Earthquake Response and Preparedness: Modeling Human/Structure Interaction

Jalalpour, M., Szyniszewski, S., Jacques, C., Liu, Z., Guest, J.K., Igusa, T., Schafer, B.W., Mitrani-Reiser, J.
Introduction

- Earthquake response – humans/building interaction
- Assess the preparedness of Los Angeles to
 - Mass evacuation
 - Healthcare response
- Structural and non-structural building response
- Effect of damage and injury on evacuation
- Agent-based simulations of human activity and evacuation

12/20/2011
Outline

- Project Approach
- Site Information
- Ground Motion Input
- Structural Simulations
- Non-Structural Layout
- Non-Structural Damage Analysis
- Test Structure Evacuation Model
- Evacuation of City Block
- Casualty Modeling
- Regional Modeling and Animation
- Future Work
Approach - City

Region Information

Building Information

Ground Motion

Casualty Modeling

Building Response Modeling

Visualization

Region Evacuation

City Evacuation

Hospital Response

12/20/2011
Approach – Test Structure

- Ground Motions
- Non-Structural Layout
- Structural Damage Modeling
- Non-Structural Damage Modeling
- Building Evacuation
- Casualty Modeling
Site Information
Approach - City

- Approach
- Region Information
- Building Information
- Ground Motion
- Casualty Modeling
- Building Response Modeling
- Visualization
- Region Evacuation
- City Evacuation
- Hospital Response

12/20/2011
Region

Red numbers are square footages. Black are the year built (19--)

12/20/2011
Ground Motion Input
Approach - City

Region Information → Building Information → Building Response Modeling → Visualization

Region Information → Ground Motion → Casualty Modeling → Region Evacuation → City Evacuation → Hospital Response

12/20/2011
Approach – Test Structure

- Ground Motions
- Structural Damage Modeling
- Non-Structural Damage Modeling
- Non-Structural Layout
- Casualty Modeling
- Building Evacuation
Ground Motion Input (Northridge earthquake 1994)

- Far field record
- PGA 0.52 g
- Vs30 355.8 m/s
Structural simulations

High resolution
Approach – Test Structure

- Ground Motions
- Non-Structural Layout
- Structural Damage Modeling
- Non-Structural Damage Modeling
- Building Evacuation
- Casualty Modeling
3 story archetypical building

- Typical 3-story office-building
- Employed in seismic study by Gupta and Krawinkler
- Moment-resisting steel framed structure
- Light composite concrete decks
- Dead load, \(D = 4 \text{ [kPa]} \)
 - Deck self-weight \(\approx 3 \text{ [kPa]} \)
 - Ceilings/fireproofing, etc. \(\approx 1 \text{ [kPa]} \)
- Office live load, \(L = 2.5 \text{ [kPa]} \)

12/20/2011
Physics based simulations

- Methodology from studies on progressive collapse

- Large strains and geometric nonlinearities

- Contact and impact of falling members
3 story building. Case study
3 story building - Visualization
Damage assessment

[Diagram of a structural layout with dimensions and material specifications]
Floor damage

- Damage resulting in partial collapse

2nd floor slab (effective plastic strain)
Accelerations and displacements

2nd floor slab (effective plastic strain)
Response of buildings to a strong earthquake
detailed dynamic, time-history simulations
contact and collapse
Structural damage enables estimates of post-earthquake:
obstacles in evacuation routes
collapsed slabs
buckled columns
damaged staircases
Time floor accelerations and drifts for assessment of non-structural damage
Non-Structural Layout
Approach – Test Structure

- Ground Motions
- Structural Damage Modeling
- Non-Structural Damage Modeling
- Building Evacuation
- Casualty Modeling
- Non-Structural Layout
Design of Non-Structural Layout

- Non-structure elements for the test structure only.
- Designed in Google Sketchup according to fire code.
- Non-structural elements present inside walls and ceilings:
 - 1: Evenly distributed with constant density
 - 2: Amounts calculated using ATC 58
- Two floor plans commercial occupancy:
 - a ground floor
 - upper story, repeated for all higher stories.
Non-Structural Damage Analysis

Assembly based vulnerability
Approach – Test Structure

- Ground Motions
- Non-Structural Layout
- Structural Damage Modeling
- Casualty Modeling
- Building Evacuation
- Non-Structural Damage Modeling
Method

- Step 1: Fragility functions
- Step 2: Location/number of the components
- Step 3: Structural responses from simulation
- Step 4: Run probabilistic non-structural damage analysis
- Step 5: Create damage distribute map.
Example: Glazing Damage

<table>
<thead>
<tr>
<th>Floor</th>
<th>Structural Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0308</td>
</tr>
<tr>
<td>2</td>
<td>0.0474</td>
</tr>
<tr>
<td>3</td>
<td>0.0346</td>
</tr>
</tbody>
</table>

12/20/2011
Damage distribution map
(Dry wall partition and Acoustic Ceiling)
Test Structure Evacuation Model

Implement agent based modeling
Approach – Test Structure
What is agent-based modeling?

- Agents are purposeful, rational, perceiving and decision making artificial life forms that interact with the surroundings.

 ![Diagram showing the flow of information between Perceiving module, Rational Module, and Action Module.]

 - **Perceiving module**
 - Status of environment and other agents in vicinity
 - **Rational Module**
 - Decision, based on simple rules
 - **Action Module**
 - Interact with environment

12/20/2011
ABM of test structure
Assumptions and capabilities

- Each person tries to evacuate individually using shortest distance to exit.
- It is assumed that most of people know the shortest path to exit.
- Some confused people are modeled.
- Because the building is designed using high standards no injury or dead was assumed.
- People will never path walls, and avoid each other.
Evacuation of City block

Implement agent based modeling
Approach - City
Partial map of region from ABM

Legend

City:
- Street
- Alley

- Building stock:
 - One story
 - Two stories
 - Three story
 - Four story
Model assumptions and capabilities

- Model is expandable to any city size and population
- Mapped the exact building stock in the model
- Exit and stair cases are approximately located
- Includes traffic flow, cars never run over people, two way streets
- People recognize each other and form queues at exits
- Walking speed is based on health status
- Some people use private cars to evacuate using two exit points provided
- Each injured individual if can make it to out of building will have a chance to get assisted by healthy persons near them
Casualty Modeling
Approach – Test Structure
Approach - City

12/20/2011
Methodology

1. Visually assess structure load bearing system

2. Based on ATC 13, estimate central damage factor: $0 \leq cdf \leq 100$

3. Below table is the mapping between people and building

<table>
<thead>
<tr>
<th>CDF</th>
<th>Minor injury</th>
<th>Serious injury</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>1.90</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>85.10</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td>45</td>
<td>13.00</td>
<td>5.30</td>
<td>0.03</td>
</tr>
<tr>
<td>80</td>
<td>0.00</td>
<td>14.60</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>0.00</td>
<td>14.70</td>
<td>0.4</td>
</tr>
</tbody>
</table>

P[Minor]	0.65	1.36	27.91	30.04	6.76	10.03	13.24
p[Seroius]	0.18	6.04	9.10	0.90	1.34	1.76	0.17
P[Dead]	2.18	3.75	0.23	0.33	0.44	0.08	0.08

12/20/2011
Automating Casualty Calculation

Building Information Generator

Occupancy Type
- Multi-Unit Residential
- Commercial
- Healthcare
- Retail

Building Class

Square Footage:

CALCULATE

Earthquake

- Weekday
- Weekend

Month

Time

Modified Mercalli Intensity (Richter Magnitude)

Save Building Data
- Building Name: `building_X`
- Save Building

Occupancy Details

<table>
<thead>
<tr>
<th>Total Occupants</th>
<th>Minor Injuries</th>
<th>Major Injuries</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>C. W. Pipe >2.5"</td>
<td>1000 If</td>
<td>HVAC VAV Box</td>
</tr>
<tr>
<td>Gross Wall Area</td>
<td>H. W. Pipe <2.5"</td>
<td>1000 If</td>
<td>HVAC Coils</td>
</tr>
<tr>
<td>Windows/Glazing</td>
<td>Gas Piping</td>
<td>1000 If</td>
<td>St/Ch Pipe <2.5"</td>
</tr>
<tr>
<td>Roof Area</td>
<td>Waste Piping</td>
<td>1000 If</td>
<td>St/Ch Pipe >2.5"</td>
</tr>
<tr>
<td>Int. Partit. Length</td>
<td>Proc. Pipe <2.5"</td>
<td>1000 If</td>
<td>Heat. Pipe <2.5"</td>
</tr>
<tr>
<td>Ceram. Floor Tile</td>
<td>Proc. Pipe >2.5"</td>
<td>1000 If</td>
<td>Heat. Pipe >2.5"</td>
</tr>
<tr>
<td>Ceram. Wall Tile</td>
<td>Acid Piping</td>
<td>1000 If</td>
<td>Electrical Load</td>
</tr>
<tr>
<td>Cell. Gypsum</td>
<td>HVAC Tow. Cap.</td>
<td>TN</td>
<td>Elec. Cable Tray</td>
</tr>
<tr>
<td>Cell. Exposed</td>
<td>HVAC Boiler Cap</td>
<td>BTU</td>
<td>Ele. Switch Gear</td>
</tr>
<tr>
<td>Cell. Other</td>
<td>HVAC Air Handl.</td>
<td>cf/min</td>
<td>Lay-in Flu. Light</td>
</tr>
<tr>
<td>Stairs</td>
<td>HVAC Fans</td>
<td>cf</td>
<td>Stem Flu. Light</td>
</tr>
<tr>
<td>Elevators</td>
<td>HVAC Ducts <6"</td>
<td>1000 If</td>
<td>Generator Cap</td>
</tr>
<tr>
<td>Plumb. Fixtures</td>
<td>HVAC Ducts >6"</td>
<td>1000 If</td>
<td>Sprinkler Piping</td>
</tr>
<tr>
<td>C. W. Pipe >2.5"</td>
<td>HVAC Ducts/Diff</td>
<td>Each</td>
<td>Sprinkler Drop</td>
</tr>
</tbody>
</table>

12/20/2011
Regional Modeling and Animation

Single degree of freedom
Approach - City

12/20/2011
Example (Single Block)

Steel moment frame
Eccentrically braced steel frame
Concrete moment frame
Others

12/20/2011
Example (Multi Blocks)

Steel moment frame
Eccentrically braced steel frame
Concrete moment frame
Others
Future Work
Needed Connections and Modules

Connections:

- From building response to casualties
- From casualties to regional agent-based models
- From region to city
- From city to hospital

Modules

- Whole city response
- Hospital response
Other Avenues of Exploration

- Traffic and transportation
 - Greater literature review needed
 - Estimated flow of cars
- Cooperative/competitive evacuation
- Incorporation of GIS into Netlogo
- Ambulances and health responders
Questions?