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1.
INTRODUCTION

Probabilistic structural optimization is expensive because repeated analyses (typically finite element analyses) are required for calculating probability as the structure is being re-designed. Several methods have been proposed to alleviate the computational burden [1]. These methods interleave reliability analysis and deterministic optimization. The ECARD (exact capacity approximate response distribution, [2]) method goes one step further by carrying full probabilistic optimization but with approximation of the computationally expensive response distribution.

In many applications, the failure criterion can be separated into a capacity and a response, with the response depending on one set of random variables and the capcity depending on another set, uncorrelated to the first set. In a strength constraint, for example, the failure stress is the capacity, while the structural stress is the response. The failure occurs when the response exceeds the capacity. The response calculation is typically much more expensive (e.g., requiring finite element analysis). ECARD approximates only the expensive (i.e. response) distribution. In addition, with Monte Carlo sampling (MCS) for estimating failure probability, the division into two sets of uncorrelated variables permits the use of separable MCS. 

We apply ECARD to the design of an integrated thermal protection system (ITPS) for spacecraft reentry based on a corrugated core sandwich panel concept fulfilling both thermal and structural functions is optimized for minimal mass [3]. Failure constraints include limits on stresses and buckling loads and thermal failure is defined by a temperature limit. A response surface approximation of the maximum bottom face sheet temperature was developed in [4]. They used mild simplifying assumptions allowed to reduce the number of variables in the approximation to two non-dimensional variables. In combination with a material database, and on basis of graphical comparison of materials for the different sections of the ITPS panel they have suggested an ITPS panel based on alumino-silicate/Nextel 720 composites for top face sheet and web and beryllium for bottom face sheet. We seek the optimal dimensions for this material choice.
With two failure modes it may be expected that deterministic design based on safety factor will lead to a different risk allocation between the two modes than probabilistic design. We seek to compare the risk allocation for the deterministic and probabilistic designs having the same system probability of failure. In that case, the advantage of the probabilistic design will be measured by the reduction in mass.
2.
EXACT CAPACITY APPAROXIMATE RESPONSE DISTRIBUTION (ECARD)

In probabilistic optimization, the system constraint is often given in terms of failure probability of a performance function. We consider a specific form of performance function, given as
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 are random variables associated with capacity and response, respectively. Both the capacity and response are functions of random variables,
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. The system is considered to be failed when the response exceeds the capacity. We assume that the probabilistic distribution of 
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Since the performance function depends on two uncorrelated random functions, 
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, the probability of failure can be calculated from the conditional probability as
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In the above equation, 
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 is the cumulative distribution function (CDF) of capacity, and 
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 is the probability density function (PDF) of response. The above integral can be evaluated using analytical integration, Monte Carlo simulation (MCS), or first-/second-order reliability method (FORM/SORM), among others. Smarslok et al. [15] presented a form of conditional MCS, called separable MCS, which is much more accurate than the traditional MCS when the performance can be expressed in the form of Eq. (1)

.



When design variables are changed during optimization, it is possible that the distributions of both capacity and response can be changed. We model exactly the distribution of the inexpensive capacity. However, we approximate the distribution of the response by assuming that it is translated as a rigid body with design variable changes. We calculate the value of the translation for the mean value of the random variables (see Figure 1).
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Figure 1: Distributions of response before and after redesign. Redesign only changes the mean value. Distribution of capacity is also shown. 


The change in the response distribution will change the probability of failure. Then, the probability of failure at the new design truly given by
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For Conditional MCS, we generate 
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 at the current design. In view of Eq. (2)

, the probabilities of failure at the current and perturbed design can be calculated from
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In ECARD, the reliability constraint is imposed such that the approximate failure probability in Eq. 
(5)

 are two different MCS, they can be combined into one because the same sample, (4)

 and (5)

 should be less than or equal to the failure probability at the deterministic design. Even if Eqs.  GOTOBUTTON ZEqnNum659347  \* MERGEFORMAT , will be used.
 3.      APPLICATION TO INTEGRATED THERMAL PROTECTION SYSTEM
The TPS of space vehicles needs to satisfy a wide range of requirements 1-4. During ascent and reentry, TPS has to withstand high temperatures and must also be light weight in order to reduce the overall weight of the vehicle. Efforts are on to develop Integral Thermal Protection System (ITPS) that not only performs the function of thermal protection, but also withstand loads to a large extent. In a sense, it is an extension of the ARMOR TPS design [5]. One candidate structure suitable for this purpose is a corrugated-core sandwich panel, Figure below.
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Figure 2. A unit-cell of the simplified ITPS design

It is expected that by suitably designing the corrugated-core sandwich structure a robust, operable, weight-efficient, load-bearing TPS can be developed.
The design process for the corrugated-core ITPS was started by simplifying the geometry of the panel so as to include a minimum number of geometric (design) variables. These variables may be taken as top face thickness (tT), bottom face thickness (tB), thickness of the foam (ds), web thickness (tw), corrugation angle (θ), length of unit cell (2p). A feasible and optimum design consisted of the alumino-silicate/Nextel 720 composites for top face sheet and web and beryllium for bottom face with dimensions mentioned in table [1] was proposed by Gogu et al.[4]. For the current ITPS design problem, a quadratic response surface approximation of maximum bottom face sheet temperature was adopted to solve the optimization problem. The response surface approximations are functions of design variables. For this preliminary design optimization, the peak design temperature is chosen as in figure [2].

	Parameters
	Values

	tT
	2.1 mm

	tB
	3.1 mm

	ds
	117.3 mm

	tw
	5.3 mm

	θ
	870

	p
	117 mm


Table 1: Value of the preliminary Geometric Design parameters
To demonstrate the procedure we first apply it to a simplified problem where the design constraints are the maximum bottom face sheet temperature and a simplified buckling constraint.  Using two non dimensional parameters, Eq. (6) and response surface shown in figure [3], we can obtain maximum bottom face sheet temperature for any design in the vicinity of design suggested by Gogu et al. [4]. This implies constraint on maximum bottom face sheet temperature is given by Eq [7].
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Figure 3: Response using Non Dimensional parameters
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Figure 4: Heating profile used for preliminary design of ITPS
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The buckling constraint uses a simplified approach indicated by inequality (8).
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                  (8) 
The objective function for this part is weight of panel per unit depth given by Eq. (9).
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Only three of the six design parameters are used to illustrate the procedure. These are the web thickness, bottom face sheet thickness and panel width. Other parameters were fixed to the design suggested by Gogu et al. [4]. For temperature constraint a safety factor of 1.04 used which corresponds to 1% probability of failure. The allowable maximum bottom face sheet temperature is 401.7 k. The critical value of the buckling criteria is 0.0027 mm. This gives us a safety factor of 1.24 for achieving same 1% probability of failure. Due to modeling and computational limitations there is error involved in calculating maximum bottom face sheet temperature. This error, eT is modeled here as an uniformly distributed random variable over a 10% range of the calculated temperature from response surface. This gives rise to distribution of capacity of the temperature constraint, which is independent of randomness associated with design parameters and other random variables. Similarly the simple model we employ will have error introduced not just by error in temperatures (eT) evaluated but also structural buckling prediction error, es.  The constraints can be modeled by Eq. (10) and (11).
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4.      RESULTS
First deterministic optimization procedure was implemented through fmincon function of MATLAB produces an optimum weight. Results are presented in the table [2] which are very close to what Gogu et al. [4] have obtained. The total probability of failure of this optimum design is 2% according Ditlevsen’s first-order upper bound [16] given by Eq (12). Pf1 and Pf2 are probabilities of two constraints being violated. They are both 1%. 
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(12)
	Design variables
	Initial design
	Final design

	Top thickness, tw
	5.0 mm
	3.1 mm

	Bottom face sheet thickness, tB
	6.0 mm
	5.1 mm

	Foam thickness, ds 
	115 mm
	120 mm

	Weight per unit depth
	3.66 kg/m
	2.68 kg/m


Table 2: Deterministic optimum results based on three design parameters
4.1 Probabilistic Design Optimization
In this part of the design process we fix the probability of failure of the system to an acceptable level comparable to Deterministic design. Next, we perform probabilistic optimization which redistributes risk between maximum temperature constraint and buckling criteria. The problem formulation is given by Eq. (13). But this process is very costly if performed for full scale model involving all relevant constraints and design parameters. Therefore we suggest approximate procedure called ECARD for the problem in the next section. We plan to explore more elaborate model using FEM and then it will be really difficult to perform this full probabilistic optimization.
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4.2 Approximate Optimization using ECARD

The proposed model of ITPS has separable capacity and response components. In this we shift the response distribution in small steps and evaluate the direction of better probabilistic design. We avoid performing full reliability analysis until at the end of ECARD iterations. We expect to reduce the expensive reliability assessment by an order of magnitude. The approximate probabilistic optimization problem is formulated based on Eq. (14) by replacing the probability of failure with approximate one, as
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where 
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 using the method described in Section 2. The approximate probabilities of failure are calculated as
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where 
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 are CDFs of the two capacities. The optimization in Eq. (14) is solved iteratively until convergence criterion. The importance of the proposed method increases with difficulty in performing reliability assessments. We will explore for more elaborate model of ITPS which can be easily optimized by above approach.
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