#### Earthquake Response and Preparedness: Modeling Human/Structure Interaction

Jalalpour, M., Szyniszewski, S., Jacques, C., Liu, Z., Guest, J.K., Igusa, T., Schafer, B.W., Mitrani-Reiser, J.

### Introduction

- Earthquake response humans/building interaction
- Assess the preparedness of Los Angeles to
  - Mass evacuation
  - Healthcare response
- Structural and non-structural building response
- Effect of damage and injury on evacuation
- Agent-based simulations of human activity and evacuation

# Outline

- Project Approach
- Site Information
- Ground Motion Input
- Structural Simulations
- Non-Structural Layout
- Non-Structural Damage Analysis
- Test Structure Evacuation Model
- Evacuation of City Block
- Casualty Modeling
- Regional Modeling and Animation
- Future Work

# Approach - City



### Approach – Test Structure



## Site Information

# Approach - City





## Ground Motion Input

# Approach - City



### Approach – Test Structure



### Ground Motion Input (Northridge earthquake 1994)



# Structural simulations

High resolution

### Approach – Test Structure



# 3 story archetypical building

- Typical 3-story office-building
- Employed in seismic study by Gupta and Krawinkler
- Moment-resisting steel framed structure
- Light composite concrete decks
- Dead load, D = 4 [kPa]
  - Deck self-weight ≈ 3 [kPa]
  - Ceilings/fireproofing, etc. ≈ I [kPa]
- Office live load, L = 2.5 [kPa]





# Physics based simulations

 Methodology from studies on progressive collapse



- Large strains and geometric nonlinearities
- Contact and impact of falling members





### 3 story building. Case study



12/20/2011

# 3 story building - Visualization



#### Damage assessment



### Floor damage

#### Damage resulting in partial collapse



2<sup>nd</sup> floor slab (effective plastic strain)

|        |            | 3.500e-02 _ |               |                |             |
|--------|------------|-------------|---------------|----------------|-------------|
|        | ~          | 3.000e-02 _ |               |                |             |
|        |            | 2.500e-02   |               |                |             |
|        |            | 2.000e-02   |               |                |             |
|        |            | 1.500e-02   |               |                |             |
|        |            | 1.000e-02   |               |                |             |
|        | 4          | 5.000e-03   |               |                |             |
|        |            | 0.000e+00   |               |                |             |
|        |            | -           |               |                |             |
| lem_id | x-coord    | y-coord     | z-coord       | 1=0K Ø=del     | perm_z-disp |
| 10960  | 6.152926   | 5.975081    | 155.955000    | 0              | 0.00000     |
| 10961  | 18.146713  | 5.954945    | 155.949270    | 9              | 0.00000     |
| 10962  | 30.132240  | 5.932042    | 155.944623    | 9              | 0.00000     |
| 10963  | 42.117773  | 5.911372    | 155.940730    | 9              | 0.00000     |
| 10964  | 54.103310  | 5.892973    | 155.937605    | 0              | 0.00000     |
| 10065  | 66 088852  | 5 876861    | 155 035252    | 9              | 0 00000     |
| 10966  | 78.074396  | 5.863030    | 155.933670    | <mark>1</mark> | -4.440545   |
| 10967  | 90.059943  | 5.851454    | 155.932847    | 1              | -4.063509   |
| 10968  | 102.045491 | 5.842083    | 155.932770    | 1              | -3.886452   |
| 10969  | 114.031683 | 5.832908    | 155.933922    | 1              | -3.803761   |
| 10970  | 126.021343 | 5.834796    | 155.938785    | 1              | -3.826692   |
| 10971  | 138.014470 | 5.847525    | 155.947348    | 1              | -3.884346   |
| 10972  | 150.008238 | 5.859799    | 155.957108    | 1              | -3.922487   |
| 10973  | 162.002005 | 5.873242    | 155.967565    | 1              | -3.939513   |
| 10974  | 173.995772 | 5.887562    | 155.978745    | 1              | -3.933934   |
| 10975  | 185.989537 | 5.902485    | 155.990675    | 1              | -3.905024   |
| 10976  | 197.983300 | 5.917742    | 156.003385    | 1              | -3.853736   |
| 10977  | 209.977062 | 5.933066    | 156.016923    | 1              | -3.781118   |
| 10978  | 221.970825 | 5.948186    | 156.031335    | 1              | -3.685833   |
| 10979  | 233.962812 | 5.960761    | 156.043115    | 1              | -3.579895   |
| 10980  | 245.952060 | 5.972372    | 156.063883    | 1              | -3.469615   |
| 10981  | 257.938568 | 5.982837    | 156.093710    | 1              | -3.339540   |
| 10982  | 269.923300 | 5.990233()  | / 7156.121097 | 1              | -3.190973   |
| 10983  | 281.908030 | 5.996584    | 156.149635    | 1              | -3.031114   |

### Accelerations and displacements



### Summary

- Response of buildings to a strong earthquake
  - detailed dynamic, time-history simulations
  - contact and collapse
- Structural damage enables estimates of postearthquake:
  - obstacles in evacuation routes
  - collapsed slabs
  - buckled columns
  - damaged staircases
- Time floor accelerations and drifts for assessment of non-structural damage







### Non-Structural Layout

### Approach – Test Structure



# Design of Non-Structural Layout

- Non-structure elements for the test structure only.
- Designed in Google Sketchup according to fire code.
- Non-structural elements present inside walls and ceilings:
  - I: Evenly distributed with constant density
  - > 2: Amounts calculated using ATC 58
- Two floor plans commercial occupancy :
  - a ground floor
  - upper story, repeated for all higher stories.



12/20/2011





## Non-Structural Damage Analysis

Assembly based vulnerability

### Approach – Test Structure



### Method

- Step I: Fragility functions
- Step 2: Location/number of the components
- Step 3: Structural responses from simulation
- Step 4: Run probabilistic non-structural damage analysis
- Step 5: Create damage distribute map.

### Example: Glazing Damage



### Damage distribution map (Dry wall partition and Acoustic Ceiling)



## Test Structure Evacuation Model

Implement agent based modeling

### Approach – Test Structure



What is agent-based modeling?

Agents are purposeful, rational, perceiving and decision making artificial life forms that interact with the surroundings.



#### ABM of test structure



# Assumptions and capabilities

- Each person tries to evacuate individually using shortest distance to exit.
- It is assumed that most of people know the shortest path to exit
- Some confused people are modeled
- Because the building is designed using high standards no injury or dead was assumed.
- People will never path walls, and avoid each other

# Evacuation of City block

Implement agent based modeling

# Approach - City



# Partial map of region from ABM

#### Legend

#### City:

- Street
- Alley
- Building stock:
- One story
- Two stories
- Three story
- Four story





# Model assumptions and capabilities

- Model is expandable to any city size and population
- Mapped the exact building stock in the model
- Exit and stair cases are approximately located
- Includes traffic flow, cars never run over people, two way streets
- People recognize each other and form queues at exits
- Walking speed is based on health status
- Some people use private cars to evacuate using two exit points provided
- Each injured individual if can make it to out of building will have a chance to get assisted by healthy persons near them

# Casualty Modeling

#### Approach – Test Structure



# Approach - City



#### Methodology

- I. Visually assess structure load bearing system
- 2. Based on ATC 13, estimate central damage factor.  $0 \leq cdf \leq 100$
- I. Below table is the mapping between people and building

| CDF        | Different types of Building |       |       |       |       |       | Minor<br>injury | Serious<br>injury | Dead     |          |
|------------|-----------------------------|-------|-------|-------|-------|-------|-----------------|-------------------|----------|----------|
| 0          | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00            | 0                 | 0        | 0        |
| 0.5        | 0.00                        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00            | 0.00003           | 0.000004 | 0.000001 |
| 5          | 1.90                        | 0.50  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00            | 0.0003            | 0.00004  | 0.00001  |
| 20         | 85.10                       | 60.20 | 0.10  | 0.00  | 6.60  | 3.60  | 3.90            | 0.003             | 0.0004   | 0.0001   |
| 45         | 13.00                       | 39.30 | 10.10 | 5.30  | 78.80 | 70.00 | 57.80           | 0.03              | 0.004    | 0.001    |
| 80         | 0.00                        | 0.00  | 83.10 | 80.00 | 14.60 | 26.40 | 38.30           | 0.3               | 0.04     | 0.01     |
| 100        | 0.00                        | 0.00  | 6.70  | 14.70 | 0.00  | 0.00  | 0.00            | 0.4               | 0.4      | 0.2      |
|            |                             |       |       |       |       |       |                 |                   |          |          |
| P[Minor]   | 0.65                        | 1.36  | 27.91 | 30.04 | 6.76  | 10.03 | 13.24           |                   |          |          |
| p[Seroius] | 0.18                        | 6.04  | 9.10  | 0.90  | 1.34  | 1.76  | 0.17            |                   |          |          |
| P[Dead]    | 2.18                        | 3.75  | 0.23  | 0.33  | 0.44  | 0.08  | 0.08            |                   |          |          |

## Automating Casualty Calculation

|                                                                           | Bu      | uilding Informa   | tion Generato                           | r                 |             |              |  |
|---------------------------------------------------------------------------|---------|-------------------|-----------------------------------------|-------------------|-------------|--------------|--|
| Cupancy Type<br>Multi-Unit Residential   Commercial<br>Healthcare  Retail |         | Building<br>Class |                                         |                   |             | CALCULATE    |  |
| arthquake                                                                 |         |                   |                                         | Save Buildin      | ng Data     |              |  |
| Weekday Mo                                                                | onth    |                   | d Mercalli Intensity<br>hter Magnitude) | Building<br>Name: | building_X  | Save Buildin |  |
| Weekend January                                                           | ▼ 12:00 | AM 🔻 VI (4.1      | -4.7) 💌                                 |                   | Save Run As | lun As       |  |
| Total Occupants:                                                          | Mino    | r Injuries        | Major Injuries                          |                   | Deaths      |              |  |
| Volume                                                                    | cf      | C. W. Pipe >2.5"  | 1000 lf                                 | HVAC VAV Box      | _           | Each         |  |
| Gross Wall Area                                                           | sf      | H.W. Pipe <2.5"   | 1000 lf                                 | HVAC Coils        |             | Each         |  |
| Windows/Glazing                                                           | 100 sf  | H. W. Pipe >2.5"  | 1000 lf                                 | St/Ch Pipe <2.5"  |             | 1000 lf      |  |
| Roof Area                                                                 | sf      | Gas Piping        | 1000 lf                                 | St/Ch Pipe >2.5"  |             | 1000 lf      |  |
| Int. Partit. Length                                                       | 100 lf  | Waste Piping      | 1000 lf                                 | Heat. Pipe <2.5"  |             | 1000 lf      |  |
| Ceram. Floor Tile                                                         | sf      | Proc. Pipe <2.5"  | 1000 lf                                 | Heat. Pipe >2.5"  |             | 1000 lf      |  |
| Ceram. Wall Tile                                                          | 100 lf  | Proc. Pipe >2.5"  | 1000 lf                                 | Electrical Load   |             | W            |  |
| Ceil. Lay in Tile                                                         | %       | Acid Piping       | 1000 lf                                 | Elec. Dist. Cond. |             | lf           |  |
| Ceil. Gypsum                                                              | %       | HVAC Chil. Cap.   | TN                                      | Elec. Cable Tray. |             | lf           |  |
| Ceil. Exposed                                                             | %       | HVAC Tow. Cap.    | TN                                      | El. Switch Gear   |             | Each         |  |
| Ceil. Other                                                               | %       | HVAC Boil Cap.    | BTU                                     | Lay-in Flu. Light |             | Each         |  |
| Stairs                                                                    | Each    | HVAC Air Handl.   | cf/min                                  | Stem Flu. Light   |             | Each         |  |
| Elevators                                                                 | Each    | HVAC Fans         | cf                                      | Generator Cap.    |             | KVA          |  |
| Plumb. Fixtures                                                           | Each    | HVAC Ducts <6'    | 1000 lf                                 | Sprinkler Piping  |             | 20 lf        |  |
| C. W. Pipe <2.5"                                                          | 1000 lf | HVAC Ducts >6'    | 1000 lf                                 | Sprinkler Drop    |             | Each         |  |
|                                                                           |         | HVAC Drops/Diff.  | Each                                    |                   |             |              |  |
| 40                                                                        |         |                   |                                         | 12/2              | 0/2011      |              |  |

# Regional Modeling and Animation

Single degree of freedom

# Approach - City



# Example (Single Block)



## Example (Multi Blocks)





- Steel moment frame
- Eccentrically braced steel frame
- Concrete moment frame

— Others

#### Future Work

# Needed Connections and Modules

Connections:

- From building response to casualties
- From casualties to regional agent-based models
- From region to city
- From city to hospital

Modules

- Whole city response
- Hospital response

# Other Avenues of Exploration

- Traffic and transportation
  - Greater literature review needed
  - Estimated flow of cars
- Cooperative/competitive evacuation
- Incorporation of GIS into Netlogo
- Ambulances and health responders

#### CISN ShakeMap for Northridge Earthquake Mon Jan 17, 1994 04:30:55 AM PST M 6.7 N34.21 W118.54 Depth: 18.0km ID:Northridge 35 ancast 34.5\* Benta Clauita Oxnard A WY •Los Angeles 34° Dong Beach km 50 33.5 -119° -118° Map Version 15 Processed Thu Feb 1, 2007 03:11:01 PM PST,

# Questions?