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ABSTRACT

Motivation: Accurate prognosis of breast cancer can spare a signifi-

cant number of breast cancer patients from receiving unnecessary

adjuvant systemic treatment and its related expensive medical costs.

Recent studies have demonstrated the potential value of gene exp-

ression signatures in assessing the risk of post-surgical disease

recurrence. However, these studies all attempt to develop genetic

marker-based prognostic systems to replace the existing clinical crite-

ria, while ignoring the rich information contained in established

clinical markers. Given the complexity of breast cancer prognosis,

a more practical strategy would be to utilize both clinical and genetic

marker information that may be complementary.

Methods: A computational study is performed on publicly available

microarray data, which has spawned a 70-gene prognostic signature.

The recently proposed I-RELIEF algorithm is used to identify a hybrid

signature through the combination of both genetic and clinical markers.

A rigorous experimental protocol is used to estimate the prognostic

performance of the hybrid signature and other prognostic approaches.

Survival data analyses is performed to compare different prognostic

approaches.

Results: The hybrid signature performs significantly better than

other methods, including the 70-gene signature, clinical makers

alone and the St. Gallen consensus criterion. At the 90% sensitivity

level, the hybrid signature achieves 67% specificity, as compared

to 47% for the 70-gene signature and 48% for the clinical makers.

The odds ratio of the hybrid signature for developing distant meta-

stases within five years between the patients with a good prognosis

signature and the patients with a bad prognosis is 21.0 (95% CI:

6.5–68.3), far higher than either genetic or clinical markers alone.

Availability:Thebreast cancer dataset is available atwww.nature.com

and Matlab codes are available upon request.

Contact: sun@dsp.ufl.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Breast cancer is the second most common cause of deaths from

cancer among women in the United States. In 2006, it is estimated

that about 212 000 new cases of invasive breast cancer will be

diagnosed, along with 58 000 new cases of non-invasive breast

cancer and 40 000 women are expected to die from this disease

(Data from American Cancer Society, 2006). The major clinical

problem of breast cancer is the recurrence of therapeutically resis-

tant disseminated disease. In many patients, microscopic or clini-

cally evident metastases have already occurred by the time the

primary tumor is diagnosed. Chemotherapy or hormonal therapy

reduces the risk of distant metastases by one-third. However, it is

estimated that about 70% patients receiving treatment would have

survived without it. Therefore, being able to predict disease

outcomes more accurately would help physicians make informed

decisions regarding the potential necessity of adjuvant treatment,

and may lead to the development of individually tailored treatments

to maximize the efficacy of treatment. Consequently, this would

ultimately contribute to a decrease in overall breast cancer mortal-

ity, a reduction in overall heath care cost and an improvement in

patients’ quality of life.

Despite significant advances in the treatment of primary cancer,

the ability to predict the metastatic behavior of tumors remains

one of the greatest clinical challenges in oncology. Two commonly

used treatment guidelines are the St. Gallen (Goldhirsch et al., 2003)
and NIH (Eifel et al., 2000) consensus criteria that determine

whether a patient is at a high risk of tumor recurrence and/or distant

metastases based on a panel of clinical markers, such as age of

patient, tumor size, the number of involved lymph nodes at the

time of surgery and the aggressiveness of the cancer based on

histopathological parameters. These criteria are less than precise

in predicting therapy failure, with only 10% specificity at the 90%

sensitivity level1. A more accurate prognostic criterion is urgently

needed to avoid over- or under-treatment in newly diagnosed

patients.

It has been recently established that related cellular phenotypes

are generally reflected in the related patterns of cellular transcripts,

implying the possibility of classifying cellular states by monitoring

gene expression profiles (Golub et al., 1999). Identifying a gene

signature using microarray data for breast cancer prognosis has been

a central goal in some recent large-scale exploratory studies. In

van’t Veer et al., 2002, a 70-gene signature (also known as the

Amsterdam signature) was derived from a cohort of 78 breast cancer

patients, the prognostic value of which was further validated in

�To whom correspondence should be addressed.

1The specificity is defined as the rate of correctly predicting the lack of need

of the adjuvant systemic therapies when the therapies are indeed not nec-

essary, and the sensitivity is the rate of administering the adjuvant systemic

therapies when indeed these therapies are effective.
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a larger dataset (van De Vijver et al., 2002). More recently,

a 76-gene signature was identified and successfully used to predict

distant metastases of lymph node-negative primary breast cancer

(Wang et al., 2005). These studies have shown that gene profiling

can achieve a much higher specificity than the current clinical

systems (50%versus 10%) at the same sensitivity level. These results

are considered groundbreaking in breast cancer prognosis. A

prospective and randomized study involving �800 breast cancer

patients, referred to as MINDACT (Microarray In Node negative

Disease may Avoid ChemoTherapy), is currently being conducted

in Europe in order to evaluate the prognostic value of the 70-gene

signature (Loi et al., 2006).
The predictive values of these gene signatures are usually demon-

strated through comparison with the conventional St. Gallen and

NIH consensus criteria. Though the results favor gene signatures,

the comparison is somewhat unfair since both St. Gallen and NIH

consensus criteria perform risk assessment by following the

rules derived heuristically from clinical experiences rather than

carefully optimized rules2. Edén et al. showed experimentally

that the clinical markers, when used as the features in a well trained

neural network (NNW), performed similarly to a gene based prog-

nostic system (Edén et al., 2004), which is in sharp contrast with

the conclusions drawn in the existing studies (van’t Veer et al.,
2002; van De Vijver et al., 2002; Weigelt et al., 2005). Moreover,

most of the existing studies attempt to use a genetic marker based

prognostic system to replace the existing clinical rules, rather than

incorporating the valuable clinical information. Given the complex-

ity of breast cancer prognosis, a more practical strategy, as sug-

gested by Brenton et al., 2005, is to utilize both clinical and genetic
markers that may contain complementary information. This may

lead to a more economical and accurate prognostic system. In

this paper, we conduct a computational study to demonstrate the

feasibility of this strategy.

The key challenge to deriving a hybrid prognostic signature from

both genetic and clinical markers is feature selection. One charac-

teristic of microarray data, different from most of the classification

problems we encounter, is the extremely large feature dimension-

ality compared to the small sample size. The curse of dimensionality

(Duda et al., 2000; Trunk, 1979) becomes a serious problem. Here,

we use our recently developed I-RELIEF algorithm to select a small

feature subset such that the performance of a learning algorithm is

optimized. I-RELIEF employs a feature weighting strategy that

assigns each feature a real-valued number, instead of a binary

one, to indicate its relevance to a learning problem. The feature

weighting strategy enables the employment of well established

optimization techniques, and thus allows for efficient algorithmic

implementation that is critical for microarray data analysis. We use

a rigorous experimental protocol to estimate the classification

parameters and the prognostic performance of the new hybrid

signature and other prognostic approaches, including the

70-gene signature, the clinical markers alone, and the conventional

St. Gallen criterion. Survival data analyses are performed to

compare the different prognostic approaches. Our results clearly

demonstrate the superiority of the hybrid signature over a prognostic

system that uses only genetic or clinical markers.

2 MATERIALS AND METHODS

2.1 Dataset

A computational study is performed on van’t Veer’s data (van’t Veer et al.,

2002). This dataset contains expression profile information derived from

samples collected from 97 lymph node-negative breast cancer patients

55 years old or younger, and associated clinical information including

age, tumor size, histological grade, angioinvasion, lymphocytic infiltration,

estrogen receptor (ER) and progesterone receptor (PR) status. Among the

97 patients, 46 developed distant metastases within 5 years and 51 remained

metastases free for at least 5 years. The isolation of RNA from cancerous

tissues, labeling of complementary RNA (cRNA), the competing hybridi-

zation of labeled cRNA with a reference pool of cRNA from all tumors to

arrays containing 24 481 gene probes, quantization and normalization of

fluorescence intensities of scanned images are detailed described in

the previous publication (van’t Veer et al., 2002). The task is to build

a computational model to accurately predict the risk of distant recurrence

of breast cancer (using a 5-year post-surgery period as the defining

point commonly used in the literature). Except for a simple re-scaling of

each feature value to be between 0 and 1, no other preprocessing is

performed. The re-scaling is performed by using the formula:

x̂xðiÞn ¼ xðiÞn � minm xðiÞm

maxm x
ðiÞ
m � minm x

ðiÞ
m

‚

where xðiÞn is the ith feature in the nth sample. In the following, we drop the

hat in x̂xðiÞn for notational brevity.

2.2. Feature selection

Feature selection plays a critical role in the success of a learning algorithm

in problems involving a significant number of irrelevant features. Here, we

use the term feature to refer to both genetic and clinical markers. Microarray

profiling is a powerful technique that allows researchers to examine the

expression levels of tens of thousands of genes in a cell or a tissue simul-

taneously. However, it also poses a serious challenge to the existing

machine-learning algorithms. With relatively small sample size, a learning

algorithm can easily overfit training data, resulting in a zero training error but

a very poor generalization performance on unseen data. A commonly used

practice to correct for overfitting is to select a small feature subset such that

the performance of a learning algorithm is optimized. Compared to the

classifier design, feature selection still, to date, lacks a rigorous theoretical

treatment. Most existing feature selection algorithms rely on heuristic com-

binatorial search and thus cannot provide any guarantee of optimality. This is

largely due to the difficulty in defining an objective function that can be

easily optimized by some well-established optimization techniques. In the

presence of thousands of irrelevant genes, even heuristic searches become

computationally unfeasible. For this reason, in microarray data analysis,

nearly all of the gene selection algorithms resort to filter type methods

that evaluate genes individually, e.g. t-test and Fisher score (Dudoit

et al., 2002; Golub et al., 1999). The limitations of filter methods for feature

selection are summarized as follows:

(1) Filter methods are unable to remove redundant features. For example,

if a gene is top ranked, its co-regulated genes will also have high

ranking scores. It is a well-established fact in machine learning that

redundant features may not improve but rather deteriorate classifica-

tion performance (Kohavi and John, 1997). This fact is largely ignored

in many microarray data analyses. From the clinical perspective, the

examination of the expression levels of redundant genes will not

improve clinical decisions but increase medical examination costs

needlessly.

2The St. Gallen consensus criterion: tumor �2 cm, estrogen receptor nega-

tive grade 2–3, patient <35 years old (any one of these criteria met suggests

high distant metastases risk.); the NIH consensus is similar to that of St.

Gallen, but with tumor >1 cm.
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(2) Filter methods evaluate the goodness of features individually, while

neglecting the possible correlation information among them (Li et al.,

2004; Dudoit et al., 2002). Some features may receive low ranking

scores when evaluated separately, but can provide critical information

when combined with other features. One possible solution to this

problem is to usewrapper typemethods that use a classifier to evaluate

the goodness of selected feature subsets (Kohavi and John, 1997).

However, with tens of thousands of features, it is computationally

unfeasible to perform the combinatorial searching required in a

wrapper method.

We have recently developed a new feature selection algorithm, referred

to as I-RELIEF (Sun and Li, 2006) to alleviate the aforementioned

drawbacks of filter methods and the computational issue of wrapper meth-

ods. I-RELIEF is one of the first feature selection algorithms that utilize the

performance of a nonlinear classifier when searching for informative

features, and yet can be implemented efficiently through optimization

and numerical analysis techniques, instead of combinatorial searching.

Below we present a brief review of I-RELIEF. Let D ¼ fðxn‚ynÞg
N
n¼1

denote a training dataset, where xn is the nth data sample and yn 2 {±1}

is the corresponding class label, i.e. metastasis or no metastasis. The ith

component of xn records the expression level of the ith gene in the nth

sample. We define a margin for the sample xn as rn ¼ d(xn � NM

(xn))� d(xn � NH(xn)), where NM(xn) and NH(xn) are the nearest miss

and nearest hit of xn, which can be regarded as two functions that given

an input xn return the nearest neighbors of xn from the opposite and

same classes, respectively, and d(·) is a distance function defined as

d(x) ¼
P

i j xi j . Note that rn > 0 if only if xn is correctly classified by

a one-nearest-neighbor classifier. One natural idea is to scale each feature

such that the averaged margin in a weighted feature space is maximized:

max
w

XN
n¼1

rnðwÞ

¼ max
w

XN
n¼1

XI
i¼1

wiðjxðiÞn � NMðiÞðxnÞj � jxðiÞn � NHðiÞðxnÞjÞ

s:t: kwk22 ¼ 1‚w � 0‚

ð1Þ

where rn(w) is the margin of xn computed with respect to w. The constraint

kwk22 ¼ 1 prevents the maximization from increasing without bound, and

w� 0 ensures that the w-weighted distance is a metric. We have proven that

the optimization scheme in Equation (1) can be solved with a closed-form

solution, and is equivalent to the well-known RELIEF algorithm (Kira and

Rendell, 1992; Sun and Li, 2006). Note that the use of the block distance in

the margin definition is consistent with the original formulation of RELIEF;

other distance functions can also be used. For example, in Gilad-Bachrach

et al., 2004, Euclidean distance is used in defining a margin, which, however,

leads to a difficult nonconvex optimization problem. Due to the feedback of

the performance of a nonlinear classifier when searching for useful features,

RELIEF usually performs better than filter methods. One major drawback of

RELIEF, however, is that the nearest-neighbors are defined in the original

feature space, which is highly unlikely to be the ones in the weighted space.

In the presence of many irrelevant features, which is the case in microarray

data analysis, the performance of RELIEF can degrade significantly.

I-RELIEF provides an analytic solution to mitigate the problem of RELIEF.

We first define two sets Mn ¼ fi : 1 � i � N‚yi 6¼ yng and

Hn ¼ fi : 1 � i � N‚ yi ¼ yn‚ i 6¼ ng, associated with each sample xn.

Suppose that we have known, for each sample xn, its nearest hit and

miss, the indices of which are recorded in the set Sn ¼ fðsn1‚sn2Þg,
where sn1 2 Mn and sn2 2 Hn. Then the objective function we want to

optimize can be formulated as

CðwÞ ¼
XN
n¼1

ðkxn � xsn1kw � kxn � xsn2kwÞ‚ ð2Þ

where kxkw ¼
P

i wi j xi j . Equation (2) can be easily optimized by using

RELIEF. However, we do not know the set S ¼ fSngNn¼1. By following the

principle of the Expectation Maximization algorithm, we regard the ele-

ments of fSngNn¼1 as hidden random variables, and derive the probability

distributions of the unobserved data. We first make a guess on the weight

vector w. The probability of the ith data point being the nearest miss of xn
if i 2 Mn, or being the nearest hit of xn if i 2 Hn, can be naturally defined as

Pmði j xn‚wÞ ¼
f ðkxn � xikwÞP

j2Mn
f ðkxn � xjkwÞ

‚

and

Phði j xn‚wÞ ¼
f ðkxn � xikwÞP
j2Hn

f ðxn � xjkwÞ
‚

respectively, where f(·) is a kernel function. One commonly used kernel

function is f(d) ¼ exp (�d/s), where s is a user defined parameter. In the

experiment, we set s ¼ 2 based on our empirical experience. (In the

Supplementary material, we show that the choice of the tuning parameter

is not critical, and the algorithm performs similarly for a large range

of sigma values.) For notational brevity, we define ai,n ¼ Pm(i j xn, w(t)),

bi,n ¼ Ph(i j xn, w(t)), W ¼ fw : kwk2 ¼ 1‚w � 0g‚mn‚ i ¼ j xn � xi j if

i 2 Mn, and hn‚ i ¼ j xn � xi j if i 2 Hn. I-RELIEF can be summarized

as follows:

Step-1: After the tth iteration, the Q function is calculated as:

Qðw jwðtÞÞ¼EfSg½CðwÞ�

¼
XN
n¼1

X
i2Mn

ai‚nkxn � xikw �
X
i2Hn

bi‚nkxn � xikw

 !

¼
XN
n¼1

X
j

wj

X
i2Mn

ai‚n m
j
n‚ i �

X
j

wj

X
i2Hn

bi‚nh
j
n‚ i

 !

¼wT
XN
n¼1

ð �mmn � �hhnÞ¼wTv‚

ð3Þ

where �mmn ¼
X
i2Mn

ai‚nmn‚ i and �hhn ¼
X
i2Hn

bi‚nhn‚ i.

Step-2: The re-estimation of w in the (t + 1) th iteration is:

wðtþ1Þ ¼ arg max
w2W

Qðw jwðtÞÞ ¼ ðvÞþ/kðvÞþk2‚ ð4Þ

where ðniÞþ ¼ max ðni‚0Þ. The above two steps iterate alternatingly until

convergence, i.e. kwðtþ 1Þ � wðtÞk < �, where � is a small positive number. In

Sun and Li, 2006, we have mathematically proven that I-RELIEF converges

to a unique solution regardless of the initial weights if the kernel function

is properly selected. The convergence is usually achieved within a few

iterations.

I-RELIEF combines the merits of both filter and wrapper methods. Note

that the objective function optimized by I-RELIEF approximates the leave-

one-out accuracy of a nearest-neighbor classifier. Therefore, I-RELIEF can

be regarded as a wrapper method, and thereby it naturally addresses the

issues of feature correlation and the removal of redundant features. More-

over, I-RELIEF can be solved analytically, and thus avoids any heuristic

combinatorial search. The effectiveness of the algorithm has been demon-

strated through large-scale experiments on simulated data and six micro-

array datasets (Sun and Li, 2006). In the Supplementary material,

a simulation study of I-RELIEF on a toy example is presented for illustration

purpose.

3 EXPERIMENTS

3.1 Experimental setup

In a computational study using microarray data with small sample

sizes, special care must be taken in experimental protocols to avoid

possible overfitting of a computational model to training data.

One particular problem in many microarray data analyses is an

Y.Sun et al.
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incomplete cross-validation method that uses the same dataset for

both training and testing, resulting in over-optimistic performances

not reproducible in other independent validation studies (Simon

et al., 2003; Simon, 2005; Brenton et al., 2005). To avoid this

problem, we adopt a rigorous experimental protocol proposed in

Wessels et al., 2005 with the leave-one-out cross validation

(LOOCV) method. In each iteration, one sample is held out for

testing and the remaining samples are used for training. The experi-

mental protocol consists of two loops: inner and outer loops. In the

inner loop, LOOCV is performed to estimate the optimal classifica-

tion parameters based on the training data provided by the outer

loop. In the outer loop, the held-out sample is classified by using the

best parameters from the inner loop. The experiment is repeated

until each sample has been used for testing.

The classification parameters that need to be specified in the inner

loop include the kernel width of I-RELIEF, the structural parame-

ters of a classifier (e.g. the regularization parameter in SVM and the

number of the hidden nodes in NNW), and the number of the

features used in a classifier, which leads to a multi-dimensional

parameter searching. To make the experiment computationally fea-

sible, we adopt some heuristic simplifications. Linear discriminant

analysis (LDA) is used to estimate classification performances. One

major advantage of LDA, compared to other classifiers, such as

SVM and NNW is that LDA has no structural parameters. We

then predefine the kernel width s ¼ 2, and estimate the number

of features through LOOCV in the inner loop. The use of LDA is

further justified by other research work. Simon pointed that there

may not be sufficient information in most microarray datasets to

support nonlinear classifiers (Simon, 2005). In the analyses per-

formed by van’t Veer et al., the 70-gene signature was derived

from the same dataset, and the samples were classified using a cor-

relation based classifier. It can be shown that the correlation based

classifier is a special case of LDA, with the within-class scatter

matrix being replaced by an identity matrix I. In Edén et al., 2004
where a NNW classifier was constructed, it was found through

cross-validation that a NNW without hidden layers performed

the best, which is actually a linear classifier. We comment that

a comprehensive parameter searching may lead to a more accurate

prediction performance but with a much higher computational

complexity.

We demonstrate the predictive values of the hybrid prognostic

signature derived from the genetic and clinical markers by

comparing its performance with those of the clinical markers

that are used as the features in a well trained LDA classifier,

St. Gallen criterion and the 70-gene signature3. The performances

of the 70-gene signature and the clinical markers are estimated

through LOOCV. Hence, the held-out testing sample is not involved

in the identification of a gene signature. It should be noted that the

signature identified in each iteration is very likely to be different

from the one reported in van’t Veer et al., 2002. However, the
LOOCV error provides us with an unbiased estimation on how

the gene signature so-produced performs on unseen data (Simon,

2005) (c.f. Section 3.2).

3.2 Results

With a small sample size, some performance measurements, such as

odds ratios are heavily influenced by the choice of a decision thresh-

old. A receiver operating characteristic (ROC) curve obtained by

varying a decision threshold can give us a direct view on how

a classifier performs at the different sensitivity and specificity

levels. In Figure 1, we plot the ROC curves of three classifiers

based on the hybrid signature, the 70-gene signature and the clinical

markers. We observe that the hybrid signature significantly outper-

forms both the 70-gene signature and the clinical markers, whereas

the latter two approaches perform similarly. By following the study

of van’t Veer and colleagues (van’t Veer et al., 2002), a threshold is
set for each classifier such that the sensitivity of each classifier is

equal to 90%. The corresponding specificities are computed and

reported in Table 1. For comparison, the specificities of the

St. Gallen criterion are also reported. Both the 70-gene signature

and the clinical markers significantly outperform the St. Gallen

criterion, as reported in the literature, and the hybrid signature

improves the specificities of the 70-gene signature and the clinical

markers by 20%. We point out that our estimation of the specificity

of the 70-gene signature is worse than that reported in van’t Veer

et al., 2002 and Weigelt et al., 2005 (47% versus 73%), but is con-

sistent with that in the follow-up validation study of the 70-gene

signature on a larger dataset (van De Vijver et al., 2002) (53%).

This is because 76 samples in van’t Veer’s dataset that were used

for performance estimation were also involved in the identification
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Fig. 1. ROC curves of three methods. A colour version of this figure is

available as supplementary data.

Table 1. Prognostic Results (90% sensitivity)

Methods Specificity Odd ratio Hazard ratio (HR)

(95% CI) HR (95% CI) P-value

70-gene 24/51 ¼ 47% 9.3 (2.9–30.0) 6.0 (2.0–17.0) <0.001
St. Gallen 6/51 ¼ 12% N/A N/A N/A

Clinical 25/51 ¼ 48% 9.3 (2.9–30.0) 6.2 (2.2–17.6) <0.001
Hybrid 34/51 ¼ 67% 21.0 (6.5–68.3) 11.1 (3.9–31.5) <0.001

3We follow the experimental procedure outlined in Veer et al., 2002 that first
identified the top 70 genes and then assessed its predictive value by using

a correlation based classifier. The detailed description is presented in the

Supplement.
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of the gene signature, which led to a biased estimate of the

prediction performance of the signature. Our result suggests

that LOOCV can effectively correct for this bias.

We compute the odds ratio (OR) of four approaches for devel-

oping distant metastases within five years between the patients with

a good prognostic signature and the patients with a bad prognosis.

The results are reported in Table 1. We observe that the 70-gene

signature has the same OR (9.3, 95% confidence interval (CI):

2.9�30.0) as the clinical markers. This result is consistent with

the findings reported in Edén et al., 2004. We also note that the

hybrid signature gives a much higher OR (21.0, 95% CI: 6.5�68.3)

than either genetic or clinical markers.

To further demonstrate the predictive value of the hybrid signa-

ture in assessing the risk of developing distant metastases in breast

cancer patients, survival data analyses of four approaches are also

performed4. The Kaplan–Meier curve of the hybrid signature,

plotted in Figure 2, shows a significant difference in the probability

of remaining free of distant metastases in patients with a good

signature and the patients with a bad prognostic signature

(P-value <0.001). The Mantel–Cox estimation of hazard ratio

of distant metastases within five years for the hybrid signature is

11.1 (95% CI: 3.9�31.5, P-value <0.001), which is superior to

either genetic or clinical markers alone.

More experimental results can be found in the Supplementary

material.

3.3 Hybrid signature

With a small sample size, each iteration in LOOCV may generate

a different prognostic signature since training data are different

(Simon, 2005). In our study, we find that the majority of the itera-

tions identify the same hybrid signature that consists of only three

gene markers and two clinical markers (Supplementary Table 1).

Note that the hybrid signature is markedly shorter than the 70-gene

signature.

The two clinical markers in the hybrid signature are tumor grade

and angio-invasion. Histological grading of tumors has been shown

in numerous studies to provide useful prognostic information in

breast cancer (Elston et al., 1991). The grade represents a morpho-

logical assessment of the degree of differentiation of the tumor as

evaluated by the percentage of tubule formation, the degree of

nuclear pleomorphism and the presence of mitoses. Grade 1 tumors

have a low risk of metastases; grade 2 tumors have an intermediate

risk of metastases and grade 3 tumors have a high risk of metastases.

Patients with grade 1 tumors have a significantly better survival rate

than those with grade 2 or 3 tumors (Elston et al., 1991). An
essential step in the metastatic cascade is (lympho)vascular inva-

sion, or the penetration of tumor cells into lymph and/or blood

vessels in and around the primary tumor. Accordingly, the

observation of 3 or more tumor cell emboli in tumor-associated

vessels has been correlated with the presence of LN metastases

and with poor prognosis in patients with breast cancer (de Mascarel

et al., 1998; Pinder et al., 1994).

The three genetic markers in the hybrid signature include

AL080059, CEGP1 and PRAME, of which CEGP1 and

AL080059 are also listed in the 70-gene signature. The CEPG1

gene (also known as SCUBE2, EGF2-like 2 and ASCL3), is located

on human chromosome 11p15 and has homology to the achaete-

scute complex (ASC) of genes in the basic helix–loop–helix

(bHLH) family of transcription factors. The exact biological role

for CEGP1 (SCUBE2) is still unknown, but the gene encodes

a secreted and cell-surface protein containing EGF and CUB

domains (Yang et al., 2002). The epidermal growth factor motif

is found in many extracellular proteins that play an important role

during development, and the CUB domain is found in several pro-

teins implicated in the regulation of extracellular process, such as

cell–cell communication and adhesion (Grimmond et al., 2000).
Expression of SCUBE2 has been detected in vascular endothelium

and may play important roles in development, inflammation and

perhaps carcinogenesis (Yang et al., 2002). The expression of

SCUBE2 was recently reported to be associated with ER status

in a recent SAGE-based study of breast cancer specimens (Abba

et al., 2005). The AL080059 label refers to a sequence obtained

from a human cDNA clone, but subsequent analysis has revealed

significant homology with the TSPY-like 5 (TSPYL5) gene, and

with other human proteins, including NAPs, factors which play

a role in DNA replication (Schnieders et al., 1996). It is thought

that NAPs act as histone chaperones, shuttling histones from their

site of synthesis in the cytoplasm to the nucleus. Histone proteins

are involved in regulating chromatin structure and accessibility

and therefore can impact gene expression (Rodriguez et al.,
1997), thus, a role in tumor cell phenotype can be proposed.

Although both AL080059 and CEGP1 were found to be signifi-

cantly over-expressed in our studies of a breast tumor metastases

model (Goodison et al., 2005), neither the AL080059 nor CEGP1

genes have been evaluated independently in human cancers.

Conversely, the expression of the preferentially expressed antigen

in melanoma (PRAME) gene has been linked to human disease,

including cancer. PRAME is classed as a cancer-testis antigen

(CTA), a group of tumor-associated antigens that represent possible

target proteins for immuno-therapeutic approaches. Their expres-

sion is encountered in a variety of malignancies but is negligible in

healthy tissues, with male germinal cells being the exception

(Juretic et al., 2003). PRAME was first discovered in a patient

with melanoma (Ikeda et al., 1997), and has since been found to

be expressed in a large variety of cancer cells including squamous

cell lung carcinoma, medulloblastoma, neuroblastoma, renal cell

carcinoma and acute leukemia (Matsushita et al., 2003). Our

study raises the possibility that therapies targeted to PRAME

may be beneficial in breast cancers also.

4 DISCUSSION

We present some discussion on the optimality and uniqueness

of prognostic signatures. Due to these issues, among others, the

appropriateness of the existing gene signatures being ready for

clinical trials is currently under hot debate (Brenton et al., 2005;
Weigelt et al., 2005; Loi et al., 2006). Since many potential readers

of this paper are from the oncology community, we start the dis-

cussion with a relatively simple machine-learning example.

This example was first used by Trunk (Trunk, 1979) to demonstrate

the existence of the curse of dimensionality. We find that

4It is not clear whether at 5 years post-surgery, patients had died from distant

metastasis or that the clinicians were unable to continue follow-up for other

reasons. Some researchers (Edén et al., 2004) treated the patients who

survived more than 5 years as if they lost follow-up, while in our experiment,

we consider them as ‘‘dead’’. Therefore, the results of the 10-year prognosis

are not reliable.
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Trunk’s experiment, when applied to the research of breast cancer

prognosis, reveals to us much beyond the curse of the dimension-

ality. Consider the following binary classification problem.

The a priori probabilities P(C1) ¼ P(C2) ¼ 1/2, and the class

conditional probabilities are Gaussian, given by pðx jC1Þ �
N ðm‚IÞ and pðx jC2Þ � Nð�m‚IÞ‚ respectively, where m is the

mean vector, the ith components of which is (1/i)1/2, and I is the

identity matrix. The task is to construct a classifier based on a given

training dataset. All of the a priori knowledge is given except for the
mean vector m, which is estimated from training data. The classi-

fication accuracies, as a function of the number of features used in

a constructed classifier for four different training sample sizes

(i.e. 20, 50, 100 and 200) averaged from 100 runs, are plotted in

Figure 3. From the figure, we arrive at the following observations:

(1) For a given sample size, the inclusion of additional features

beyond a certain point leads to a higher error. It can be shown

thatwith a finite sample size, the classification error converges

to one-half when the number of features goes to infinite

(Trunk, 1979). Note that in Trunk’s data model, each feature

contains a certain amount of discriminant information. This

observation, when applied to breast cancer prognosis, implies

that with a limited number of training samples, some features,

though having some predictive values in breast cancer prog-

nosis when evaluated individually, do not necessarily improve

the predictive performance of a computational model when

used together with other features, and sometimes may even

deteriorate performance. This highlights the need for perform-

ing feature selection.

(2) With the increase of sample sizes, the numbers of the features

corresponding to the optimumperformance are also increased.

For example, with 20 samples, the classification accuracy

peaks around 30 features, whereas for 200 samples, the

peak occurs around 200 features (Fig. 3). This observation,

when applied to the research of breast cancer prognosis,
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Fig. 2. Kaplan–meier estimation of the probabilities of remaining distant metastases free in patients with a good or bad prognostic signature, determined by the

St. Gallen criterion, clinical markers, 70-gene signature and hybrid signature. The P-values is computed by the use of log-rank test.
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indicates that a prognostic signature derived from a small

trainingdataset is likely tobe lengthenedwhena larger training

dataset is used.

(3) There exists a range in the feature dimensionality where

a classifier achieves the close-to-optimum performance.

Moreover, with the inclusion of more samples, the range

becomes even larger. (Note that the x-axis of Fig. 3 is log-

scaled.) It means that, for a given training dataset, there may

exist several different signatures with a similar predictive

value. This observation, together with other factors (e.g. the

existence of co-regulated genes and the use of different micro-

array platforms and data processing algorithms. Interested

readers may refer to Dalton et al., 2006 for more detailed

discussion.), may provide an explanation as to why the gene

signatures identified in some recent independent studies are

different.

For clinical applications, what we are really interested in is

not whether there exists several different signatures having a simi-

lar predictive value, but whether these signatures have achieved

the optimum, or close-to-optimum performance. After decades of

research on breast cancer prognosis, many prognostic markers have

been reported in the literature, including clinical markers and

gene signatures. Many of them are single-marker prognostic and

predictive studies. A critical question remains unanswered to date:

what is the best we can perform in breast cancer prognosis given all
clinical and genetic information using advanced computational
algorithms? Without further optimization, an expensive clinical

validation trial of a prognostic signature may merely repeat the

already established predictive values of the signature, and yet, can-

not prove its optimality for clinical applications. In this paper, we

have presented a computational study clearly demonstrating the

feasibility of utilizing both clinical and genetic information simul-

taneously for more accurate breast cancer prognosis. We believe

that this is an advantageous direction to pursue in future breast

cancer prognosis studies.

Our experiment is based on van’t Veer’s data, which was obtained

from only 97 tissue samples. We demonstrate through Trunk’s

experiment that identifying prognostic signatures for breast cancer

prognosis is necessarily an ongoing and dynamic process, in which,

with the inclusion of more patient samples, a prognostic signature

will be continuously lengthened and refined, whereby the perfor-

mance of a prognostic signature will be improved accordingly and

finally stabilized.

5 RELATED WORK

From the machine-learning perspective, it is a straightforward

idea to integrate all available information for a classification

task. Some efforts have been made in this direction for breast cancer

prognosis but with little success. Ritz (Ritz, 2003) combined both

genetic and clinical information in a NNW for breast cancer prog-

nosis but found that the combination did not improve the perfor-

mance. Dettling et al., 2004 applied penalized logistic regression

analysis to predict cancer prognosis for the same dataset. They

found that none of the clinical variables entered the model and

concluded that the clinical data did not contain any useful indepen-

dent information for prediction, given the gene expression profile. In

Gevaert et al., 2006, a Bayesian network was developed to perform

breast cancer prognosis. The results showed that although a Baye-

sian network that used both genetic and clinical information can

lead to a simpler classifier with fewer genes, which is consistent

with our finding, the Bayesian network performed similarly to the

70-gene signature. We emphasize that these negative results do not

necessarily mean that the clinical data contains no additional

information to the genetic data; it only tells us that with their models

the applied combination strategy did not work. This highlights the

difficulty of designing a successful combination strategy.

6 CONCLUSION

In this paper, we applied a new mathematical model to predict the

likelihood of disease recurrence and metastases in breast cancer.

Our preliminary study has shown that a hybrid signature can provide

significantly improved prognostic specificity over the existing gene

signatures and the current clinical systems by about 20% and 60%,

respectively. We have also presented an informative discussion on

the issue of the curse of the dimensionality in the context of

breast cancer prognosis. We believe that researchers, particularly

from the oncology community, should benefit from the discussion.

To fully address the question of what is the best we can perform in

breast cancer prognosis given all available information, as posed in

Section 4, larger-scale computational studies involving more patient

data and which compare different learning algorithms are required

and are under way in our laboratory.
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