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Abstract

This paper proposes an aggregation-based model reduction method for nonlinear models of multi-zone building thermal dynamics. The
full-order model, which is already a lumped-parameter approximation, quickly grows in state space dimension as the number of zones
increases. An advantage of the proposed method, apart from being applicable to the nonlinear thermal models, is that thereduced model
obtained has the same structure and physical intuition as the original model. This makes the reduced model useful not only for control
design and analysis but also for building design iterations. The key to the methodology is an analogy between a continuous-time Markov
chain and the linear part of the thermal dynamics. A recentlydeveloped aggregation-based method of Markov chains is employed to
aggregate the large state space of the full-order model intoa smaller one. Simulations are provided to illustrate tradeoffs between prediction
error and computation time.
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1 Introduction

In 2009, commercial and residential buildings accounted for
42% of the total energy usage and75% of total electricity
consumption in the United States [43, Table A.2]. Among
all energy consumers of buildings, Heating, Ventilation, and
Air Conditioning (HVAC) account for a large share. A large
fraction of the energy delivered to buildings is wasted be-
cause of inefficient building technologies [3,39]. Interests in
methods for controlling building HVAC systems to reduce
their energy usage or cost have been on the increase in re-
cent years; particularly in model-based approaches such as
Model Predictive Control (MPC) [20,29,30,33,47].

Accurate models of temperature evolution in a building are
required for real-time prediction and control, especiallyin
model-based control methods. This paper focuses on model
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order reduction of buildings with multiple zones. A zone in
this paper refers to a single space (room, hallway, etc.) that is
serviced by a single “terminal box” with supply air diffuser
and return air grilles. Fig. 1 shows a four-zone building
HVAC system, where each zone refers to a single room here;
terminologies and more details appear in Section 2.

The physical processes that determine thermal dynamics in
buildings, which are governed by a set of coupled partial
differential equations, are complex. In principle, Computa-
tional Fluid Dynamics (CFD) can be used to solve these
equations. CFD models are, however, computationally in-
tensive [10] and sensitive to boundary condition specifica-
tions [25]. Complexity issues of CFD models have led to
development of simplified models in the past few decades.
In this framework, the air in each zone is assumed to be
well mixed with a uniform temperature. The thermal re-
sponse of a zone and conduction between zones that are
separated by solid surfaces (walls, floors, ceiling, windows,
partitions, etc.) are modeled by capacitances and resistances,
respectively. Such resistor-capacitor models have been ex-
tensively used to construct dynamic models of zone temper-
atures in the HVAC and building modeling literature; see,
for instance [9,17,38,45]. The resistances and capacitances
are carefully chosen to model the combined effect of con-
duction between the air masses separated by the surface, as
well as long wave radiation and convection between the sur-
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Fig. 1. The configuration of a four-zone building HVAC system.

face and the air mass in contact with it [18,32], [7, Chapters
4, 15, & 25]. In addition, there is thermal interaction be-
tween each zone and the outside due to the ventilation air
that is supplied to and extracted from the zone that has to
be accounted for.

A complete model of the entire multi-zone building’s ther-
mal response can then be constructed by using (i) resistor-
capacitor networks for combined conduction-convection-
radiation through surfaces, and (ii) heat balance equations
to account for the enthalpy exchange between a zone and
the outside due to the ventilation air. The resulting lumped
parameter model is called thefull-order building ther-
mal model in this paper. This approach of constructing
multi-zone thermal models have been pursued previously
in [19,26,31,44,46]. The full-order model we consider here
is from [19]. The ventilation heat exchange terms make the
thermal dynamic model nonlinear; more modeling details
appear in Section 2.

A fundamental problem with the full-order models is that
they quickly explode in complexity as the number of zones
increases. For example, the full-order model of the down-
stream part of a four-zone building, shown in Fig. 1, has
37 nodes (more details appear in Section 5). For a large
commercial building with hundreds of zones, the number of
nodes are of the order of several hundreds, or even thou-
sands. This is a cause of concern for optimization-based
control schemes such as MPC, particularly if the optimiza-
tion is to be performed with a day-long prediction horizon
to take advantage of slow thermal responses of buildings as
well as daily variations in environment and energy prices.
Thus, model reduction methods are required for success-
ful implementation of advanced control schemes in realistic
buildings by reducing the computational complexity. Large
model complexity is also an issue even for off-line predic-
tions during the building design phase, when a large num-
ber of parametric studies are to be performed using building
energy prediction software such as EnergyPlus or DOE-2.
These design iterations require yearly energy consumption
predictions, which need whole-year building simulations.As
a result, speedy simulation that comes from low model com-
plexity is important in design iterations. Using a small num-

ber of zones to reduce computation time is common prac-
tice, and in fact recommended for EnergyPlus [24]. Thus,
model reduction techniques can aid in the building design
phase as well.

Due to the nonlinear nature of the building thermal model,
the number of available techniques for model reduction is
limited. Balanced truncation method for nonlinear systems
has been introduced by Scherpen in [37], which uses con-
trollability and observability energy functions of a system
to balance the realization. Related methods [4, 11, 22] has
also been developed for bilinear systems. These energy func-
tions however are difficult to compute in practice. Lallet al.
in [28] use empirical Gramians to determine the importance
of a particular subspace in terms of its contribution to the
input-output behavior. These empirical Gramians are calcu-
lated by simulation or experimental data generated within
the system’s expected operating region, in which some of
the nonlinear behavior is captured by resulting Gramians.
Hahn and Edgar [23] propose a hybrid method by intro-
ducing controllability and observability covariance matrices,
which can be computed from data along system trajectories.
The balanced truncation method is further extended in [36]
by introducing the so-called extended Gramians to improve
error bounds and enforce structural constraints. The recent
paper [19] proposes a method for reduction of multi-zone
building thermal models of the type considered here. The
method in [19] is also based on balanced truncation; it ap-
plies a balanced transformation computed from the linear
part of the dynamics to the nonlinear full-order model and
then performs truncation. The sparsity pattern of the nonlin-
ear terms are exploited to reduce loss of predictive ability
in performing the truncation. However, the resulting states
of the reduced model have no physical meaning, unlike the
states of the original model that relate to temperatures of
the zones and internal nodes of walls. The same is true for
all model reduction methods mentioned above: the reduced
order models do not retain the structure and the physical
intuition of the original full-order model.

In this paper, we propose anaggregation-based approach
that preserves the structure of the original model, that is,
the reduced building thermal model is still a nonlinear RC-
network. This is achieved by obtaining super-nodes via ag-
gregation, and determining the super-capacitance for each
super-node and super-resistance for each edge between two
adjacent super-nodes. The aggregation-based approach pro-
posed in this paper is based on model reduction method of
Markov chains that has recently been developed in [15]. The
Kullback-Leibler (KL) divergence rate is used as a “metric”
to reduce Markov chains via aggregation of states in [15].
The idea of this paper is to connect the linear portion of
the multi-zone thermal model to a continuous-time Markov
chain, and extend the model reduction procedure for Markov
chains to the nonlinear full-order building thermal model.
The degree of reduction can be specified by the user, and the
full-order model withn nodes can be reduced to a model
withm super-nodes, withm being any integer between1 and
n. Simulations reported in this paper show that the proposed
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method produces reduced-order models that well approxi-
mate the time-domain predictions of the original model. As
one would expect, the prediction accuracy decreases as the
specified degree of reduction increases.

There are several advantages of the model reduction method
of multi-zone building thermal models proposed here com-
pared to the existing general model-reduction methods men-
tioned above. Unlike the empirical Gramian based methods,
we do not need simulation data from full order models to
construct the reduced order model; it is obtained directly
from the model description. The proposed method does not
suffer from the computational difficulty of the energy func-
tion based methods. The building thermal model reduction
method of [19] has the limitation that the minimum number
of states in the reduced model is equal to the number of zones
in the building. In contrast, any user specified reduction in
the model order is possible with the proposed method. This
makes the proposed method more attractive for MPC-type
control schemes, and for performing off-line control design
and analysis studies for a building with a large number of
zones, when a large reduction in model order is called for.
However, for the same (reduced) model order, it turns out
that the reduced-order model obtained by the truncation-
based method has a slightly smaller prediction error than
that by the aggregation-based method.

The key difference of the proposed method over existing
work comes from the fact that, unlike all the previously
mentioned methods, the method proposed here isstructure-
preservingin the sense that that the reduced model of a non-
linear RC-network is still a nonlinear RC-network. Thus, the
parameters and nodes of the reduced model retain the same
physical meaning of the parameters and nodes of the original
RC-network model. A number of zones can be reduced to a
smaller number of “super-zones” with the proposed method.
This makes the model reduction method proposed in this
paper is of potential use in the design of buildings as well.

To see the use in architectural design, note that it is common
in the building design stage to combine a number of zones
into a large “super-zones”. This is done to reduce simula-
tion time [24]. For instance, a building with 15 zones was
reduced to 7 zones for reduction in computation complexity
in [5]. However, the process of combining multiple zones
into single super zone is done manually; we are not aware of
any formal method to perform such aggregation. Frequently,
such aggregation is done in an an-doc fashion. For instance,
all office spaces scattered throughout a building are com-
bined into one zone in [27]. The method proposed in this
paper provides a formal method to perform such aggrega-
tion, which benefits building design studies.

The rest of the paper is organized as follows. In Section 2,
the full-order model is described and the model reduction
problem is stated. In Section 3, the Markov chain analogy
of the building thermal dynamics is presented. In Section 4,
the aggregation-based methodology is applied to reduce the
building thermal model. In Section 5, theoretical results are

illustrated by numerical simulations. The conclusions appear
in Section 6.

2 Full-order Building Thermal Model

A typical HVAC system consists of AHUs, supply ducts,
and terminal boxes; see Fig. 1 for an example. The AHU
(Air Handling Unit) supplies conditioned air (usually cold
and dry) to terminal boxes at so-called leaving-air tempera-
ture and humidity. Each terminal box delivers air to one or
more zones. When the box is equipped with a reheat coil (a
common configuration), the supply air temperature down-
stream of the box can be increased beyond the AHU leaving
temperature. In a VAV (Variable-Air-Volume) system, the
terminal box may vary the supply air mass flow rate through
dampers, but not in a CAV (constant air volume) system. A
controller at each terminal box can be used to maintain the
temperature of a zone at a specified value by controlling the
mass flow rate of air supplied to the zone.

The dynamics of the building with its HVAC system can be
divided into upstream and downstream parts (see Fig. 1). The
upstream part includes the AHU dynamics and the down-
stream part includes the thermal dynamics of the zones. The
focus of this paper is on modeling the downstream thermal
dynamics. The reasons for ignoring the AHU dynamics are
twofold. First, the dimension of the downstream model in-
creases quickly with the number of zones and internal ther-
mal nodes, while the dimension of the upstream model in-
creases only with the number of AHUs. The later is typi-
cally small even for a large building. Second, the AHU has
fast dynamics in the HVAC system, with a time constant of
about a minute [8], whereas the thermal dynamics of the
zones are relatively slow with time constants in tens of min-
utes [42] to hours [16]. As a result, the dynamics of the
AHUs are replaced by static gains in this paper without sig-
nificant loss of accuracy. From now on, “building thermal
dynamics” would mean dynamics of the downstream part.
Variations of temperature within a zone are neglected; each
zone is characterized by a single temperature variable.

2.1 RC-network model of building thermal dynamics

A building thermal model is constructed by combining
lumped parameter models of thermal interaction between
two zones separated by a solid surface (e.g., walls, win-
dows, ceilings, and floors). For the sake of simplicity, here
we ignore the inter-zone convective heat transfer that occurs
through the open doors and hallways. A lumped parameter
model of combined heat flow across a surface is modeled
as a simple RC-network, with current and voltage being
analogous of heat flow and temperature. In this modeling
framework, the capacitances are used to model the total
thermal capacity of the wall, and the resistances are used
to represent the total resistance that the wall offers to the
flow of heat from one side to the other. In [17], Goudaet.
al. showed that a second-order RC-network model with3
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resistors and2 capacitors, which we will call3R2C model,
is sufficient to capture the conductive dynamic interaction
between two spaces through a single wall; see Example 1
at the end of this subsection.

For a building consisting of a number of surface elements
(e.g., walls, windows, ceilings, and floors),3R2C models
for surface elements can be inter-connected to obtain a RC-
network model of the entire building. The resulting model
can be represented as anundirected graphG = (V , E),
whereV := {1, . . . , n + 1} denotes the set ofnodesof the
graph. A node may represent a physical zone (e.g., a room,
a hallway, or “the outside”), or some point inside a wall.
For the sake of simplicity of the description, the nodes are
assumed to be re-indexed so that the firstN nodes cor-
respond to the temperatures of zones1, . . . , N ; these are
called thezone nodes. The next(n−N) nodes correspond
to the temperatures internal to the surfaces that appear due
to the 3R2C networks; these are called theinternal nodes.
The last, i.e.(n + 1)th node, corresponds to the outside.
Each nodei ∈ V corresponds to a temperatureTi and each
nodei ∈ V/{n+ 1} has an associated capacitanceCi. The
setE ⊂ V ×V denotes the set of alledges. Edges represent
pathways for conductive heat transports. More specifically,
each edge(i, j) ∈ E represents the conductive thermal in-
teraction between the nodesi andj and there exists a resis-
tanceRij ∈ R+ connecting them directly. Since the graph
is undirected,Rji = Rij by convention.

The states and inputs of the building thermal model are
summarized below:

States : T1, . . . , TN , TN+1, . . . , Tn, Tn+1

Inputs : To, T
s; ṁin

i , Q̇
r
i , Q̇

int
i , Q̇exti , i = 1, . . . , N

whereT1, . . . , TN denote the space temperature of the zones,
andTN+1, . . . , Tn denote temperature of the points internal
to the surface elements, andTn+1 & To denote the same
quantity – the outside temperature (it is denoted asTn+1 if
considered as a state, andTo if considered as an input),T s

denotes thesupply temperature, that is the temperature of
the air supplied by the AHU,̇min

i denotes the mass flow rate
of the supply air entering theith zone,Q̇ri denotes the heat
gain due to reheating that may occur at the VAV box of the
ith zone,Q̇inti denotes theinternal heat gain, i.e., the rate
of heat generated by occupants, equipments, lights, etc. in
the ith zone, andQ̇exti denotes theexternal heat gain, i.e.,
the rate of solar radiation entering theith zone.

The supplied air temperatureT s is usually constant for a
VAV system, at least over short intervals of time [7]. All
other inputs are time varying. In this paper, it is assumed
that (i) the supply air temperatureT s is given as a constant,
(ii) the (estimation of) the outside temperatureT0 and the
heat gainsQ̇r, Q̇int, Q̇ext are available based on historical
data, weather predictions, and various sensors.

The thermal dynamics of a multi-zone building, described by

a graphG, are modeled by the following coupled nonlinear
differential equations: Fori = 1, . . . , n,

Ci
dTi
dt

(t) =
∑

j∈Ni

(Tj(t)−Ti(t))/Rij+Q̇i(t)+∆Hi(t) (1)

whereNi := {j ∈ V : j 6= i, (i, j) ∈ E} denotes the set
of neighborsconnecting to the nodei (note that the outside
noden+ 1 may belong to the setNi for some nodei), and
the termsQ̇i,∆Hi are described below:

• The heat gainterm Q̇i is the rate of thermal energy en-
tering the nodei from all sources other than ventilation
air and conduction from neighboring nodes. It is non-zero
only for zone nodes:

{
Q̇i(t) = Q̇ri (t) + Q̇inti (t) + Q̇exti (t), i = 1, . . . , N

Q̇i(t) = 0, i = N + 1, . . . , n.

• The ventilation heat exchangeterm ∆Hi is the rate of
thermal energy entering the nodei due to ventilation. It
is non-zero only for the zone nodes:

{
∆Hi(t) = Cpaṁ

in
i (t)(T s − Ti(t)), i = 1, . . . , N

∆Hi(t) = 0, i = N + 1, . . . , n

whereCpa is the specific heat capacitance of the supplied
air at constant pressure. Recall thatT s is the supply air
temperature.

The coupled ordinary differential equation model (1) so ob-
tained is nonlinear because of the presence of the bilinear
termṁin

i Ti in defining the ventilation heat exchange∆Hi.
Note that the termQ̇i+∆Hi can be together interpreted as
a current source injected into (or extracted from) the nodei
of the RC-network, except that the source strength depends
on the “voltage”Ti of nodei as well: The full-order model
can be thought as a RC-network model with additional cur-
rent sources, where the source strengths are dependent on
the voltage of the nodes they are connected to.

In the following sections, a compact state-space representa-
tion of the building thermal model (1) is used. The outside
temperature is taken as a “virtual state”Tn+1 to the system.
We assign a very large “virtual capacitance” to the outside
node:Cn+1 ≫ Ci, for i = 1, . . . , n. LettingCn+1 → ∞,
the system of equations (1) is expressed as a state-space rep-
resentation:

dT

dt
= AT + L(T, U, Q̇) (2)

where the state vectorT := [T1, . . . , Tn+1]
T , the control

vectorU := [ṁin
1 , . . . , ṁ

in
N , 0, . . . , 0]

T , and the heat gain
vector Q̇ := [Q̇1, . . . , Q̇N , 0, . . . , 0]

T . The transition rate
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Fig. 2. (a) Two zones separated by a single surface, and (b) its lumped RC-network model.

matrixA is an(n+1)×(n+1) matrix with entries given by

Aij :=





0, if j 6= i, (i, j) /∈ E

1/(CiRij), if j 6= i, (i, j) ∈ E

−
∑
k 6=i Aik, if j = i, (i, j) ∈ E

(3)

and the nonlinear function:




Li(T, U, Q̇) =
CpaUi(T

s − Ti) + Q̇i
Ci

, i = 1, . . . , N

Li(T, U, Q̇) = 0, i = N + 1, . . . , n

Li(T, U, Q̇) = η, i = n+ 1

whereη(t) ∈ R is chosen such thatη(t) = Ṫo(t). To see
the equivalence between (1) and (2), note that the entries in
the last row ofA approach0 asCn+1 → ∞ (since they are
of the form1/(Cn+1Rn+1,j)). In the limit, Ṫn+1 = η(t),
which givesTn+1(t) = To(t) for all t ≥ 0.

Example 1 (A simple two-zone building) Consider the
simplest example where two zones are separated by a single
wall/surface as shown in Fig. 2 (a). Here it is assumed that
two zones have no thermal interaction with other zones or
the outside. A3R2C network model is used to model the
surface as shown in Fig. 2 (b). Ventilation air enters each
zone at temperatureT s, and leaves the zone at the same
temperature as that of the zone. There are4 building nodes,
two zone nodes plus two internal nodes.T1 andT4 denote
the space temperatures of zone1 and zone2, respectively.
T2 andT3 denote temperatures of the points internal to the
surface that arise due to the 3R2C model of the surface.
The parametersC1 andC4 are the thermal capacitances of
the two zones, whileC2, C3 are thermal capacitances for
the 3R2C model of the surface. The dynamics for the RC-
network model are described by the following differential
equations obtained by using the heat balance:

C1
dT1
dt

= −
1

R12
T1 +

1

R12
T2 + Q̇1 +∆H1

C2
dT2
dt

= −(
1

R21
+

1

R23
)T2 +

1

R21
T1 +

1

R23
T3

C3
dT3
dt

= −(
1

R32
+

1

R34
)T3 +

1

R32
T2 +

1

R34
T4

C4
dT4
dt

= −
1

R43
T4 +

1

R43
T3 + Q̇4 +∆H4

(4)

whereR12,R23,R34 are thermal resistances, theQ̇i = Q̇ri+

Q̇inti + Q̇exti is the heat gain, and∆Hi = Cpaṁ
in
i (T s−Ti)

is the heat exchange due to ventilation fori = 1, 4, with
Cpa being the specific heat capacitance of the supply air.

2.2 Problem statement of model reduction

For a building withN zones, the number of states in the
full-order model (2) described above is of the order of7N ,
usually more. A medium size commercial building has close
to 100 zones and a larger building can have several hun-
dreds. The dimension of the full-order model thus can be
quite large. The goal of this paper is to obtain a reduced-
order model of smaller dimension such that model reduction
produces the RC-network physical structure.

To achieve this goal, an aggregation methodology is consid-
ered: Mathematically, suppose the goal is to reduce the state
dimension fromn tom, wherem ≤ n is the (user-specified)
number of super-nodes. The first step is to choose apartition
functionφ : V → V̄, whereV̄ = {1, . . . ,m+1} denotes the
set of “super-nodes” for the reduced-order model, and recall
thatV = {1, . . . , n+1} denotes the set of nodes for the full-
order model. A partition function is an onto function but pos-
sibly many-to-one. The elements ofV̄ are the super-nodes,
and for everyk ∈ V̄, the inverse mappingφ−1(k) ⊂ V de-
notes the group of nodes in the full-order model that are
aggregated into thekth super-node using the partition func-
tion φ. The second step is to define a graph forV by defin-
ing “super-edges” between super-nodes. The third step is to
define appropriate super-capacitances and super-resistances.

To perform such a structure-preserving model reduction, we
need to answer the following questions:

Q 1: How to choose the partition function?
Q 2: Given a partition function, how to find the super-

capacitances and super-resistances, and how to aggre-
gate the nonlinear terms of the full-order model?

Q 3: How to compare the full and reduced-order models?

The rest of the paper is about answering these questions. A
brief outline of the approach is provided below.

A 1: Partition by Markov chain aggregation:It is shown in
Section 3 that the linear thermal dynamics is analogous
to a continuous-time Markov chain. A recently devel-
oped aggregation method for Markov chains is then
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employed to obtain a (sub)-optimal partition function.
In this method, a measure of optimality of the aggre-
gation is defined in terms of the Kullback-Leibler di-
vergence rate. Solving the optimal partition problem is
shown to be hard, and a recursive bi-partition algorithm
is proposed here to obtain sub-optimal partitions. De-
tails of the algorithm are summarized in Appendix B.

A 2: Finding super-quantities and the reduced-order
model: The super-capacitances and super-resistances
are obtained directly based on the Markov chain anal-
ogy. Details appears in Section 4.1. Due to the current
source interpretation of the nonlinear part, the current
sources connecting to the same group of the aggre-
gated nodes are directly added up to form a super-
current source for the corresponding super-node. It is
shown that the reduced-order model is a RC-network
model defined with super-quantities. Details appear in
Section 4.2.

A 3: Comparison between full and reduced-order models:
We obtain the reduced-order model by aggregating the
nodes into a smaller number of super-nodes. Then we
employ thelifting techniqueto lift the reduced-order
model to the one with the same number of nodes as
the full-order model. Details of the lifting technique
is summarized in Section 4.1. We can now directly
compare the temperatures of zone nodes for the full
and reduced-order models.

3 Markov Chain Analogy and Aggregation

In this section, it is shown that the linear part of the building
thermal model (2) is analogous to acontinuous-time Markov
chain. Thelinear dynamicsof the building thermal model (2)
are given by:

dT

dt
= AT. (5)

Due to the special structure of the matrixA (see (3)), the lin-
ear thermal model (5) isconservative. Specifically, a scalar-
valued functionV (t) :=

∑
i∈V CiTi(t) is conserved for all

time:

dV

dt
(t) =

∑

i∈V

Ci
dTi
dt

(t)

=
∑

j∈V

Tj(t)
∑

i∈V

CiAij (6)

=
∑

j∈V

CjTj(t)
∑

i∈V

Aji (7)

= 0 (8)

where the equality (6) follows from (5), the equality (7) is
due to the fact thatCiAij = CjAji for all i, j ∈ V (see (3)),
and the equality (8) uses the fact that each row sum of the
matrixA is zero. We denoteV0 := V (0) =

∑
i∈V CiTi(0)

as theinvariant quantityof the linear thermal model (5).

3.1 Analogy to a Markov chain

Based upon the conservative property of the linear thermal
model (5), define thethermal distributionas a row vector,
denoted byf , where

fi =
Ci
V0
Ti, i ∈ V .

Note that
∑

i∈V fi(t) ≡ 1 for all t ≥ 0.

On differentiatingfi with respect tot, and using (5),

dfi
dt

=
Ci
V0

dTi
dt

=
∑

j∈V

Aij
Ci
V0
Tj . (9)

By substituting (3) in (9), we have

dfi
dt

= Aii
Ci
V0
Ti +

∑

j 6=i

1

CiRij

Ci
V0
Tj

= Aii
Ci
V0
Ti +

∑

j 6=i

1

CjRji

Cj
V0
Tj (10)

=
∑

j∈V

fjAji (11)

where the fact thatRij = Rji is used in deriving the equality
(10). Using matrix notation for representing (11), we obtain
the dynamics of the thermal distribution and its solution

df

dt
= fA ⇒ f(t) = f(0)eAt, ∀t ≥ 0.

The Markov chain analogy is now clear. Note that each
row sum ofA is zero, its diagonal entries are negative, and
its non-diagonal entries are non-negative (see (3)). Thus,
the transition rate matrixA is the infinitesimal generator
of a transition semigroup{eAt}t≥0: For any t, s ≥ 0, (i)
eA0 = I, (ii) eAt is a stochastic matrix (That iseAt is a
nonnegative matrix whose row sums are equal to one), and
(iii) eA(t+s) = eAteAs.

Consider now a continuous-time Markov chain{X(t)}t≥0

on the state spaceV with the transition semigroup
{eAt}t≥0 [40]. Let g(t) denote theprobability distribution
at timet, i.e.,

gi(t) = Pr(X(t) = i), i ∈ V .

Using the transition semigroup property, we have

gi(t) =
∑

j∈V

Pr(X(0) = j)Pr(X(t) = i | X(0 = j))

=
∑

j∈V

gj(0)(e
At)ji.
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If f(0) is the initial distribution of{X(t)}t≥0, i.e.,g(0) =
f(0), then

g(t) = g(0)eAt = f(0)eAt = f(t). (12)

Thus, starting from the same initial distribution, the prob-
ability distribution of the continuous-time Markov chain
{X(t)}t≥0 is equal to the thermal distribution of the lin-
ear thermal model (5). For more details on continuous-time
Markov chains, we refer the reader to [35,40] and references
therein.

For any ergodic Markov chain, there exists a uniquesta-
tionary distributionπ (obtained as a solution toπA = 0),
whereby starting from any initial distribution

lim
t→∞

g(t) = π.

For linear thermal model (5), the associated Markov chain is
shown to be ergodic in [14], and the stationary distribution
is given by:

πi =
Ci∑
j∈V Cj

, i ∈ V . (13)

3.2 Discretization of the continuous-time Markov chain

In practice, it is more convenient to work with discrete-time
Markov chains (DTMC) instead of continuous-time Markov
chains (CTMC). The DTMC{X(k∆t)}k≥0 is obtained by
discretizing the CTMC{X(t)}t≥0 with a step-size∆t. Let
ξ(k) denote the probability distribution of the DTMC at
kth time-step, i.e.,ξi(k) = Pr(X(k∆t) = i) for i ∈ V .
Using (12),

ξ(k) = ξ(0)P k(∆t), k ≥ 0

where thetransition matrixis defined as

P (∆t) := eA∆t. (14)

For anyt ≥ 0, there exists an integerk ≥ 0 such thatk∆t ≤
t < (k + 1)∆t and eAt ≈ eAk∆t for small enough∆t.
Thus the CTMC{X(t)}t≥0 with the transition semigroup
{eAt}t≥0 is approximated by the DTMC{X(k∆t)}k≥0

with the transition matrixP (∆t) as∆t → 0. One can ver-
ify that π given in (13) is also the stationary distribution of
the DTMC, i.e.,limk→∞ ξ(k) = π.

3.3 Kullback-Leibler metric

For the model reduction problem, one needs a metric to
quantify the differences between the full and the reduced-
order models. In this paper, theKullback-Leibler (KL) di-
vergenceis proposed as a “probability metric” to quan-
tify the difference between distributions. Letξ and ζ de-
note two probability distributions defined on the same space

V = {1, . . . , n+1}. The KL divergence betweenξ andζ is
given by:

D(ξ‖ζ) :=

{∑
i∈V ξi log(ξi/ζi), if ξ ≺ ζ

+∞, otherwise
(15)

whereξ ≺ ζ means thatξ is absolutely continuouswith re-
spect toζ, i.e.,(ζi = 0) ⇒ (ξi = 0) for all i ∈ V . Note that
KL divergence is not a true metric since it is not symmet-
ric and it does not satisfy the triangle inequality [12]. How-
ever, KL divergence is a natural pseudo-metric for compar-
ing probability distributions and is widely used in statistics,
information theory, and control theory [15, 41]. It has two
useful properties:

(1) KL divergence is apre-metric:

D(ξ‖ζ) ≥ 0, with equality if and only ifξ = ζ.

(2) If the KL divergence between two distributions is small
then the two distributions are also close in the sense of
the standardL1 metric [12]:

D(ξ‖ζ) ≥
1

2
‖ξ − ζ‖21,with ‖ξ − ζ‖1 :=

∑

i∈V

|ξi − ζi|.

For the model reduction problem, it is of interest to com-
pare two probability distributions defined on different state
spaces. Letξ andξ̄ denote two probability distributions de-
fined onV = {1, . . . , n + 1} and V̄ = {1, . . . ,m + 1}
(m ≤ n), respectively. The relationship betweenV andV̄ is
described by a given partition functionφ : V 7→ V̄ . Sinceξ
andξ̄ are not defined on the same space, one can not directly
use the formula (15) to compute the KL divergence between
ξ and ξ̄. One strategy, proposed in [15], is tolift ξ̄ from
the spacēV to the spaceV according alifting distribution
µ, whereµi ≥ 0 and

∑
i∈V µi = 1. The lifted probability

distributionξ̂ is defined as

ξ̂
(µ)
i (φ) :=

µi∑
k∈ψ(i) µk

ξ̄φ(i), i ∈ V

whereψ(i) = φ−1 ◦ φ(i) ⊂ V denotes the set of states
belonging to the same group as theith state. The KL di-
vergence is then extended for two distributions defined on
different state spaces:

Dφ(ξ‖ξ̄) := min
µ
D(ξ‖ξ̂(µ)(φ)).

TheKullback-Leibler divergence rateis a generalization of
the KL divergence. It is a measure of distance between the
probability laws of two stochastic processes. The formula
for KL divergence rate, denoted byRφ(P‖P̄ ), between two
Markov chains(π, P ) defined onV and(π̄, P̄ ) defined on
V̄, appears in Appendix A with additional details in [15].
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3.4 Aggregation of Markov chain

Let (π, P ) denote a discrete-time Markov chain defined on
the state spaceV = {1, . . . , n + 1} with the transition
matrix P and the stationary distributionπ. The model re-
duction problem is to find an optimal aggregated Markov
chain, denoted by(π̄, P̄ ), defined on the state spacēV =
{1, . . . ,m+1}, wherem ≤ n, such that the KL divergence
rateRφ(P‖P̄ ) between two Markov chains is minimized.

Them-partition problemis to find a partition functionφ :
V 7→ V̄ and an aggregated transition matrix̄P that solves
the following optimization problem:

min
φ,P̄

Rφ(P‖P̄ )

s.t. P̄1 = 1, P̄ ≥ 0.

As shown in Theorem2 of [15], for a fixed (whether optimal
or not) partition functionφ, the optimal aggregated Markov
chain(π̄(φ), P̄ (φ)) is given by:

P̄kl(φ) =

∑
i∈φ−1(k)

∑
j∈φ−1(l) πiPij∑

i∈φ−1(k) πi
, k, l ∈ V̄ (16)

where the stationary distribution of̄P (φ) is given by

π̄k(φ) =
∑

i∈φ−1(k)

πi, k ∈ V̄ . (17)

As a result, them-partition problem reduces to finding only
anoptimal partition functionφ∗ : V → V̄ such that

φ∗ ∈ argmin
φ

Rφ(P‖P̄ (φ)). (18)

It is shown in [15] that solving the optimization problem (18)
exactly is difficult form > 2, but a sub-optimal solution
for m = 2 can be easily computed. This leads to a sub-
optimal solution for arbitrarym ≥ 2 through therecursive
bi-partition algorithmAlgoBIPA, which is described in Ap-
pendix B. Here we summarize the basic ideas: First,Algo-
BIPA is used to obtainV1,V2 so thatV1 ∪ V2 = V and
V1 ∩ V2 = Φ, whereΦ denotes the empty set. Then,Algo-
BIPA is used on the setV1 to obtainV11 andV12 such that
V11∪V12 = V1 andV11∩V12 = Φ. If the model order is less
thanm, AlgoBIPA is used on the setV2 to obtain partitions
V21 andV22 such thatV21 ∪ V22 = V2 andV21 ∩ V22 = Φ.
This procedure is repeated untilm partitions are obtained.
At each step the number of partition increases byone.

3.5 Analogy to thermal dynamics

Based on the Markov chain analogy for the linear thermal
dynamics (see Section 3.1), the model reduction framework
for Markov chains is extended to building thermal models:

• Metric for comparing thermal distributions: The KL di-
vergence is employed as a metric to compare two thermal
distributionsf andg defined on the same building node
setV :

D(f‖g) =
∑

i∈V

fi log(fi/gi).

For the model reduction problem, it is of interest to com-
pare two thermal distributions defined on building graphs
of different cardinalities. Letf andf̄ denote two thermal
distributions defined onV and V̄, respectively. The low-
dimensional distribution̄f is lifted to a high-dimensional
distributionf̂ defined onV by using partition functionφ
and lifting distributionµ:

f̂
(µ)
i (φ) =

µi∑
k∈ψ(i) µk

f̄φ(i), i ∈ V . (19)

The lifting may be viewed as a linear transformation that
conserves the total heat. The KL metric is then used to
compare the two thermal distributionsf and f̂ on the
same node setV .

• Metric for comparing thermal models: The KL divergence
rate is used as a measure to compare two building ther-
mal models. In particular, suppose full-order model is
simulated starting from an initial distributionf(0). De-
note the resulting trajectory of the thermal distribution as
{f(k∆t)}0≤k≤N . Now, suppose the reduced-order model
is also simulated starting from the initial distribution

f̄l(0) =
∑

i∈φ−1(l)

fi(0), l ∈ V .

Denote the resulting trajectory of thermal distribution as
{f̄(k∆t)}0≤k≤N , which evolves over reduced graph̄V.
The trajectory{f̄(k∆t)}0≤k≤N is lifted to the full build-
ing graph by using (19), and denoted by{f̂(k∆t)}0≤k≤N .
The KL divergence rate between full and reduced-order
models is given by,

1

N

N∑

k=1

D(f(k∆t)‖f̂(k∆t)). (20)

Thus, the KL divergence rate is a measure of average
distance between trajectories generated from simulating
two thermal models.

• Bi-partition: An optimal bi-partition of a given model
produces a2-state reduced-order model that is closest to
the full-order model in the sense of distance (20). Since
the distance is a time average, discrepancies between two
models at the slow(est) time-scales contribute more to the
error compared to the fast transients. The choice of metric
thus leads to a2-state model that approximates the full-
order model on the slowest time-scale.

• Recursive bi-partition: The recursive application of bi-
partition algorithm produces a reduced-order model that
progressively captures multiple time-scales in the prob-
lem. The first bi-partition results in splitting of the graph
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into two clusters, and a2-state model that captures the
slowest time-scale. The next bi-partition further splits one
of the two clusters so as to capture the slowest time-scale
in that cluster and so on. In effect afterm-applications of
the algorithm, the reduced-order model describes them
slowest time-scales of the full-order model.

4 Aggregated Building Thermal Model

In this section, the aggregation methodology is applied to
obtain a reduced-order model for building thermal model
(2). We first describe the reduced-order model for the linear
part of the building thermal model (2), and then the reduced-
order model for the nonlinear part of (2).

4.1 Aggregated linear thermal dynamics

For the linear thermal model (5), the goal is to aggregate the
node setV = {1, . . . , n + 1} into a smaller super-node set
V̄ = {1, . . . ,m+1} wherem ≤ n. For each super-nodek ∈
V̄, we introduce the super-temperatureT̄k, super-capacitance
C̄k, and super-resistancēRkl. For a given partition function
φ, the reduced-order model for (5) has the form:

dT̄

dt
= Ā(φ)T̄ , (21)

whereT̄ = [T̄1, . . . , T̄m+1]
T denotes the super-temperature

vector, andĀ(φ) denotes the(m + 1) × (m + 1) super-
transition-rate matrix. The Markov chain analogy also works
for the reduced-order model with the associated transition
semigroup{eĀ(φ)t}t≥0. Discretizing with a small step-size
∆t, one obtains the transition matrix for the aggregated
Markov chain defined on̄V :

P̄ (∆t) := eĀ(φ)∆t.

Recall that the transition matrix for the discrete-time Markov
chain associated with the full-order linear thermal dynam-
ics is denoted byP (∆t) (see (14)). The goal is to choose
Ā(φ) so that the aggregated Markov chain with the tran-
sition matrix P̄ (∆t) optimally approximates the original
Markov chain with the transition matrixP (∆t). The ag-
gregation method described in Section 3.4 is employed to
determine the formula for the optimal aggregated transition
matrix Ā(φ). According to (16), the formula for the optimal
aggregated Markov transition matrix is given by:

P̄kl(∆t) =

∑
i∈φ−1(k)

∑
j∈φ−1(l) πiPij(∆t)∑

i∈φ−1(k) πi
, k, l ∈ V̄ .

(22)

By expressingP (∆t) andP̄ (∆t) in the form

P (∆t) = I +A∆t+O(∆t2),

P̄ (∆t) = I + Ā(φ)∆t+O(∆t2),

the equation (22) becomes

1l{k=l} + Ākl(φ)∆t+O(∆t2)

=

∑
i∈φ−1(k)

∑
j∈φ−1(l) πi(1l{i=j} +Aij∆t+O(∆t2))

∑
i∈φ−1(k) πi

= 1l{k=l} +

∑
i∈φ−1(k)

∑
j∈φ−1(l) πiAij∑

i∈φ−1(k) πi
∆t+O(∆t2).

(23)

By matching terms on both sides of (23), we obtain the
formula for the optimal super-transition-rate matrix

Ākl(φ) =

∑
i∈φ−1(k)

∑
j∈φ−1(l) πiAij∑

i∈φ−1(k) πi
, k, l ∈ V̄. (24)

By substituting (3) and (13) into (24), one can verify that
Ā(φ) is indeed atransition-rate matrixfor any partition
functionφ, i.e., the row sums of̄A(φ) are zeros, diagonal en-
tries are negative, and non-diagonal entries are non-negative:





Ākl(φ) =

∑
i∈φ−1(k)

∑
j∈φ−1(l) 1/Rij∑

i∈φ−1(k) Ci
, k 6= l ∈ V̄

Ākk(φ) = −
∑

l 6=k

Ākl(φ), k ∈ V̄

(25)
The super-capacitances and super-resistances can also be
expressed in terms ofCi andRij :

• According to (13), the stationary distribution of the ag-
gregated Markov chain has the form:

π̄k(φ) =
C̄k(φ)∑
l∈V̄ C̄l(φ)

, k ∈ V̄ (26)

whereC̄k(φ) denotes thesuper-capacitancesfor thekth
node. By substituting (13) into (17), we obtain formula
for the the optimal stationary distribution:

π̄k(φ) =
∑

i∈φ−1(k)

πi =

∑
i∈φ−1(k) Ci∑

l∈V̄

∑
j∈φ−1(l) Cj

, k ∈ V̄ .

(27)
By comparing (26) and (27), we obtain the formulae for
the super-capacitances:

C̄k(φ) =
∑

i∈φ−1(k)

Ci, k ∈ V̄ . (28)

• By using (25) and (28), we obtain the formulae for the
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super-resistances:

R̄kl(φ) =
1

C̄k(φ)Ākl(φ)

=
1∑

i∈φ−1(k)

∑
j∈φ−1(l) 1/Rij

, k 6= l ∈ V̄ .

(29)

Thus, the reduced-order linear model (21) corresponds to
a reduced RC-network with super-capacitances and super-
resistances given by (28) and (29), respectively. The super-
capacitancēCk(φ), given in (28), is the equivalent capac-
itance of parallel configuration of all capacitors in thekth
partition. Similarly, the super-resistanceR̄kl(φ) given in (29)
is the equivalent resistance of parallel configuration of all
resistors connecting thekth partition and thelth partition.
These observations also serve to provide an intuitive justifi-
cation of the aggregation approach.

Similar to the full-order model (2), the reduced-order
model (21) is alsoconservativebecause of the fact that̄A(φ)
is a super-transition-rate matrix. The invariant quantityfor
the reduced-order model is given by

V̄0 :=
∑

k∈V̄

C̄kT̄k(0).

If one chooses the initial condition for the reduced-order
model (21) as

T̄k(0) =
∑

i∈φ−1(k)

(Ci/C̄k(φ))Ti(0), k ∈ V̄ , (30)

then

V̄0 =
∑

k∈V̄

∑

i∈φ−1(k)

CiTi(0) =
∑

i∈V

CiTi(0) = V0.

This implies that the invariant quantity of the linear thermal
dynamics is unchanged after the aggregation. Theaggre-
gated thermal distributionis defined as

f̄k =
C̄k
V̄0
T̄k, k ∈ V̄ . (31)

Recall that we introduce the lifting technique to compare the
low and high-dimensional distributions. Thelifted thermal
distribution is defined as

f̂i =
Ci
V0
T̂i, i ∈ V (32)

where T̂i is called thelifted temperaturefor the nodei.
Using (19) and choosing the lifting distribution asµ = π,
we obtain

f̂i =
πi∑

j∈ψ(i) πj
f̄φ(i). (33)

Substituting (13) and (31) into (33), we have

f̂i =
Ci∑

j∈ψ(i) Cj

C̄φ(i)

V̄0
T̄φ(i) =

Ci
V0
T̄φ(i) (34)

where we use the fact that̄Cφ(i) =
∑
j∈ψ(i) Cj andV̄0 = V0.

By comparing (32) and (34), we have the explicit expression
for the lifted temperature

T̂i = T̄φ(i), i ∈ V .

Note that the lifted temperaturêTi of the nodei is indeed a
temperature quantity for the corresponding aggregated node
φ(i). Thus, we can compare the full and reduced-order mod-
els by directly comparingTi andT̄φ(i) for each nodei.

4.2 Aggregated building thermal model

Recall that the outside node is taken as a virtual(n + 1)th
node in the full-order building thermal model (2), and the
outside temperature is denoted asTn+1. We also take the
outside node as a virtual(m + 1)th node in the reduced-
order model and we denote its temperature asT̄m+1. That
is, for any given partition functionφ, the building node set
{1, . . . , n} is aggregated into the super-node set{1, . . . ,m},
and the(n+ 1)th outside node has a one-to-one correspon-
dence to the(m+ 1)th super-node.

Due to the current source interpretation of nonlinear thermal
dynamicsL(T, U,Q) (see Section 2.1), the current sources
connecting to the same group of the aggregated nodes are
directly added up to form a super-current source for the
corresponding super-node:

• For k = 1, . . . ,m, the aggregated nonlinear thermal dy-
namics is given by:

L̃k(T, U, Q̇) =
∑

i∈φ−1(k)

CiLi(T, U,Q)/C̄k(φ)

= (Cpa(T
sŪk(φ)− W̃k(φ)) +

˙̄Qk(φ))/C̄k(φ) (35)

where
Ūk(φ) :=

∑

i∈φ−1(k)

Ui

˙̄Qk(φ) :=
∑

i∈φ−1(k)

Q̇i

W̃k(φ) :=
∑

i∈φ−1(k)

UiTi.

(36)

• Fork = m+1, the aggregated nonlinear thermal dynamics
is given by:

L̃m+1(T, U, Q̇) = η

whereη(t) = Ṫo(t) andTo(t) denotes the outside temper-
ature. The construction here is to make sureT̄m+1(t) =
To(t) for all t ≥ 0 in the reduced-order model (38) de-
scribed later.
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Fig. 3. The RC-network representation of (a) the full-orderthermal model and (b) the reduced-order thermal model for the single surface
separating two zones.

SinceU andQ are external inputs to the full-order model,
we can also takēU(φ) and ˙̄Q(φ) defined in (36) as the super-
inputs to the reduced-order model. One problem is that the
termW̃ (φ) defined in (36) depends onT , which is the state
vector of the full-order model. We usēTk (the temperature
of the kth super-node) to approximateTi (the temperature
of the ith node that belongs to thekth group) inW̃k(φ):

W̄k(φ) :=
∑

i∈φ−1(k)

UiT̄k = Ūk(φ)T̄k, k = 1, . . . ,m.

Replacing W̃k(φ) by W̄k(φ) in (35), we approximate
L̃k(T, U, Q̇) by

L̄k(T̄ ,Ū(φ), ˙̄Q(φ))

=
(
CpaŪk(φ)(T

s − T̄k) +
˙̄Qk(φ)

)
/C̄k(φ)

(37)

for k = 1, . . . ,m and L̄m+1(T̄ , Ū(φ), ˙̄Q(φ)) = η. Note
that the aggregated nonlinear thermal dynamics in (37) only
depends on super-quantities for the reduced-order model.

By combining the aggregated linear thermal dynamics (21)
with the aggregated nonlinear thermal (37), we obtain the
state-space representation of the reduced-orderbuildingther-
mal model:

dT̄

dt
= Ā(φ)T̄ + L̄(T̄ , Ū(φ), ˙̄Q(φ)). (38)

The model reduction method proposed in this paper pre-
serves the RC-network structure of the original building
model, that is, the reduced-order model (38) is still a RC-
network defined with super-nodes with super-edges connect-
ing these super-nodes. According to state-space representa-
tion (38), the aggregated building thermal dynamics can be
also expressed by the following coupled differential equa-
tions: For eachk = 1, . . . ,m,

C̄k(φ)
dT̄k
dt

(t) =
∑

l∈N̄k

(T̄l(t)− T̄k(t))/R̄kl(φ)

+ ˙̄Qk(φ)(t) + ∆H̄k(φ)(t)

(39)

whereT̄k is the temperature of thekth super-node,̄Nk ⊂ V̄

denotes the set of neighbors of thekth super-node,̇̄Qk(φ)

denotes the heat gain for thekth super-node, and the ventila-
tion heat exchange∆H̄k(φ) for thekth super-node is given
by

∆H̄k(φ)(t) = Cpa ˙̄min
k (φ)(t)(T s − T̄k(t))

with the mass flow rate entering thekth super-node given
by ˙̄min

k (φ) =
∑

i∈φ−1(k) ṁ
in
i . The initial condition of the

reduced-order model (39) is chosen as (30).

The reduced-order model so far depends on the choice of
the partition functionφ. The sub-optimal partition function
φ∗ is obtained by using the recursive bi-partition algorithm
AlgoBIPA. However, one can also directly choose a sub-
optimalφ∗ based on physical intuition (e.g., floor plans in
a multi-zone building), or some other kinds of expert-based
heuristics.

Example 2 (Bi-partition of the two-zone building)
Consider the model reduction problem for the two-zone
building shown in Example 1. The goal is to find a reduced-
order model with two super-states. The thermal dynamics
of this two-zone building is described by (4). To perform
model reduction, we consider the linear dynamics of (2)
first. The linear model is given by (5) with the transition
rate matrix

A =




− 1
C1R12

1
C1R12

0 0

1
C2R21

− R21+R23

C2R21R23

1
C2R23

0

0 1
C3R32

− R32+R34

C3R32R34

1
C3R34

0 0 1
C4R43

− 1
C4R43




where the capacitances and resistances are given byC1 =
0.1, C2 = 0.15, C3 = 0.2, C4 = 0.25, R12 = 0.15, R34 =
0.15, andR23 = 1.5.

Using the bi-partition algorithmAlgoBIPA described in Ap-
pendix B, the sub-optimal bi-partition is obtained according
to the sign structure of the second largest eigenvalue of the
Markov transition matrixP (∆t) = eA∆t, where the step-
size∆t = 0.01. The second eigenvector ofP (∆t) is given
by

u(2) = [−0.639,−0.601,+0.312,+0.366].

The sign-structure ofu(2) suggests the optimal bi-partition
function φ∗ = [1, 1, 2, 2]. That is, the nodes{1} and {2}
are aggregated to form one super-node, and the states{3}
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Fig. 4. (a) The layout of the four-zone building of the HVAC system shown in Fig. 1, and (b) its RC-network representation.

and{4} are aggregated to form the other super-node. The
optimal bi-partition is shown in Fig. 3 (a).

Using (24) with the optimal bi-partition functionφ∗, we
obtain the super-transition-rate matrix

Ā =

[
− 1
C̄1R̄12

1
C̄1R̄12

1
C̄2R̄21

− 1
C̄2R̄21

]

where the super-capacitances and super-resistances are ob-
tained according to (28) and (29)

C̄1 = C1 + C2 = 0.25,

C̄2 = C3 + C4 = 0.45,

R̄12 = R̄21 = R23 = 1.5.

The RC-network representation of the reduced-order model
is shown in Fig. 3 (b). Let̄Tk denote the temperatures of
super-nodesk for k = 1, 2. Using (39), we represent the
reduced-order building thermal model by the following dif-
ferential equations:

C̄1
dT̄1
dt

= −
1

R̄12
T̄1 +

1

R̄12
T̄2 +

˙̄Q1 +∆H̄1

C̄2
dT̄2
dt

= −
1

R̄21
T̄2 +

1

R̄21
T̄1 +

˙̄Q2 +∆H̄2

where the heat gainṡ̄Q1 = Q̇1 and ˙̄Q2 = Q̇4, the heat
exchanges∆H̄1 = ∆H1 and∆H̄2 = ∆H4.

The main observations from this model reduction example
are as follows:

• The thermal interaction between the group of nodes{1, 2}
and the group{3, 4} is much weaker compared to the
interactions within each group since the resistanceR23

separating the two groups is10 times larger than the re-
sistancesR12 andR34 within each group. The optimal
bi-partition produced by the algorithmAlgoBIPA thus is

consistent with the heuristic that would partition the build-
ing based on the thermal interactions among the nodes.

• The reduced-order model is also a RC-network, just as
the original model is.

5 Simulation and Discussion

5.1 Simulation setup

In this section, we apply the aggregation-based model reduc-
tion method to the downstream part of the four-zone building
HVAC system shown in Fig. 1, where each zone is serviced
by a single terminal box. The layout of the four-zone build-
ing is shown in Fig. 4 (a). Each of the four rooms/zones has
an equal floor area of5m × 5m and each wall is3m tall,
which provides a volumetric area of75m3 for each room.
Room1 has a small window (5m2) on the north facing wall,
whereas rooms2 and4 have larger windows (7m2 each) on
the east facing wall. Room3 does not have a window.

The HVAC system used for simulation is designed to supply
maximal mass flow rate of0.25 kg/s per room. The supplied
air temperature is fixed atT s = 12.8◦C. Here we assume
that there is no return air and100% of the outside air is
sent to the AHU. The number of occupants in each room
is uniformly generated as a random integer between0 and
4. Outside temperature and outside solar radiation data is
obtained for a summer day (05/24/1996) of Gainesville,
FL [2]. Numerical results presented here are simulated using
ode45 function in Matlab for24 hours with the time step
size chosen as10 minutes. All temperatures are initialized
at 24◦C, respectively. The mass flow rates entering four
zones are given bẏmin

1 = 0.15 kg/sec, andṁin
2 = ṁin

3 =
ṁin

4 = 0 kg/sec. Fig. 5 shows the other two inputs: outside
temperatureT0 and the heat gainṡQi.

5.2 Recursive bi-partition of building graph

The RC-network representation of the four-zone building is
shown in Fig. 4 (b). There are total36 building nodes plus
1 outside node for the model of this four-zone building:4
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Fig. 5. (a) The outside temperatureT0, and (b) the total heat gainsQi, for room i (i = 1, . . . , 4).

zone nodes{1, . . . , 4}, 8 internal-wall nodes{5, . . . , 12}, 8
internal-floor nodes{13, . . . , 20}, 8 internal-ceiling nodes
{21, . . . , 28}, 8 external wall nodes{29, . . . , 36}, and1 out-
side node{37}. Each node is assigned with a thermal ca-
pacitance, and two adjacent nodes are connected with a ther-
mal resistance. The windows are modeled as single resis-
tors since they have relatively little capacitance. The values
of capacitances and resistances used for simulation are ob-
tained from commercially available software Carrier Hourly
Analysis Program [1]. The outside node is assumed to have
a very large capacitanceC37 = 1010 KJ/(m2K).

The recursive bi-partition algorithmAlgoBIPA, described in
Appendix B, is used to find sub-optimal partitions of the
building graph based on the analysis of the linear thermal
dynamics. The first iteration of the algorithmAlgoBIPA di-
vides the node set into two groups: the first group contains
all building nodes:{1, 2, . . . , 36}, and the second group con-
tains only the outside node:{37}. Such a2-partition result
makes sense since it captures the slowest time-scale of build-
ing thermal dynamics.

The second iteration of the algorithmAlgoBIPA leads to a
3-partition, which divides the nodes into three groups: the
first group consists of all (zone, wall, ceiling, window, and
floor) nodes associated with the room3, the second group
contains all other building nodes associated with the rooms
1, 2, 4, and the third group contains only the outside node:
{37}. Compared with the3-partition results, the4-partition
identifies a new group containing all nodes associated with
room1. For the5-partition, the algorithm returns five groups
of nodes with clear physical intuition: groupi contains all
nodes corresponding to roomi, for i = 1, . . . , 4, and group
5 consists of the single outside node{37}! For m > 5, the
m-partition further partitions the nodes associated with in-
dividual rooms. The largest possiblem is 37, which corre-
sponds to no reduction in model order.

Recall that the KL divergence rate (20) is used as a measure
of the modeling error for aggregating the linear thermal dy-
namics. Fig. 6 depicts the KL divergence rate with respect
to the number of partitionsm for 2 ≤ m ≤ 37. We observe
from Fig. 6 that the modeling error monotonically decreases
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Fig. 6. Modeling error (KL divergence rate) in aggregating the
linear thermal dynamics vs. number of partitions.

to the zero as the number of partitions increases to the di-
mension of the full-order model, and that there is little ad-
ditional improvement beyond a model order of around18.
Although the KL divergence rate is only applicable to the
linear part of the model, one can still use it as a conserva-
tive guideline for the reduction of the nonlinear model. In
that case, we can guess that for good prediction accuracy,
the reduced order model should have about18 states. This
is verified by simulations we report next.

5.3 Simulation of full and reduced-order models

The full-order model (2) is used to describe the full build-
ing thermal dynamics, with36 building nodes plus1 outside
node. The multiple partition results obtained in Section 5.2
are used to construct the reduced-order models through ag-
gregation of building nodes into groups, where each group
of nodes is represented by a super-node. Fork = 1, . . . , 36,
thekth-order reduced model (38) is used to describe the re-
duced building thermal dynamics withk super-nodes plus
1 outside node. For comparison, we lift the reduced model
to one with36 building nodes plus1 outside node (see Sec-
tion 4.1 for more details). That allows direct comparison
between the temperature of a zone predicted by the full and
reduced-order models.

All simulations reported here are open-loop simulations: the
same mass flow rates (ṁin

1 = 0.15 kg/sec and ṁin
2 =
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Fig. 7. Four zone temperaturesT1, . . . , T4 simulated by the full36th-order model.

1st-order reduced model

4th-order reduced model

18th-order reduced model

Fig. 8. Four zone temperature simulation errors are given byei = T̂i − Ti for i = 1, . . . , 4, whereTi is the temperature simulated by the
full-order model andT̂i is the lifted temperature simulated by the (1st-order,4th-order, and18th-order) reduced models.

ṁin
3 = ṁin

4 = 0 kg/sec) are used as inputs in conducting
simulations for both full and reduced-order models; the in-
puts are shown in Fig. 5. Note that the inputs are aggregated
accordingly to obtain the super-inputs for the reduced-order
model (see Section 4.2 for more details). To test the good-
ness of the reduced-order models, we compare the four zone
temperatures simulated by the full and reduced-order mod-
els. When simulated by the full-order model, the temper-
ature of roomi is denoted byTi. When simulated by the
reduced-order model, the lifted temperature of roomi is de-
noted byT̂i (see Section 4.1 for more details). Theith zone
temperature prediction error is denoted byei = T̂i − Ti.

Fig. 7 shows the temperatures of the four zones predicted by
the full-order model. Fig. 8 shows the temperature prediction

errors corresponding to reduced-order models with varying
degree of reduction: (i)1st-order reduced model (1 super-
node corresponding to all building nodes), (ii)4th-order re-
duced model (4 super-nodes corresponding to4 groups of
nodes associated with4 zones), and (iii)18th-order reduced
model. Note that akth-order reduced model corresponds to
the(k + 1)-partition described in Section 5.2 withk super-
building nodes and1 outside node.

We observe from Fig. 8 that, as expected, prediction errors
decrease as the order of the reduced model increases. In
addition, the conjecture based on KL divergence rate that
the 18th-order model will have predictions close to that of
the full-order model turns out to be true. In the 18th-order
model, the prediction error for the zone with the maximum
error (zone 1 here) has a mean of1.30◦C and standard de-

14



viation of 0.46◦C. Note that even in a building that meets
ASHRAE thermal comfort standards, the temperature inside
a zone may vary by up to3◦C [6]. A lumped model that
uses the well-mixed air assumption therefore is fundamen-
tally limited to about a1.5◦C prediction error.

We also observe from the Fig. 8 thatexcept for zone 1, tem-
perature prediction with even the4th-order model (middle
plot), which represents a nine-fold reduction in model order,
is quite accurate, where the prediction error for the zone with
the maximum error (zone 4 here) has a mean of−0.77◦C
and the standard deviation of0.44◦C. However, the mean
and standard deviation of prediction error for zone1 with
the4th-order model are2.14◦C and0.37◦C, which is much
larger. Thus, large reduction in the model order is not likely
to be useful for control design and analysis studies. How-
ever, we expect such low order models to be still useful in
preliminary building and HVAC system design studies.

The higher error in the temperature prediction of zone 1
could be due to the the method’s inability to accurately ap-
proximate enthalpy dynamics due to the ventilation (note
that zone 1 is the only one with the ventilation), or due to
the error introduced in lifting the reduced model to a full
order model for purposes of comparison. Future work will
examine these factors in greater detail.

The computation time for executing the Matlab simulation
code increases as the order of the reduced model increases.
For the case considered in this paper, the computation times
for simulation are6.829s, 6.988s, 7.623s, 349.86s for the
1st-order,4th-order,18th-order, and full36th-order models,
respectively. In practice, one can make a tradeoff between
the accuracy and complexity of the reduced order model by
choosing an appropriate order of the reduced model.

6 Conclusions and Future Directions

We proposed a method to reduce the order of a build-
ing thermal model via aggregation of states. The original
model is a large number of coupled nonlinear differential
equations. Structurally, it is an RC-network with nonlinear
terms due to ventilation air enthalpy. The heat conserva-
tion property of the system is used to obtain an analogy
between the linear portion of the thermal dynamics and
the continuous-time Markov chains. A recently developed
aggregation-based model reduction technique for Markov
chains can now be applied to the linear portion, with the
associated KL divergence rate serving as a metric for the
modeling error. Extension of the aggregation method to the
nonlinear building thermal model is then carried out by
aggregating inputs accordingly into the super-inputs.

A key advantage of the proposed aggregation technique over
existing model reduction techniques is that it is structure-
preserving by design. The reduced model is also a RC-
network model with nonlinearities with the same structure
as those in the original model. Thus, the reduced model

directly corresponds to a building with smaller number of
zones: groups of zones in the original building are now ag-
gregated to form super-zones. The degree of reduction can
be controlled by the user. This property makes the method
applicable to not only real-time optimization-based control
techniques and off-line control design and analysis, but also
to parametric studies during building design phase.

Application of the proposed method to a four-zone build-
ing show that with with a reduction in the model order up
to 50%, the maximum error in the time-domain predictions
of temperature are quite accurate. With more reduction in
the model order, time domain predictions are less accurate.
However, for preliminary design studies such levels of error
might still be acceptable, especially considering fundamen-
tal limits of prediction accuracy of any lumped model of
temperature that relies on the “well-mixed air” assumption.

In the current work, the full-order model we consider does
not have inter-zone convection effects. Inter-zone convec-
tion is difficult to model due to the complex physics that
govern this phenomena. Recently, a data-driven identifica-
tion scheme was proposed to obtain a RC-network model of
convection among zones [21]. The model reduction method
proposed here is immediately applicable if the full-scale
model is augmented by such convection models. We are also
developing the innovative control schemes based on the re-
duced building model proposed in this paper [13].
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A KL divergence rate for comparing Markov chains

Let (π, P ) denote a discrete-time Markov chain defined on
the state spaceV = {1, . . . , n+1} with the transition matrix
P and the stationary distributionπ. For two Markov chain
models(π, P ) and(̟,Q) defined on thesame state space
V , the KL divergence rate is defined as:

R(P‖Q) := lim
N→∞

1

N
D(PN‖QN ) (A.1)
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whereD(·‖·) denote the KL divergence between two distri-
butions, andPN (or QN ) denotes thejoint probability dis-
tribution defined on the cartesian product spaceVN associ-
ated with the Markov chain model(π, P ) (or (̟,Q)). We
can writeR(P‖Q) more explicitly as

R(P‖Q)

= lim
N→∞

1

N

∑

i
N−1
0 ∈VN

PN (iN−1
0 ) log

(
PN (iN−1

0 )

QN (iN−1
0 )

)
.

In particular, we have a closed-form formula for the KL
divergence rate defined in (A.1) (see [34]):

R(P‖Q) =
∑

i,j∈V

πiPij log(Pij/Qij).

For model reduction problems, it is of interest to compare
two Markov chains(π, P ) and (π̄, P̄ ) defined on different
state spacesV = {1, . . . , n + 1} andV̄ = {1, . . . ,m + 1},
respectively. Without loss of generality, we letm ≤ n. The
relationship betweenV and V̄ is described by a partition
functionφ : V 7→ V̄ . The formula (A.2) can not be directly
used to compute the KL divergence rate between(π, P ) and
(π̄, P̄ ). The strategy is tolift the Markov transition matrix
P̄ to another one defined on the state spaceV using a lift-
ing distribution. As shown in [15],π is the optimal lifting
distribution and the optimal lifted Markov transition matrix
is given by

P̂
(π)
ij (φ) =

πj∑
k∈ψ(j) πk

P̄φ(i)φ(j), i, j ∈ V .

The KL divergence rate is then extended for two Markov
chains defined ondifferent state spaces:

Rφ(P‖P̄ ) :=R(P‖P̂ (π)(φ)).

B Algorithm AlgoBIPA for finding φ∗

The optimization problem (18) is aninteger nonlinear
program due to the fact thatφ is integer valued and
Rφ(P‖P̄ (φ)) is a nonlinear function ofφ. The problem is
non-convex on account of the non-convex constraints on
φ. In general, it is prohibitively time-consuming to obtain
the optimal solution of (18) for Markov chains with large
state space. In this section, we summarize some heuristics
to approach the optimal solution to (18).

In [15], we first consider the bi-partition (m = 2) problem
for (18). After relaxing the integer constraints on the parti-
tion functionφ, the optimization problem is shown to lead
to a spectral partition associated with the following eigen-
value problem for reversible Markov chain:

Pu = λu. (B.1)

Let u(2) denote the eigenvector corresponding to the second
largest eigenvalue ofP . A sub-optimal bi-partition func-
tion φ∗ is obtained by considering the sign-structure ofu(2)

(see [15] for more details):

φ∗i =

{
1, if u(2)i ≥ 0

2, otherwise.

A recursive bi-partition algorithm (AlgoBIPA) is also de-
scribed in [15] to obtain them ≥ 2 partitions in a sub-
optimal way: In themth iteration of the algorithm, we as-
sume that a partition withm groups (or super-states) is given.
The objective of themth-iteration is to obtain a refinement
that has(m + 1) groups. Fori = 1, . . . ,m, we denote
by P (i) the sub-Markov transition matrix that describes the
transition probabilities within theith group. Theith group
is split into two sub-groups according to the sign-structure
of the second eigenvector for the eigenvalue problem asso-
ciated withP (i). The spectral split of theith group alone
provides a partition of the states into(m + 1) groups. We
denote this partition asφ(i), and use it to evaluate the opti-
mal aggregated transition matrix̄P (φ(i)) according to (16).
From the resultingm possible choices of(m+1)-partitions,
we select the one that minimizesRφ(i)(P‖P̄ (φ(i))), i.e.,

imin = argmin
i∈{1,...,m}

Rφ(i)(P‖P̄ (φ(i))).

The associated aggregated transition matrix is chosen as
P̄ (φ(imin)).

The recursive algorithm is a heuristic based on the consid-
eration of the bi-partition problem. A termination strategy
can be based on a threshold value for the modeling error,
e.g., the algorithm can be terminated if

∣∣Rφm
(P‖P̄ (φm))−Rφm−1(P‖P̄ (φm−1))

∣∣ ≤ εtol

whereφm :=φ(i
(m)

min ), φm−1 :=φ
(i

(m−1)

min ), andεtol is the pre-
specified tolerated error.
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