


Abstract—Both the linux and windows versions of Ekiga are built using the same source files but the compiling process varies. Currently there is no way to build Ekiga in a windows environment therefore even the windows version of Ekiga has to be compiled in a Linux environment (In this case I used a Ubuntu 8.10 64 bit installation) to build both the windows and linux versions.

Index Terms—Software, Software Programming, Software Tools,
I. INTRODUCTION

I

n order to build the application Ekiga from source, it is required that the dependencies (both development libraries and other 3rd party applications) be installed on the computer that is to be used for the development process. Though the linux version was fairly easy to build, the windows version proved way too elusive to build. This document outlines the process that was used to build the windows version as well as the changes that were required to be made to the build system (the makefiles, the source code etc) to get the build done succesfully.

The build environment used has the following specifications:

Linux Kernel Version – 2.6.27-11-generic
Machine Architecture – x86_64

RAM – 3 GB

Processor – Intel Centrino Dual Core 1.8 GHz

OS – GNU/Linux, Ubuntu 8.10 64bit

Desktop – KDE 4.2

Ekiga – Ver 3.0.2

Glade – Ver 3.4.5

GCC – Ver 4.3.2

II. The Build process

A. Dependencies

Building Ekiga from source depends on a number of other softwares/projects. Given below is a partial list -

1) PTLib

· flex: compile-time dep.

· bison: compile-time dep.

· OpenLDAP: compile-time and run-time dep. It needs the headers (-devel packages)

· libexpat1-dev: compile-time dep, needed for presence indication. Expat is an XML parser library written in C. It is a stream-oriented parser in which an application registers handlers for things the parser might find in the XML document

PTLib provides the method to produce software applications that run on both Microsoft Windows and UNIX X-Window systems.

2) Opal

· PTLib.

· for some codecs.

Opal is a full-featured library that supports a variety of protocols and multi-media fornats. Some of the features include -

· Full featured H.323, SIP and IAX2 protocol stacks

· Low latency RTP stack designed specifically for real-time multimedia

· Audio codecs including G.711, GSM06.10, Speex and iLBC.

· Video codecs including H.261 and H.263

· Run-time loadable codec interface for proprietary or codecs such as G.729, H.263, H.264 and MPEG4

· Completely Open Source using the commercially friendly MPL 1.1 license

3) Ekiga

· GLib: GIMP library

· GTK+: GIMP toolkit 2.6 or higher

· libgnome: GNOME library

· gnome-common: gnome-common module to support GNU autotools with some scripts

· GNOME UI lib: GNOME UI library

· GConf: GNOME config database

· libsdl: SDL library, for full screen support

· libebook: evolution library, for Evolution mail client integration

· dbus-glib: GLib DBUS bindings, for basic control of Ekiga using DBUS

· autotools: GNU, aka automake, autoconf

· Ffmpeg: FFmpeg is a complete, cross-platform solution to record, convert and stream audio and video. It includes libavcodec - the leading audio/video codec library.

Some of the sub-dependencies and the sources for PTLib and Opal had to be obtained manually using the synaptics package manager in ubuntu.

B. The Build process.

The windows version could be built only after the application of a number of patches and modifications to the win32 makefile.

The files that were modified are:

1) [src/]ptlib/src/include/ptlib/msos/ptlib/contain.h

2) [src/]ptlib/src/ptlib/common/ptime.cxx

3) [src/]ekiga/lib/platform/platform-win32.c

The win32 makefile had to be modified as it could not fetch the following sources -

1) OpenLDAP

2) Expat

3) ffmpeg

Alternate source URLs and/or versions were specified in the win32 Makefile in order to get the sources.

After this, the sources were obtained by entering the following commands:

#cd win32

#make update-sources

And the win32 package was built by issuing the command:

#make

After succesful completion of “make”, the windows installer using the NSIS system was created in the “dist” directory under the “win32” base directory.

The Linux build was done in a similar manner except for the fact that it could be built natively on Linux and hence all the troubles of getting the source dependencies were totally non-existent.

The Linux build was done using the following steps:

PTLib:

#./configure --prefix=/usr

#make

#make install

Opal:

#./configure --prefix=/usr

#make

#make install

Ekiga:

#./configure --prefix=/usr

#make

#make install

C. Testing the Installer packages

Both the linux (64bit) and windows(32bit) versions of Ekiga were tested by installing them on their respective platforms and they were found to work fine.

III. Things to do

Now that the build system for both linux and win32 are perfectly in place, the next step is to start adding functionalities relevant to gatorphone and then testing them. The source system of Ekiga needs to be studied, especially the UI sub-system needs to be studied in detail as we intend to either add a gatorphone specific wizard entry in the account setup window or pre-fill the account-setup details with gatorphone specific details.

Also, the UI resources especially, the title bar, the About dialog, the Main UI itself will need changes to reflect the brand that is gatorphone. Care needs to be taken to give the original creators of Ekiga the due credit in the About dialog and any other places as the case may be.

In order to add gatorphone settings to Ekiga in its account creation wizard, it is required that the GTK+ Toolkit be studied. The Glade Interface designer can be used to design the windows and dialog boxes if required. Kdevelop in KDE is also a good IDE which can be considered for this purpose.

The GTK+ toolkit, the Make sub-system, autoconf tools etc., need to be studied in order to expedite the pace of the development process. The study of the Ekiga source system is also required as the source files of the base Ekiga system are the ones that are to be modified.

The initial system setup is now done and the next sequence of steps is detailed in the next section., which outlines the work plan.

IV. Work plan

The work plan is divided into 4 stages -

1. Design – Creation of High Level Design, Low Level Design Documents.

2. Coding and Unit Testing – Coding the application in the IDE and basic Unit testing.

3. Comprehensive Testing and Debugging – End to End testing of the application and Fixing of the errors found.

4. Logging and Creation of the project report (this is a continuous process step which starts right at the Design stage).

V. Deliverables

A. Installable Application

Installers for Linux (64 bit) and windows (32 bit) shall be provided. The installer for Linux shall be in the .deb format and the installer for Windows will be a self extracting EXE.

B. Project Report

The project report in .doc format shall be submitted.

C. The work log

The log of the work done during various stages in .doc format.

Appendix

1. DBUS – Desktop BUS.

2. dep. – Dependency (Software).

3. Evolution – Open Source Email Client from Novell Inc.

4. EXE – Executable file.

5. FLEX – Fast Lexical Analyser Generator

6. Glade – User Interface designer for GTK+ and GNOME.

7. GLIB – Gnome LIBrary.

8. GNOME – GNU Object Model Environment

9. GNU – GNU's Not Unix

10. GTK+ – The GIMP Tool Kit

11. GIMP – GNU Image Manipulation Program.

12. IDE – Integrated Development Environment.

13. OSS – Open Source Software

14. OpenLDAP – Open Light-weight Directory Access Protocol

15. MPL – Mozilla Public License.

16. NSIS - Nullsoft Scriptable Install Systems

17. SDL – Simple Direct-Media Layer

18. SIP – Session Initiation Protocol

19. UI – User Interface.

20. URL – Uniform Resource Locator

21. win32 – Windows 32 Bit.

Acknowledgment

Mahesh Sukumar thanks Damien Sandras <dsandras_at_seconix.com>, who is the initial creator of the Ekiga Project and others who are/were involved in the Ekiga project.

References

[1] Compiling Ekiga on Linux- http://wiki.ekiga.org/index.php/Compiling_Ekiga
[2] Cross Compiling Ekiga on Linux for Windows - http://wiki.ekiga.org/index.php/Cross-compile_Win32_3.0
[3] Patches for building the win32 version -

http://www.mail-archive.com/ekiga-devel-list@gnome.org/msg02325.html
[4] Ffmpeg - http://www.ffmpeg.org/
[5] EXPAT - http://expat.sourceforge.net/
[6] OPAL - http://www.opalvoip.org/
[7] GTK+ 2.0 - http://library.gnome.org/devel/gtk-tutorial/stable/
[8] GNOME - http://library.gnome.org/devel/
[9] NSIS - http://nsis.sourceforge.net/Main_Page
[10] GNU - http://www.gnu.org/philosophy
[11] SIP Protocol - http://www.ietf.org/rfc/rfc3261.txt
[12] Damien's blog - http://blog.ekiga.net/
[13] Ubuntu - http://www.ubuntu.com/
[14] Kubuntu - http://www.kubuntu.org/
[15] Make - http://www.gnu.org/software/make/manual/make.html
[16] GCC Configure - http://gcc.gnu.org/install/configure.html
[17] GNU Configure - http://www.airs.com/ian/configure/
Mahesh Sukumar joined the University of Florida as a Masters student in September 2008 in the Electrical and Computer Engineering Department.

Before that, From September 2004 till August 2008, he worked as a Software Engineer with Wipro Technologies, India.

From October 2008 to 'till date' he works as a Computer Technician at the Muscle Physiology Laboratory at the University of Florida.

INTERIM REPORT

Customization of Ekiga for use with

GatorPhone

Mahesh Sukumar UF ID: 1156-2993

	Manuscript received March 19, 2009.

	Mahesh Sukumar is a Masters Student in the Electrical and Computer Engineering Department at The University of Florida, USA. phone: 352-246-7890; (e-mail: smahesh321@ufl.edu).

