(1)

where the constraint ‖w‖22 = 1 prevents the maximiza-
tion from increasing without bound, and w > 0 ensures
that the weight vector is a distance metric. By defining
z =

∑N
n=1 |xn − NM(xn)| − |xn − NH(xn)|, where

| · | is the point-wise absolute operator, Eq. (1) can be
simplified as: maxw wTz, s.t. ‖w‖22 = 1,w > 0. By
using the Lagrangian technique, the solution can be ex-
pressed as w = 1

2λ (z + θ), where λ and θ > 0 are the
Lagrangian multipliers, satisfying θT w = 0. With the
Karush-Kuhn-Tucker condition, it is easy to verify the fol-
lowing three cases: (1) zi = 0 ⇒ θi = 0 ⇒ wi = 0; (2)
zi > 0 ⇒ zi + θi > 0 ⇒ wi > 0 ⇒ θi = 0; and (3)
zi < 0 ⇒ θi > 0 ⇒ wi = 0 ⇒ zi = −θi. It follows that
the optimum solution can be calculated in a closed form as
w = (z)+/‖(z)+‖2, where (zi)+ = max(zi, 0).

By comparing the expression of w with the update rule of
RELIEF, we conclude that RELIEF is an online solution to
the optimization scheme Eq. (1). This is true except when
wi = 0 for zi ≤ 0, which usually corresponds to irrelevant
features. From the above analysis, we find that RELIEF
may be the only algorithm that utilizes the performance of
a highly nonlinear classifier yet results in a simple convex
problem with a closed-form solution. This clearly explains
the simplicity and effectiveness of RELIEF.

Other distance functions can be also used. If the Euclidean
distance is used, the resulting algorithm is Simba [Gilad-
Bachrach et al., 2004]. However, Simba returns many local
maxima, for which the mitigation offered in Simba is to
restart the algorithm from several starting points. Hence
the acquisition of the global minimum is not guaranteed
through its invocation.

3. Iterative RELIEF Algorithm
Two major drawbacks of RELIEF become clear from the
objective function in Eq. (1): first, the nearest neighbors
are defined in the original feature space, which are highly
unlikely to be the ones in the weighted space; second, the
objective function optimized by RELIEF is actually the av-
erage margin. In the presence of outliers, some margins can
take very negative values. In a highly noisy data case with
a large amount of irrelevant features or mislabelling, the
aforementioned two issues can become so severe that the
performance of RELIEF may be greatly deteriorated. A
heuristic algorithm, called RELIEF-F [Kononenko, 1994],
has been proposed to address the first problem. RELIEF-F
averages K, instead of just one, nearest neighbors in com-
puting the sample margins. Empirical studies have shown
that RELIEF-F can achieve significant performance im-
provement over the original RELIEF. As for the second
problem, to our knowledge, no such algorithm exists. In
this section, we propose an analytic solution capable of
handling these two issues simultaneously.

We first define two sets: Mn = {i : 1 ≤ i ≤ N, yi 6= yn}
and Hn = {i : 1 ≤ i ≤ N, yi = yn, i 6= n}, associ-
ated with each pattern xn. Suppose now that we have
known, for each pattern xn, its nearest hit and miss, the
indices of which are saved in the set Sn = {(sn1, sn2)},
where sn1 ∈ Mn and sn2 ∈ Hn. For example,
sn1 = 1 and sn2 = 2 mean that the nearest miss and
hit of xn are x1 and x2, respectively. We also denote
o = [o1, · · · , oN ]T as a set of binary parameters, such that
on = 0 if xn is an outlier, or on = 1 otherwise. Then
the objective function we want to optimize is C(w) =∑N
{n=1,on=1} (‖xn − xsn1‖w − ‖xn − xsn2‖w) , which

can be easily optimized by using the conclusion drawn in
Section 2. Of course, we do not know the set S = {Sn}N

n=1

and the vector o. However, if we assume the elements of
{Sn}N

n=1 and o are random variables, we can proceed by
deriving the probability distributions of the unobserved
data. We first make a guess on the weight vector w. By
using the pairwise distances that have been computed when
searching for the nearest hits and misses, the probability
of the i-th data point being the nearest miss of xn can be
naturally defined as Pm(i|xn,w) = f(‖xn−xi‖w)P

j∈Mn
f(‖xn−xj‖w) .

Similarly, the probability of the i-th data point being the
nearest hit of xn is Ph(i|xn,w) = f(‖xn−xi‖w)P

j∈Hn
f(‖xn−xj‖w) ,

where f(·) is a kernel function. One commonly used
example is f(d) = exp(−d/σ), where the kernel width
σ is a user defined parameter. Likewise, the proba-
bility of xn being an outlier can be readily defined as
Po(on = 0|D,w) =

P
i∈Mn

f(‖xn−xi‖w)P
xi∈D\xn

f(‖xn−xi‖w) .

Now we are ready to derive the following iterative algo-
rithm. Although we adopt the idea of the EM algorithm
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that treats unobserved data as random variables, it should
be noted that the following method is not an EM algorithm
since the objective function is not a likelihood. For brevity
of notation, we define αi,n = Pm(i|xn,w(t)), βi,n =
Ph(i|xn,w(t)), γn = 1− Po(on = 0|D,w(t)),W = {w :
‖w‖2 = 1,w ≥ 0},mn,i = |xn − xi| if i ∈ Mn, and
hn,i = |xn − xi| if i ∈ Hn.

Step-1:After t-th iteration, the Q function is calculated as:

Q(w|w(t)) = E{S,o}[C(w)] ,

=
N∑

n=1

γn(
∑

i∈Mn

αi,n‖xn − xi‖w −
∑

i∈Hn

βi,n‖xn − xi‖w) ,

=
N∑

n=1

γn(
∑

j

wj

∑

i∈Mn

αi,nmj
n,i

︸ ︷︷ ︸
m̄j

n

−
∑

j

wj

∑

i∈Hn

βi,nhj
n,i

︸ ︷︷ ︸
h̄j

n

) ,

= wT
N∑

n=1

γn(m̄n − h̄n) = wT ν ,

(2)
Step-2: The re-estimation of w in the (t + 1)-th iteration
is: w(t+1) = arg max

w∈W
Q(w|w(t)) = (ν)+/‖(ν)+‖2 . The

above two steps iterate alternatively until convergence, i.e.,
‖w(t+1) −w(t)‖ < θ.

We name the above algorithm as iterative RELIEF, or short
I-RELIEF. Since Pm, Ph and Po return us with reasonable
probability estimates, and the re-estimation of w is a con-
vex optimization problem, we expect a good convergence
behavior and reasonable performance from I-RELIEF. We
provide a convergence analysis below.

3.1. Convergence Analysis

We begin by studying the asymptotic behavior of I-
RELIEF. If σ → +∞, we have lim

σ→+∞
Pm(i|xn,w) =

1/|Mn| for ∀w ∈ W since lim
σ→+∞

f(d) = 1. On the

other hand, if σ → 0, by assuming that for ∀n, din ,
‖xi − xn‖w 6= djn if i 6= j, it can be shown that
lim
σ→0

Pm(i|xn,w) = 1 if din = min
j∈Mn

djn and 0 otherwise.

Ph(i|xn,w) and Po(n|w) can be computed similarly. We
observe that if σ → 0, I-RELIEF is equivalent to iterat-
ing the original RELIEF (NM = NH = 1) provided that
outlier removal is not considered. In our experiments, we
rarely observe that the resulting algorithm converges. On
the other hand, if σ → +∞, I-RELIEF converges in one
step because the term ν in Eq. (2) is a constant vector for
any initial feature weights. This suggests that the conver-
gence behavior of I-RELIEF and the convergent rates are
fully controlled by the choice of the kernel width. In the
following, we present a proof by using the Banach fixed
point theorem. We first state the theorem without proof.
For detailed proofs, we refer to [Kress, 1998].

Definition 1. Let U be a subset of a norm spaceZ , and ‖·‖
is a norm defined in Z . An operator T : U → Z is called
a contraction operator if there exists a constant q ∈ [0, 1)
such that ‖T (x) − T (y)‖ ≤ q‖x − y‖ for ∀x, y ∈ U . q is
called the contraction number of T .

Definition 2. An element of a norm space Z is called a
fixed point of T : U → Z if T (x) = x.

Theorem 1. Let T be a contraction operator mapping a
complete subset U of a norm space Z into itself. Then the
sequence generated as x(t+1) = T (x(t)), t = 0, 1, 2, · · ·
with arbitrary x(0) ∈ U converges to the unique fixed point
x∗ of T . Moreover, the following error bounds hold:

‖x(t) − x∗‖ ≤ qt

1−q‖x(1) − x(0)‖ ,

and ‖x(t) − x∗‖ ≤ q
1−q‖x(t) − x(t−1)‖ .

(3)

In order to apply the fixed point theorem to prove the con-
vergence of I-RELIEF, the gist is to identify the contrac-
tion operator in I-RELIEF and check if all conditions in
Theorem 1 are met. To this end, let P = {p : p =
[Pm, Ph, Po]} and we specify the two steps of I-RELIEF
in a functional form as A1 : W → P, A1(w) = p and
A2 : P → W, A2(p) = w. By indicating the func-
tional composition by a circle (◦), I-RELIEF can be writ-
ten as w(t) = (A2 ◦ A1)(w(t−1)) , T (w(t−1)), where
T : W → W . Since W is a closed subset of a norm
space RI and complete, T is an operator mapping a com-
plete subsetW into itself. However, it is difficult to directly
verify that T is a contraction operator satisfying Definition
1. Noting that for σ → +∞, I-RELIEF converges with
one step, we have limσ→+∞ ‖T (w1, σ) − T (w2, σ)‖ = 0
for ∀w1,w2 ∈ W . Therefore, in the limit, T is a con-
traction operator with contraction constant q = 0, that is,
limσ→+∞ q(σ) = 0. Therefore, for ∀ε > 0, there exists a
σ̄ such that q(σ) ≤ ε whenever σ > σ̄. By setting ε < 1,
the resulting operator T is a contraction operator. Combin-
ing the above arguments, we establish the following con-
vergence result for I-RELIEF.

Theorem 2. Let I-RELIEF be defined as above. There
exists a σ̄ such that limt→+∞ ‖w(t) − w(t−1)‖ = 0 for
∀σ > σ̄. Moreover, for a fixed σ > σ̄, I-RELIEF converges
to the unique solution for any initial weight w(0) ∈ W .

Theorem 2 ensures the convergence of I-RELIEF but does
not tell us how large a kernel width should be. In our ex-
periment, we find that using a relative large σ value, say
σ > 0.5, the convergence is guaranteed. Also, the error
bound in Ineq. (3) tells us that the smaller the contrac-
tion number q, the tighter the error bound and hence the
larger the convergence rate. Since it is difficult to explic-
itly express q as a function of σ, it is difficult to prove that
q monotonically decreases with σ. However, in general, a
larger kernel width yields a larger convergence rate, which
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is experimentally confirmed in Section 6.2. It is also worth-
while to emphasize that unlike other machine learning al-
gorithms, such as neural networks, the convergence and the
solution of I-RELIEF are not affected by the initial value if
the kernel width is fixed.

4. Extension to Multiclass RELIEF
The original RELIEF algorithm can only handle bi-
nary problems. RELIEF-F overcomes this limitation
by modifying the weight update rule as: wi =
wi +

∑
{c∈Y,c 6=y(x)}

P (c)
1−P (c) |x(i) − NM(i)

c (x)| − |x(i) −
NH(i)(x)|, where Y = {1, · · · , C} is the label space,
NMc(x) is the nearest miss of x from class c, and P (c)
is the a priori probability of class c. By using the conclu-
sions drawn in Section 2, it can be shown that RELIEF-
F is equivalent to defining a sample margin as: ρ =∑
{c∈Y,c6=y(x)}

P (c)
1−P (c)d(x − NMc(x)) − d(x − NH(x)).

Note that a positive sample margin does not necessarily im-
ply a correct classification. The extension of RELIEF-F to
the iterative version is quite straightforward, and therefore
we skip the detailed derivations here. We name the result-
ing algorithm as I-RELIEF-1.

From the commonly used margin definition for multiclass
problems, however, it is more natural to define a margin as:
ρ = min{c∈Y,c6=y(x)} d(x−NMc(x))− d(x−NH(x)) ,

= min{xi∈D\Dy(x)} d(x− xi)− d(x− NH(x)),
whereDc is a subset ofD containing only the patterns from
class c. Compared to the first definition, this definition
regains the property that a positive sample margin corre-
sponds to a correct classification. The derivation of the it-
erative version of multiclass RELIEF using the new margin
definition, which we call I-RELIEF-2, is straightforward.

5. Online Learning
I-RELIEF is based on batch learning, i.e. feature weights
are updated after seeing all of the training data. In the cases
where the amount of training data is huge, online learning
is computationally much more attractive than batch learn-
ing. In this section, we derive an online algorithm for I-
RELIEF. Convergence analysis is also presented.

Recall that in I-RELIEF, one needs to compute ν =∑N
n=1 γn(m̄n − h̄n). Analogously, in online learning, af-

ter the T -th iteration, we may consider computing ν(T ) =
1
T

∑T
t=1 γ(t)(m̄(t) − h̄(t)). Denote π(t) = γ(t)(m̄(t) −

h̄(t)). It is easy to show that ν(T ) = ν(T−1) + 1
T (π(T ) −

ν(T−1)). By defining η(T ) = 1/T as a learning rate, the
above formulation states that the current estimate can be
simply computed as a linear combination of the previous
estimate and the current observation. Moreover, it suggests
that other learning rates are possible. One simple exam-

ple is to set η(T ) = 1/aT with a ∈ (0, 1]. Due to space
limitation, more comprehensive consideration of online I-
RELIEF is presented elsewhere. Below we establish the
convergence property of online I-RELIEF. We first present
a useful lemma without proof.

Lemma 1. Let {an} be a bounded sequence, i.e. for
∀n, M1 ≤ an ≤ M2. If limn→+∞ an = a∗, then
limn→+∞ 1

n

∑n
i=1 ai = a∗.

Theorem 3. Online I-RELIEF converges when the learning
rate is appropriately selected. If both algorithms converge,
I-RELIEF and online I-RELIEF converge to the same solu-
tion.

Proof. The proof of the first part of the theorem can be
easily done by recognizing that the above formulation has
the same form as the Robbins-Moron stochastic approxi-
mation algorithm [Kushner & Yin, 2003]. The conditions
on the learning rate η(t) : limt→+∞ η(t) = 0,

∑+∞
t=1 η(t) =

+∞, and
∑+∞

t=1 (η(t))2 < +∞ ensure the convergence of
online I-RELIEF. η(t) = 1/t meets the above conditions.

Now we prove the second part of the theorem. To elimi-
nate the randomness, instead of randomly selecting a pat-
tern from D, we divide the data into blocks, denoted as
B(m) = D. Online I-RELIEF successively performs
online learning over B(m), m = 1, 2, · · · . For each
block, denote π̃(m) = 1

N

∑m×N
t=(m−1)×N+1 π(t). After

running over M blocks of data, we have ν(M×N) =
1

M×N

∑M×N
t=1 π(t) = 1

M

∑M
m=1 π̃(m). From the proof of

the first part, we know that limt→+∞ ν(t) = ν∗. It fol-
lows that limm→+∞ π̃(m) = π̃∗. Using Lemma 1, we
have limM→+∞ ν(M×N) = π̃∗ = ν∗. The last equality
is due to the fact that a convergent sequence cannot have
two limits.

We prove the convergence of online I-RELIEF to I-
RELIEF by using the uniqueness of the fixed point for
a contraction operator. Recall that if the kernel width
is appropriately selected, T : W → W is a contrac-
tion operator for I-RELIEF, i.e., T (w∗) = w∗. We
then construct an operator T̃ : W → W for online I-
RELIEF, which, in the m-th iteration, uses w̃(m−1) =
(ν((m−1)×N))+/‖(ν((m−1)×N))+‖2 as input, and then
computes ν(m×N) by performing online learning on B(m),
and finally returns w̃(m) = (π̃(m))+/‖(π̃(m))+‖2. Since
limt→+∞ ν(t) = ν∗ = π̃∗, it follows that as m → +∞,
we have T̃ (w̃∗) = w̃∗, where w̃∗ = (ν∗)+/‖ν∗‖2. There-
fore, w̃∗ is the fixed point of T̃ . The only difference be-
tween T and T̃ is that T̃ performs online learning while T
does not. Since {ν(t)} is convergent, it is also a Cauchy
sequence. In other words, as m → +∞, the difference be-
tween every pair of ν within one block goes to zero with
respect to some norms. The operator T̃ , therefore, is iden-
tical to T in the limit. It follows that w̃∗ = w∗, since
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otherwise there would be two fixed points for a contraction
operator, which contradicts Theorem 1. 2

One major advantage of RELIEF and its variations over
other algorithms is their computational efficiency. The
complexity of RELIEF, I-RELIEF and online I-RELIEF are
O(TNI), O(TN2I) and O(TNI), respectively, where T
is the total number of iterations, I is the feature dimension-
ality and N is the number of data points. If RELIEF runs
over the entire dataset, i.e., T = N , then the complexity is
O(N2I). In the following section, we show that online I-
RELIEF can attain similar solutions to I-RELIEF after one
pass of the training data. Therefore, online I-RELIEF has
the same computational cost as RELIEF.

6. Experiments
We conduct large-scale experiments to demonstrate the ef-
fectiveness of the proposed algorithms. The ultimate goal
of this study is for gene selection based on microarray data,
where the true gene set is typically unknown. It is neces-
sary to conduct experiments in a controlled manner. There-
fore, we perform experiments on two test-beds. The first
test-bed is composed of 6 datasets: twonorm, waveform,
ringnorm, f-solar, thyroid, and segmentation, all publicly
available at the UCI Machine Learning Repository. The
data information is summarized in Table 1. We add 50 inde-
pendently Gaussian distributed irrelevant features to each
pattern, representing different levels of signal-to-noise ra-
tios. In real applications, it is also possible that some pat-
terns are mislabelled. To evaluate the robustness of each al-
gorithm against mislabelling, we introduce noise to training
data but keep test data intact. The level of noise represents a
percentage of randomly selected training data whose class
labels are changed. The second test-bed contains six mi-
croarray datasets: 9-tumors, Brain-tumor2, Leukemia-1,
prostate-tumors, DLBCL and SRBCT. One characteristic of
microarray data, different from most of the classification
problems, is the large feature dimensionality compared to
small sample numbers. For more detailed information on
these data, see [Statnikov et al., 2005] and the references
therein. For all datasets, except for a simple re-scaling of
each feature value to be between 0 and 1 as required in RE-
LIEF, no other pre-processing is performed.

We use two metrics to evaluate the performance of the al-
gorithms. The first is the classification errors commonly
used in the literature. The second is the ROC (receiver op-
erating characteristic) based metric, where we treat feature
selection as a target recognition problem. Though features
in the original feature sets may be weakly relevant or even
useless, it is reasonable to assume that these features con-
tain at least the same or more information than the useless
ones artificially added. Therefore, by changing a threshold,
we can plot a ROC curve, which gives us a direct view on

Table 1. Data Summary of 6 UCI and 6 Microarray Datasets
Dataset Train Test Feature Class
twonorm 400 7000 20 2
waveform 400 4600 21 2
ringnorm 400 7000 20 2
f-solar 666 400 9 2
thyroid 140 75 5 2
segmentation 210 2100 19 7
9-tumors 60 / 5726 9
Brain-tumor2 60 / 10367 4
Leukemia-1 72 / 5327 3
Prostate-tumors 83 / 2308 4
SRBCT 102 / 10509 2
DLBCL 77 / 5469 2

the capabilities of each algorithm to identify useful features
and at the same time rule out useless ones.

6.1. Experiments on UCI Datasets

We first perform experiments on the UCI datasets. To make
the experiment feasible, a KNN classifier is used to com-
pute the classification errors for each algorithm. The num-
ber of the nearest neighbors K, the kernel width σ of I-
RELIEF and the number of NH and NM of RELIEF-F are
estimated through a stratified 10-fold cross validation (CV)
using training data. The code of Simba used in the study is
downloaded from [Gilad-Bachrach et al., 2004]. The para-
meters are set to be the default values, but we increase the
number of the passes of training data to be 5 instead of the
default value 1.

To reduce statistical variations, each algorithm is run 20
times for each dataset. In each run, a dataset is randomly
partitioned into training and testing. The testing results,
measured with two performance metrics, are plotted in
Fig.1. We see that with respect to classification errors, in
nearly all datasets, I-RELIEF performs the best, RELIEF-F
the second and Simba the worst. For a more rigorous com-
parison between I-RELIEF and RELIEF-F, a significance
test is also performed. The optimum number of features
used in KNN is estimated through 10-fold CV using train-
ing data. We report that at the 0.05 p-value level, I-RELIEF
wins on 7 cases (ringnorm (50/10), twonorm (50/10), thy-
roid (50/0), waveform and f-solar), and ties with RELIEF-
F on the remaining 5 cases. (In the notation 50/10, the first
number refers to the number of irrelevant features and the
second one the percentage of mislabelled samples.) The
reason that I-RELIEF ties with RELIEF-F on segmentation
is self-explained in Fig.1. We also check with the ROC
metric: in almost all datasets, I-RELIEF has the largest
area under ROC curves, RELIEF-F the second and Simba
the smallest. We find that for thyroid and ringnorm (50/0),
though there are no significant differences in classification
errors, it is clear from the ROC metric that I-RELIEF has
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Figure 1. Comparison of three algorithms using the classification error and ROC metrics on 6 UCI datasets.
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Figure 2. Feature weights learned in three algorithms using wave-
form dataset. The first 21 features are presumably useful.

better solution quality than RELIEF-F.

To further demonstrate the behavior of each algorithm,
we particularly focus on the dataset waveform. We plot
the learned feature weights of one realization in Fig. 2.
Without mislabelling, the weights learned in RELIEF-F are
similar to those of I-RELIEF but the former have larger
weights on the useless features than the latter. It is inter-
esting to note that in waveform (50/0), Simba assigns zero
weights to not only useless features but also some presum-
ably useful features. In this case, we need to go back to the
classification error metric. We observe that the test error of
Simba flats after the tenth feature since except for these 10
features, the weights of the remaining features are all zeros.
It indicates that Simba in effect does not identify all of the
useful features. With 10% mislabelling, the solution qual-
ities of both RELIEF-F and Simba degrade significantly
while I-RELIEF performs similarly as before. For exam-
ple, Simba mistakenly identifies an irrelevant feature as the
top feature. These observations imply that both Simba and
RELIEF are not robust against label noise.

6.2. Choice of Kernel Width

The kernel width σ is the only parameter of I-RELIEF and
can be estimated through CV on training data. It is well-
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Figure 3. Feature weights and convergence rates with different σ
using twonorm dataset.
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Figure 4. Convergence analysis of online I-RELIEF on ringnorm
dataset.

known that the CV method may result in an estimate with
a large variance. Fortunately, this problem does not pose a
serious concern. In Fig. 3, we plot the feature weights and
the convergence rates of I-RELIEF with different σ values
using the twonorm dataset. We observe that the algorithm
diverges when σ = 0.05; but for relative large σ values,
the algorithm always converges, and the resulting feature
weights do not have much difference. This indicates that
the performance of I-RELIEF is not sensitive to the choice
of σ values, which makes model selection easy in real ap-
plications. Moreover, with the increase of σ value, the con-
vergence becomes faster.

6.3. Online Learning

We perform some experiments to verify the convergence
results established in Section 5. The feature weights
learned in I-RELIEF are used as the target vector. The stop-
ping criterion θ is set to be 10−5 to ensure that the target
vector is a good approximation of the true solution (c.f.,
Eq.(3)). We only present the results of ringnorm since the
results for other datasets are almost identical. The conver-
gence results with different learning rates (η(t) = 1/at),
averaged from 20 runs, are plotted in Fig. 4(a). We observe
that online I-RELIEF converges to I-RELIEF, which con-
firms the theoretical findings in Theorem 3. We also find
that after 400 iterations (ringnorm has 400 training sam-
ples), the feature weights are already very close to the tar-
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get vector (Fig. 4(b)). For comparison, the feature weights
learned in RELIEF-F are also plotted. From this experi-
ment, we conclude that online I-RELIEF can greatly re-
duce the computational cost of I-RELIEF while retaining
its performance.

6.4. Experiments on Microarray

We apply RELIEF-F, I-RELIEF-1 and I-RELIEF-2 to six
microarray datasets. Due to the limited sample numbers,
the leave-one-out method is used to evaluate the perfor-
mance of each algorithm.

The classification errors of KNN as a function of the 500
top ranked features are plotted in Fig. 5. Since Prostate-
Tumor and DLBCL are binary problems, I-RELIEF-1 is
equivalent to I-RELIEF-2. From the figure, we observe
that, except for DLBCL, for which I-RELIEF performs sim-
ilarly to RELIEF-F, I-RELIEF-2 is the clear winner among
the three algorithms. Also, I-RELIEF-1 ties with RELIEF-
F on three datasets (9-Tumors, DLBCL and Brain-Tumors)
but outperforms RELIEF-F on the remaining three datasets.
For comparison, we report the classification errors of KNN
using all genes. We can see that gene selection can signifi-
cantly improve the KNN performance.

We note that the numbers of genes found by I-RELIEF are
all less than 200. With these small gene sets, oncologists
may be able to work on them directly to infer the molec-
ular mechanism underlying disease causes. Currently, we
are working closely with oncologists to check the biolog-
ical significance of the top ranked genes identified by our
algorithms. Also, if for classification purposes, some com-
putationally expensive methods (e.g.wrapper methods) can
be used to further filter out some redundant genes. By
using some sophisticated classification algorithms such as
SVM, much improvement on classification performance is
expected. Building such a classification system is our fu-
ture work.

7. Conclusion
We have proposed several new feature weighting algo-
rithms, all stemming from a simple yet informative expla-
nation of RELIEF. We have experimentally demonstrated
that our algorithms perform significantly better than RE-
LIEF and Simba. Moreover, considering many heuristical
approaches used in feature selection, we believe that the
contribution of this paper is not merely limited to the al-
gorithmic aspects. The I-RELIEF algorithms, as one of
the first feature weighting methods that have a clearly de-
fined objective function and can be solved through numer-
ical analysis instead of combinatorial searching, provide a
promising direction for more rigorous treatment of the fea-
ture weighting and selection problems.
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Figure 5. Classification errors on six microarray datasets.
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