
Introduction to Neutron Transport 
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Determination of the neutron distribution in the reactor system, leading to analysis of the 
fission power in the reactor.  

The Neutron Transport equation describes the precise behavior of  in system 
(Boltzmann transport Eqn (BTE)).  In some reactor systems, the diffusion equation offers 
an approximation 

n10

to the transport equations.

”Diffusion” from high density to low density �
Limited validity. �

mfp for materials �
�
��

�
�

	 t

1  are 0(cm) 

 also, PWR fuel pins <0(cm) 

Neutron Transport equation fully describes neutron population elegantly. 
But it is difficult to solve by hand! 


 we define a number of simplifying assumptions to make it treatable.   

Transport �  common sense... 

Neutron diffusion has been used for years to solve for neutron population; but it is 
inaccurate in places where the flux can change radically,

e.g.

i) where two different materials meet 
ii) strong absorbers (control rods) 
iii) boundary of system 
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Many times diffusion cross sections are “tuned” to give “transport-corrected” fluxes, rxn 
rates.

Why?  Diffusion equation is easier (cheaper) to solve. 

Neutron Density

Consider the case where all neutrons in the system have speed �v

Recall the interaction frequency

Consider reaction rate density � 
trF ,�   # Rxns  in  about rd 3 r�  at time t

� 
 � 
 � 
 rdtrrdtrNvrdtrF 333 ,,, 	�	�
��� �  (D&H p.105, Eq 4-3) 

Consider a neutron traveling with speed v
Recall that the direction is �̂

Evmn �2

2
1   so 

2
1

2
�
�
�

�
�
��
m
Ev
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Angular Neutron Density

“Vector”  Angular current density:
� 
 � 
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���
�

�
�
�

�

���

����

tEr

tErnvtErj

,ˆ,,ˆ
,ˆ,,ˆ,ˆ,,

�

���

�

Now, Considering these definitions, Eq (4-11) D&H States: 

��� ����� 1ˆj
�
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Angular Reaction Rate

� 
 � 
 � 
 � 
 � 
tErErtErnErvtErf ,ˆ,,,,ˆ,,,,ˆ,, �	��	��
����� �

Case of Isotropic Flux

Isotropic  uniformly distributed in all directions  �

Recall   

� �

� � �
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So � � �
� �

���
�

���
2

0

1

1

4ˆ ddd

If the Angular Neutron Density is isotropic, then 

Usually, � 
tErn ,ˆ,, �
�  is not the same in all directions, especially near interfaces, localized 

absorbers, etc... 

� 
 � 
 !� ���
�

��
4

,ˆ,,ˆ,, tErdtEr ��  D&H (Eq 4-17) 

� 
 � �
�

�
�
�

�
��� � �

"

0
4

,ˆ,,ˆ,
�

�� tErdEdtr �� 
    D&H (Eq 4-18) 
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 The Formalism is now established for defining the Neutron Transport Equation 

Recall angular neutron density    (8.1) � 
 ��
�

�
�
�

�
��

#

ˆ,ˆ,, 3 ddErdtErn �

The time differential applied to this gives us a time rate of change... 

Now consider G (gain) in  population due ton10 :

D&H
(1) G1) Neutron sources in #  (fission & independent)
(2) G2) Neutrons crossing  intoS #  (leaking in)
(3) G3) Collisions in  energy & angle of “interest” ��$$ �$�

�
ˆˆ,',' 11

&
""

dEdEE
ddE

angleenergy
othersome
���

Consider L (loss) of  population due ton10 :

D&H
(4) L1) Neutrons crossing  out of S #  (leaking out)
(5) L2) Any collision in ( ) removing a neutron.  (Absorption or scatter) out of 

energy, angle of interest 
�̂,E
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Independent Sources

(1)  over volume � 
 �
�

�
�
�

�
��� �

#

ˆ,ˆ,, 3 ddErdtErq � #

Collisions

� 
 � 
 !�
#

�	� ˆ,,ˆ,, 3 ddErdErvtErn t
��      (8.2) 

 (5) � 
 � 
 !�
#

�	�� ˆ,,ˆ,, 3 ddErdErtEr t� ��

Scatter into dE  about E  about�̂d �̂

 “In scattering” into dE  about E ,  about �̂d �̂

Leakage into or out of volume .#

Consider a differential surface Sd
�

� 
 � 
 SdtErSdtErj
�����

������ ˆ,ˆ,,,ˆ,, �    (8.3) 
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Net leaking is (4) – (2) or... 

So that Net Leakage is... 

� 
 � 
 �
�

�
�
�

�
�#���%��

�

�
�
�

�
���� � � �� � �

"

#

"

�� &

��
4 04 0

ˆ,ˆ,,ˆˆˆ,ˆ,, ddEdtErddESdtEr ���  (8.4) 

Combining all terms:

Since our chosen volume was completely arbitrary, the expression inside the integral 
(the “integrand”) must hold true at each point in # .

Also, recall � 
 � 
tErvtErn ,ˆ,,,ˆ,, ���
�� �      (8.5a) 

� 
 � 
tEr
v

tErn ,ˆ,,1,ˆ,, ���
�� �      (8.5b) 

So, we have

� 
 � 
 � 
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 � 
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 (8.6) 
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Then, the Integro-differential form of the neutron transport equation is 

Recall � 
 � 
� ���
�

��
4

,ˆ,,ˆ,, tErdtEr ��    (8.7) 

But wait... 

For independent sources and fission:
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Solving the NTE 
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Assuming steady state write the one energy transport equation with no scattering, no 
fission q  is a uniform constant angular srcIND .

�
�)�

4
ˆ IND

t
q

�'%��    (9.1) 

��
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44
INDtIND

t
q

x
q

x

We can solve �
�

�
�
�

�
�'

(
(

��
�

�
)�

4
INDt q

x
 by integrating factor. 

Given (A const) �
�

�
�
�

�
� � �

�

����
2

0

1

0

ddJ LINCL

Usually, we must consider scattering.
 For “Real” applications... 
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The integro-differential form of the transport equation is 

Again...

To get scalar flux � tEr ,,� 
�  we must integrate angular flux over
�4  steradians � 
st�4

So � 
 � 
� ���
�

��
4

ˆ,ˆ,,,, dtErtEr ��   (9.2) 

If we consider a 1-speed diffusion theory model... 

Really, again we are using equations to define where neutrons in a probability dist go... 


 any equation describes average behavior... 

� trN ,� 
  is neutron density in the reactor, related to flux by the velocity term 

� 
 � 
� �
# #

� trrdtrNrd ,, 33 �� �    (11.1) 

Again we assemble the terms relating to neutron balance in a control volume 
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� 
 � 
 � 
 � 
� � � �
# # #

�
�

�
�
�

�
��	��

(
(

S
a trJSdtrrdrtrQdr

tv
dr ,,,1 333 ����� ��  (11.2)  (11.2) �

  
Treating the leakage term using Gauss’ Divergence Theorem... Treating the leakage term using Gauss’ Divergence Theorem... 
  

� 
 � 
� �
#

�%*�
S

trJrdtrJSd ,, 3
����   (11.3) 

Writing the balance equation as 

� 
 � 
 � 
 � 
 0,,,1
��%'	'�

(
( trJtrrtrQ
tv a

����� ��   (11.4b) 

1-speed balance equation is (omitting tr ,�  refs) 

Before moving, on we should address steady state radiation leaking and multiplying from 
a  mass in space... Pu

Consider a  ball of  in spacekg4 Pu

� It is sub-critical, kgm 4�
� It has a � 
76.075.0 ++ Leakeff Pk  From transport theory calc 

� This Pu  generates 
kgs
n000,60  due to S.F. 

Intrinsic n source 
 per unit time 

If we consider the ball is stationary a long time...Then (without time dependent term) 

0�'	'	��%� INDfa QvJ ��
�

  (11.4c) 
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Note I have not assumed anything about the leakage term (e.g. diffusion app). 

Divide above eqn by 0,	 �fv

So we have

Multiply both sides by volume.

This only is valid for subcritical assembly (note ”-“ sign) 

If ’s from  are pumped into a critical, supercritical assembly, there is no steady 
state solution... 
n10 INDQ

So returning to our problem
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 ��
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Qv

For our kg4 Pu  ball, 75.0�k , 7. 50�LeakP
    � 
NLP�1

333.0
75.0

175.01
�*

� �
��

k
k-

How many are available for detection? 

But we must account for all neutrons!

(Subcrit) total src: � 
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 accounting for prob of leakage LP�

Then leakage multiplication � 
 � 
 LL
IND

L PMP
k

QM ����
�

�
��
�

�
�

#
�

1

sideA

xamp  masses 
Stack sub-critical masses together… 

E le: assemble a collection of subcritical

This is the experimental way to monitor for a critical mass estimate.   


