Introduction to Neutron Transport
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Determination of the neutron distribution in the reactor system, leading to analysis of the
fission power in the reactor.

The Neutron Transport equation describes the precise behavior of ;7 in system

(Boltzmann transport Eqn (BTE)). In some reactor systems, the diffusion equation offers
an approximation to the transport equations.

— "Diffusion” from high density to low density
— Limited validity.

mfp for materials (% j are O(cm)
also, PWR fuel pins <0(cm)

o
e

O

Neutron Transport equation fully describes neutron population elegantly.
But it is difficult to solve by hand!

. we define a number of simplifying assumptions to make it treatable.

Transport < common sense...

Neutron diffusion has been used for years to solve for neutron population; but it is
inaccurate in places where the flux can change radically,

e.g.
1) where two different materials meet
1) strong absorbers (control rods)

1i1) boundary of system
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Many times diffusion cross sections are “tuned” to give “transport-corrected” fluxes, rxn

rates.
Why? Diffusion equation is easier (cheaper) to solve.

Neutron Density

Distribution function

cm-
: - Y ll.:
— = N(F.1)dr
cm?

= expected # nevtrons in differential
volume 4°r about 7 at time f.

Consider the case where all neutrons in the system have speed v...

Recall the interaction frequency

) cm 1 1
vVE) = | s cm) 5
Consider reaction rate density F(¥,7) #Rxns in d’r about 7 at time ¢

F(7,t)d*r = vIN(F,t)d’r = ¢(F,t)2d’r  (D&H p.105, Eq 4-3)

vN(F.t) = #(F. 1)

1
5 cm-” Ref Fig 4-1
o p.1086
cm=s
e # Rans
#r.e)s | o
Consider a neutron traveling with speed v
Recall that the direction is Q)
|}
1 26\
—myv = E 50 v = |
2 m
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Angular Neutron Density

n(7,E,O.t)d*r dE dO)

racognize that this

Ref Fig4-2

0 = {f.0}
“script @ 7

Vs

“Vector” Angular current density:

expected £ of jn’s in 477 about £ with

energy 4E about E with direction d
about 0} at time 7.

iz a distribution function

D&H .4, .2,

to represent
unit vectors

i E.0) = vOnlF, E,0,1)
Ay 7, E,00)

Now, Considering these definitions, Eq (4-11) D&H States:

QO

U = Qv =1y = v

Magnitude of are of dA

v K P
Unit vector in dir of 44
Consider dd = dAé (—/ Surface normal vector
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[l:[FEDEIJEJdE df!:l = expected # of ,» passing anarea 44
per unit time with energy 4E about E
direction 40 about ), at time f

Angular Reaction Rate

fFE0u) = VS E)nl7 E.ut) = S, E )l E.Ou)

Case of Isotropic Flux

Isotropic = uniformly distributed in all directions

2nrw

jQ dQ = [[sin0dodp = 4z
00

Recall )
= J‘J‘d,udgo = 4r
0-1
i=cosf .
du =—sin 846 Y
" changes limits to [-1+1]
. 27 1
So  [dO = [[dudp = 4z
Q 0-1
If the Angular Neutron Density is isotropic, then
[n[}tf 0.t) = 41_;*.,?[?:_5::@ D&H (Eq 4-16)
4z

accounts for all directions

Usually, n(?,E ,f),t) is not the same in all directions, especially near interfaces, localized
absorbers, etc...

PF.E0) = [ doylF.E.Q1)| D& (Eq4-17)

0

{gé(?,t) - ]O [ df)dEz//(?,E,fZ,t)} D&H (Eq 4-18)
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The Formalism is now established for defining the Neutron Transport Equation

Consider an arbitrary
volume % (fixed)

5 surface area

The expected # of Jn in

volume Y with energies 4E
about E and directions 40
and about Q inthe volume

Recall angular neutron density D‘ n(l7 E, Q, t)d%}dE do (8.1)

\4
The time differential applied to this gives us a time rate of change...

Al \ G L
| [nlF,E.Q.tH*r |dE dQ) = [gain —loss |
g

I ) : T

evaluated over
the volume

Because ¥ is fixed,

[j O %y dE a"f!}
) &

Now consider G (gain) in ,# population due to:

D&H
(1) G1) Neutron sources in V (fission & independent)
(2) G2) Neutrons crossing S into V (leaking in)

3) G3) Collisions in  E', Q' —5E,Q dEQ energy & angle of “interest”
%’_/

dE'dQ)!
some "other"
energy & angle

Consider L (loss) of ,» population due to:

D&H
4) L1) Neutrons crossing S out of V (leaking out)

(%) L2) Any collision in ( £ ,Q ) removing a neutron. (Absorption or scatter) out of
energy, angle of interest



Independent Sources

g(F.E.Q.1)d rdEAQ = rate of appearance of source neutrons in d°r about 7
||, in dE about E in 40 about O
# com
cHr s

(1 = J‘q(F,E,f),t)cPrdEdf) over volume V

v

Collisions
n\F, E,Q,t Ve (7, E |a’3rdEdf2 (8.2)

(vs) = [WF.EQunf, 7 B r dE d

Scatter into dE about E dQ about O

“In scattering” into dE about E, dQ about O
[J[f[fufﬁj'j!ﬂrfEs['_E' - E0O - f!:ldE'}d‘D' }dfr}dﬁdﬁ
7| 4xL 0

2|:1|:+u»1:r1|=:- differential
scattering cross section

Leakage into or out of volume V .

Consider a differential surface dS

i EQ)dS = ylF E,0.0)0-dS (8.3)
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Net leaking is (4) — (2) or...

Consider just surface & volume for a moment...
i

-

| [w(F.E.0.00.d§ = [V-Qulr.E.0Q.t)v }

Aside, Recall Gauss’ Divergence Theorsm _/j

[2-d§ = [V-dadav av =d’r
Swrface volume
integral integral

So that Net Leakage is...

[ITIV/(F,E,Q,t)f)-d§dEdQ} - “TIV-QW(?,E,Qt)WdEdQ} (8.4)

470 & 470 vV

Combining all terms:

Time rate
of change

H:“EE_=Q'[?EQEI

= (+ sources) (+in-scatter)

E[dQv(F B QUE (B> .0 O]

4r

a'—..u

(-Net leakage) (- Collisions) _
—O-VulF EO.t)-3 (F.EwF E.O)|d*r dE dO)

Since our chosen volume was completely arbitrary, the expression inside the integral
(the “integrand’) must hold true at each point in V.

Also, recall  nlF, ..t = wlF, B, Q) (8.52)
nlF B0t = %y/(F,E,f),t) (8.5b)
So, we have
[l%+Q-VW(F,E,Q,t)+ s, (7. EW (. E.0ur)
v

(8.6)

O'—;S

dE' [y (7. B0 0 (B E.00 Q)+ gl E, Qt)}
e
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Then, the Integro-differential form of the neutron transport equation is

[1 ’”‘”+g VulF.E.Qut)+ 5,7 EwlF. E.OLf)

v of

X

= [dE [avulr.B.O 1 ([E— EO 5 O)+ gl EO r'ﬂ

] 4=

Recall $F.E0) = [doylF.E.0) 8.7)

But wait...

% Let us expand the “source™ term -g['?’:E:f!:r\_I

For independent sources and fission:

-’E‘lF EQ1) = -’E'm-[f": E.CLt)+ The “Delaved™ Jn
discussion is delaved

@ng [dW(E)E, (7. Bl E'.Cot)
4 :lr = = ’ ’

] 4=

VE A(F.E")

where

x(EYE = Fraction of prompt fission
neutrons between E and E + dE

x(E)
Mel

Ix(EHE =

1I E 3 4 5 6 ]' g (Mormalization)
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Solving the NTE
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Assuming steady state write the one energy transport equation with no scattering, no
fission ¢,,,, 1s a uniform constant angular src.

O Vytoy = I (9.1)

In SLAE (x) geometry 0= {rlu: r;’f}

T iroy = ——+—Lty =
# ox ad 4 ox ,ul// A

oy 9 np N (aw o, _ qlNDj

We can solve L2 + it// = dmo by integrating factor.
0 4mu

T Let E.-f"'l:(.D]: u
o— AN
Declare df'_}"r.-'.'-':i = K =
Comst. " )
I —

2

1
Given (A const) | J o, = IIyWLdy do
00

Usually, we must consider scattering.
For “Real” applications...

5, approximation Consider a finite = of directions
“Discrete ordinates”™ on the unit sphere and discretize
Refp.121 angular variable, other wvariables ..
D&H

P, approximations Expand angular variable into

spherical harmonics (orthogonal)
moments function.
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The integro-differential form of the transport equation is

(1) (2) (3)
Lov _ 4., \FEGt)+ [dE [dvve, (F.EWF.E.0.4)
v ot —1 i
(4)
+[af£ [dvz,[F.E— B0 Ol B0
.
(5) (6)

-3.(F. EWIF.E.Ot)-O-VylF.E.O ) J[
Again...

To get scalar flux ¢(F E ,t) we must integrate angular flux over
47 steradians (47 st)

So  ¢(F,E.1) j w7, E.9,1)d0 9.2)

If we consider a 1-speed diffusion theory model...

Really, again we are using equations to define where neutrons in a probability dist go...

". any equation describes average behavior...

N (17 , t) is neutron density in the reactor, related to flux by the velocity term

[d*r N(F.1) = [dr 4(7,1) (11.1)
v v
Again we assemble the terms relating to neutron balance in a control volume

(Time Rate | (prod| (4bs) (Leak)
' af | = m |—=| in |- ﬁ‘om

| change ) | V R ":f} v )

Vol ¥ Surf Area §
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ar 120 jdrsQ(;,t)_jdwza(fw(r,t)_jdm(f,t)} 12)

v

Treating the leakage term using Gauss’ Divergence Theorem...

[dS-J(F.0) = [drv-J(rt) (11.3)
S v
Writing the balance equation as
J‘dfr!’fl% CQF.)<T (FBF.N<Y - TF.L)] = 0 (11 4a)
7 LY 4
Tmtggrand must kold 2! gvgey poist in T
1%_ (F.0)+ %, P W)+ V- J(F 1) = 0 (11.4b)
A%

1-speed balance equation is (omitting 7,7 refs)

= )
[—E—' = -V.J-E g=+0Q
v E\ N :
what are units? % z [ [ P _n
B emTE CHE cmE n (4, [

Before moving, on we should address steady state radiation leaking and multiplying from
a Pu mass in space...

Consider a 4 kg ball of Pu in space

v’ It is sub-critical, m = 4 kg
v Ithasa (keﬂ =075 P, = 0.76) From transport theory calc

n

v This Pu generates 60,000 due to S.F.
s kg
So (0...7) = | 60,000 " |(4kg) = 240000 1
e L 5 kg ) : 5
Note Q,m = — isotropic indep. L Intrinsic # source
' T em’s Source density per unit time

If we consider the ball is stationary a long time...Then (without time dependent term)

~V-J-2,0+VZ,4+Qpp = 0 (11.4¢)
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Note I have not assumed anything about the leakage term (e.g. diffusion app).

Divide above eqn by vX ¢ # 0

ratio of Jn—>(V-J-T 4] Q.o _
lossto ——— (VI @) VI, ¢
production ' '

M T4 Qe _
k E\vE ; i} VL p i}
So we have
_1__1_ Q: =0
i L VE 0
rewriie as A rearrange
E-1 _ -0,z
k VE
rE/acti'i;i ty o =| u' =_ Q o
g o J'::I = -:II J'::l - VE- -I,[:E'
or VE . = ~ Qoo
' Je
# Fiss ln's
cm’s
Multiply both sides by volume.
total S.F.

—(0.-%) ¢ & IND source

(_/_/_,_/-"/_) VE' F 97 =
' o
fiss produced '_\.\ f i —10

P reactivity p =| —|
per sec in sphere yr Lok

This only is valid for subcritical assembly (note -* sign)

If jn’s from Q,,, are pumped into a critical, supercritical assembly, there is no steady
state solution...

So returning to our problem




- (0

Forour 4 kg Pu ball, k =0.75, P,,, =0.75

(l_PNL)
k-1 0.75-1
p = - = -0.333
k 0.75
1 3  [his is the amount of multiplication
£ ) induced in the assembly (4 kg sphere)
1 Y n
-5 - 30 and (Q.. %) = 240,000 4

(VE,67) = (3.0)(240.000) "7 = 720,000 77

Con

s these | n induced from S.F.

- P driven multiplication. ..

How many are available for detection?

Only those that leak out are infrinsic (5.F. etc)
Jn’s that can be detected... _ &
induced (mult)

But we must account for all neutrons!

Since we must account for the induced source and the intrinsic source

: and

Multiplication S.F.etc

of intrinsic source (ce.m)

- Q: 7 Q: v

2

. - A4 - A -
ubcrit) total src: | ——+ = | =AD" ~
Sub 1 Omp oV Omo WV (k 1)
P k-1 (k-1)

k
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— (_ Q[NDk +an\ka B QIND jv

S TR o1 s available
(1-k)

N — OV
k-1

. accounting for prob of leakage = P,

v
Then leakage multiplication M, = (QILJ-PL = (M)P,

(1-#)

Where M = " Multiplication" = I@_;rl = 0.- [l—k—ﬁrl—k'—...—ﬁr"'J

From previous Geometric series if convergent if k <1

gxamples M, =729.600 %

is the leakage multiplication.
Aside

Example: assemble a collection of subcritical masses
Stack sub-critical masses together...
b

1
e0e
detactors

7

crit mass
gstimate

Y

This is the experimental way to monitor for a critical mass estimate.
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