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Abstract

This paper proposes an aggregation-based model reducgtimochfor nonlinear models of multi-zone building thermghdmics. The
full-order model, which is already a lumped-parameter apipnation, quickly grows in state space dimension as thebarmof zones
increases. An advantage of the proposed method, apart feamg bpplicable to the nonlinear thermal models, is thatr¢itkiced model
obtained has the same structure and physical intuition @®tiginal model. This makes the reduced model useful not ol control

design and analysis but also for building design iteratidie key to the methodology is an analogy between a contsitime Markov

chain and the linear part of the thermal dynamics. A receddyeloped aggregation-based method of Markov chains idogeg to

aggregate the large state space of the full-order modebistoaller one. Simulations are provided to illustrate toffdebetween prediction
error and computation time.

Key words: Model reduction; Structure preserving; Model-based adn€ontrol oriented models; Markov models.

1 Introduction order reduction of buildings with multiple zones. A zone in
this paper refers to a single space (room, hallway, etct)gha

In 2009, commercial and residential buildings accounted fo Serviced by a single “terminal box” with supply air diffuser
42% of the total energy usage an@% of total electricity and return air grilles. Fig. 1 shows a four-zone building
consumption in the United States [43, Table A.2]. Among HVAC system, where each zone refers to a single room here;
all energy consumers of buildings, Heating, Ventilatiamja  t€minologies and more details appear in Section 2.

Air Conditioning (HVAC) account for a large share. A large

fraction of the energy delivered to buildings is wasted be- The ohvsical that determine th ld L
cause of inefficient building technologies [3,39]. Intésan € physical processes that determine thérmal dynamics in
buildings, which are governed by a set of coupled partial

methods for controlling building HVAC systems to reduce diff tal i lox. | inciole. C i
their energy usage or cost have been on the increase in re; irerential equations, are complex. In principie, Longu

cent years; particularly in model-based approaches such aéionaI_FIuid Dynamics (CFD) can be used to so_lve the_se
Model Predictive Control (MPC) [20, 29, 30, 33, 47] equations. CFD models are, however, computationally in-
T s tensive [10] and sensitive to boundary condition specifica-

tions [25]. Complexity issues of CFD models have led to
development of simplified models in the past few decades.
(/C this framework, the air in each zone is assumed to be
ell mixed with a uniform temperature. The thermal re-
T ) sponse of a zone and conduction between zones that are
The material in this paper was partially presented at the rAme separated by solid surfaces (walls, floors, ceiling, winglow

ican Control Conference on June 30-July 2, 2010, Baltimore, s - .
Maryland, USA. The research is supported by the National Sci partitions, etc.) are modeled by capacitances and ressan

ence Foundation under Grants CNS-0931416, CNS-0931885, an 'SSPECtively. Such resistor-capacitor models have been ex
ECCS-0955023. Corresponding author Kun Deng. Tel.: +1 217 te€nsively used to construct dynamic models of zone temper-

Accurate models of temperature evolution in a building are
required for real-time prediction and control, especiatly
model-based control methods. This paper focuses on mode

390 9567. atures in the HVAC and building modeling literature; see,
Email addresseskundeng2@]1 | i noi s. edu (Kun Deng), for instance [9,17,38,45]. The resistances and capaeitanc

si ddgoya@f | . edu (Siddharth Goyal), are carefully chosen to model the combined effect of con-

pbar ooah@f | . edu (Prabir Barooah), duction between the air masses separated by the surface, as

meht apg@ | | i noi s. edu (Prashant G. Mehta). well as long wave radiation and convection between the sur-
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ber of zones to reduce computation time is common prac-
Outeido Al VAV ‘ o D°W”S”eam_ tice, and in fact recommended for EnergyPlus [24]. Thus,
ymr e m3 model reduction techniques can aid in the building design
X X phase as well.
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' Due to the nonlinear nature of the building thermal model,
N the number of available techniques for model reduction is
i
|
I

limited. Balanced truncation method for nonlinear systems
has been introduced by Scherpen in [37], which uses con-
trollability and observability energy functions of a syste
> < to balance the realization. Related methods [4, 11, 22] has
<¢<M@ ™ < also been developed for bilinear systems. These energy func
tions however are difficult to compute in practice. Letllal.
in [28] use empirical Gramians to determine the importance
of a particular subspace in terms of its contribution to the
input-output behavior. These empirical Gramians are ealcu
lated by simulation or experimental data generated within
the system’s expected operating region, in which some of
the nonlinear behavior is captured by resulting Gramians.
Hahn and Edgar [23] propose a hybrid method by intro-
ducing controllability and observability covariance nizgs,
] _ o which can be computed from data along system trajectories.
A complete model of the entire multi-zone building’s ther-  The palanced truncation method is further extended in [36]
mal response can then be constructed by using (i) resistor-py introducing the so-called extended Gramians to improve
capacitor networks for combined conduction-convection- error bounds and enforce structural constraints. The tecen
radiation through surfaces, and (ii) heat balance equstion aper [19] proposes a method for reduction of multi-zone
to account for the enthalpy exchange between a zone anOEuiIding thermal models of the type considered here. The
the outside due to the ventilation air. The l’e_SL!|tIng |umped method in [19] is also based on balanced truncation; it ap-
parameter model is called thill-order building ther-  pjies a balanced transformation computed from the linear
mal modelin this paper. This approach of constructing part of the dynamics to the nonlinear full-order model and
multi-zone thermal models have been pursued previously then performs truncation. The sparsity pattern of the menli
in[19,26,31,44,46]. The full-order model we consider here ear terms are exploited to reduce loss of predictive ability
is from [19]. The ventilation heat exchange terms make the j performing the truncation. However, the resulting state
thermal dynamic model nonlinear; more modeling details of the reduced model have no physical meaning, unlike the
appear in Section 2. states of the original model that relate to temperatures of
the zones and internal nodes of walls. The same is true for
A fundamental problem with the full-order models is that all model reduction methods mentioned above: the reduced
they quickly explode in complexity as the number of zones order models do not retain the structure and the physical
increases. For example, the full-order model of the down- intuition of the original full-order model.
stream part of a four-zone building, shown in Fig. 1, has
37 nodes (more details appear in Section 5). For a large In this paper, we propose aggregation-based approach
commercial building with hundreds of zones, the number of that preserves the structure of the original model, that is,
nodes are of the order of several hundreds, or even thou-the reduced building thermal model is still a nonlinear RC-
sands. This is a cause of concern for optimization-basednetwork. This is achieved by obtaining super-nodes via ag-
control schemes such as MPC, patrticularly if the optimiza- gregation, and determining the super-capacitance for each
tion is to be performed with a day-long prediction horizon super-node and super-resistance for each edge between two
to take advantage of slow thermal responses of buildings asadjacent super-nodes. The aggregation-based approach pro
well as daily variations in environment and energy prices. posed in this paper is based on model reduction method of
Thus, model reduction methods are required for success-Markov chains that has recently been developed in [15]. The
ful implementation of advanced control schemes in realisti Kullback-Leibler (KL) divergence rate is used as a “metric”
buildings by reducing the computational complexity. Large to reduce Markov chains via aggregation of states in [15].
model complexity is also an issue even for off-line predic- The idea of this paper is to connect the linear portion of
tions during the building design phase, when a large num- the multi-zone thermal model to a continuous-time Markov
ber of parametric studies are to be performed using building chain, and extend the model reduction procedure for Markov
energy prediction software such as EnergyPlus or DOE-2. chains to the nonlinear full-order building thermal model.
These design iterations require yearly energy consumptionThe degree of reduction can be specified by the user, and the
predictions, which need whole-year building simulatiohs. full-order model withn nodes can be reduced to a model
a result, speedy simulation that comes from low model com- with m super-nodes, withh being any integer betwedrand
plexity is important in design iterations. Using a small rum n. Simulations reported in this paper show that the proposed
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Fig. 1. The configuration of a four-zone building HVAC system

face and the air mass in contact with it [18,32], [7, Chapters
4, 15, & 25]. In addition, there is thermal interaction be-
tween each zone and the outside due to the ventilation air
that is supplied to and extracted from the zone that has to
be accounted for.



method produces reduced-order models that well approxi-illustrated by numerical simulations. The conclusionssgyp
mate the time-domain predictions of the original model. As in Section 6.
one would expect, the prediction accuracy decreases as the
specified degree of reduction increases. o

2 Full-order Building Thermal Model
There are several advantages of the model reduction method
of multi-zone building thermal models proposed here com- A typical HVAC system consists of AHUs, supply ducts,
pared to the existing general model-reduction methods men-and terminal boxes; see Fig. 1 for an example. The AHU
tioned above. Unlike the empirical Gramian based methods, (Air Handling Unit) supplies conditioned air (usually cold
we do not need simulation data from full order models to and dry) to terminal boxes at so-called leaving-air tempera
construct the reduced order model; it is obtained directly ture and humidity. Each terminal box delivers air to one or
from the model description. The proposed method does notmore zones. When the box is equipped with a reheat coil (a
suffer from the computational difficulty of the energy func- common configuration), the supply air temperature down-
tion based methods. The building thermal model reduction stream of the box can be increased beyond the AHU leaving
method of [19] has the limitation that the minimum number temperature. In a VAV (Variable-Air-Volume) system, the
of states in the reduced model is equal to the number of zoneserminal box may vary the supply air mass flow rate through
in the building. In contrast, any user specified reduction in dampers, but not in a CAV (constant air volume) system. A
the model order is possible with the proposed method. This controller at each terminal box can be used to maintain the
makes the proposed method more attractive for MPC-type temperature of a zone at a specified value by controlling the
control schemes, and for performing off-line control desig mass flow rate of air supplied to the zone.
and analysis studies for a building with a large number of

zones, when a large reduction in model order is called for. The dynamics of the building with its HVAC system can be
However, for the same (reduced) model order, it turns out gjyided into upstream and downstream parts (see Fig. 1). The
that the reduced-order model obtained by the truncation- upstream part includes the AHU dynamics and the down-
based method has a slightly smaller prediction error than stream part includes the thermal dynamics of the zones. The
that by the aggregation-based method. focus of this paper is on modeling the downstream thermal
) ~_dynamics. The reasons for ignoring the AHU dynamics are
The key difference of the proposed method over existing twofold. First, the dimension of the downstream model in-
work comes from the fact that, unlike all the previously creases quickly with the number of zones and internal ther-
mentioned methods, the method proposed heserigture-  mga| nodes, while the dimension of the upstream model in-
preservingn the sense that that the reduced model of a non- creases only with the number of AHUs. The later is typi-
linear RC-network is still a nonlinear RC-network. Thusg th cally small even for a large building. Second, the AHU has
parameters and nodes of the reduced model retain the sameyst dynamics in the HVAC system, with a time constant of
physical meaning of the parameters and nodes of the originalapout a minute [8], whereas the thermal dynamics of the
RC-network model. A number of zones can be reduced to azones are relatively slow with time constants in tens of min-
smaller number of “super-zones” with the proposed method. |jteg [42] to hours [16]. As a result, the dynamics of the
This makes the model reduction method proposed in this AHUs are replaced by static gains in this paper without sig-
paper is of potential use in the design of buildings as well. njficant loss of accuracy. From now on, “building thermal
] ] ) o dynamics” would mean dynamics of the downstream patrt.
To see the use in architectural design, note that it is commonyjariations of temperature within a zone are neglected; each

in the building design stage to combine a number of zones zpne is characterized by a single temperature variable.
into a large “super-zones”. This is done to reduce simula-

tion time [24]. For instance, a building with 15 zones was - .
reduced to 7 zones for reduction in computation complexity 2-1  RC-network model of building thermal dynamics
in [5]. However, the process of combining multiple zones
into single super zone is done manually; we are not aware of A building thermal model is constructed by combining
any formal method to perform such aggregation. Frequently, lumped parameter models of thermal interaction between
such aggregation is done in an an-doc fashion. For instancetwo zones separated by a solid surface (e.g., walls, win-
all office spaces scattered throughout a building are com-dows, ceilings, and floors). For the sake of simplicity, here
bined into one zone in [27]. The method proposed in this we ignore the inter-zone convective heat transfer thatmsccu
paper provides a formal method to perform such aggrega-through the open doors and hallways. A lumped parameter
tion, which benefits building design studies. model of combined heat flow across a surface is modeled
as a simple RC-network, with current and voltage being
The rest of the paper is organized as follows. In Section 2, analogous of heat flow and temperature. In this modeling
the full-order model is described and the model reduction framework, the capacitances are used to model the total
problem is stated. In Section 3, the Markov chain analogy thermal capacity of the wall, and the resistances are used
of the building thermal dynamics is presented. In Section 4, to represent the total resistance that the wall offers to the
the aggregation-based methodology is applied to reduce theflow of heat from one side to the other. In [17], Gougta
building thermal model. In Section 5, theoretical resutss a  al. showed that a second-order RC-network model \8ith



resistors an@ capacitors, which we will calBR2C model,
is sufficient to capture the conductive dynamic interaction

between two spaces through a single wall; see Example 1

at the end of this subsection.

For a building consisting of a number of surface elements
(e.g., walls, windows, ceilings, and floorsg)R2C models

a graphG, are modeled by the following coupled nonlinear
differential equations: For=1,...,n,

Ci—2(t) = Y (T;(1)=Ti(t)/ Rij+Qi(t) +AH, (1) (1)

JEN;

for surface elements can be inter-connected to obtain a RC-whereN; :={j € V : j # i,(,j) € £} denotes the set

network model of the entire building. The resulting model
can be represented as andirected graphG = (V, &),
whereV :={1,...,n + 1} denotes the set afodesof the

of neighborsconnecting to the node(note that the outside
noden + 1 may belong to the seY/; for some node), and

the termsQi, AH,; are described below:

graph. A node may represent a physical zone (e.g., a room,

a hallway, or “the outside”), or some point inside a wall.
For the sake of simplicity of the description, the nodes are
assumed to be re-indexed so that the fikstnodes cor-
respond to the temperatures of zores.., N; these are
called thezone nodesThe next(n — N) nodes correspond

to the temperatures internal to the surfaces that appear due

to the 3R2C networks; these are called thiernal nodes
The last, i.e.(n + 1)th node, corresponds to the outside.
Each node € V corresponds to a temperatdfgand each
nodei € V/{n + 1} has an associated capacitaiite The
set€ C V x V denotes the set of afldgesEdges represent
pathways for conductive heat transports. More specifically
each edg€i, j) € &£ represents the conductive thermal in-
teraction between the nodéand; and there exists a resis-
tanceR;; € Ry connecting them directly. Since the graph
is undirectedR;; = R;; by convention.

The states and inputs of the building thermal model are
summarized below:

States : 71, ..
Inputs : T, T%; m;

SIN TNy, - T, Tt

n? ':1Q;nt7Qfmtﬁz: 11"'7N
whereT?, . .
andTn.1, ..., T, denote temperature of the points internal
to the surface elements, aff¢,,; & 7T, denote the same
guantity — the outside temperature (it is denoted as; if
considered as a state, alfigif considered as an input);®
denotes thesupply temperatutethat is the temperature of
the air supplied by the AHUj " denotes the mass flow rate
of the supply air entering thiah zone,Q;” denotes the heat
gain due to reheating that may occur at the VAV box of the

ith zone,Q;ﬁnt denotes thénternal heat gaini.e., the rate

., Ty denote the space temperature of the zones,

e Theheat gainterm Q; is the rate of thermal energy en-
tering the node from all sources other than ventilation
air and conduction from neighboring nodes. It is non-zero
only for zone nodes:

{

e The ventilation heat exchangeerm AH; is the rate of
thermal energy entering the nodelue to ventilation. It
is non-zero only for the zone nodes:

{

whereC,, is the specific heat capacitance of the supplied
air at constant pressure. Recall that is the supply air
temperature.

Qi(t) = Q1 (1) + Q" (1) + Q¢*(t), i=1,...,N

Qit) =0, i=N+1,...,n.

gee ey

AH;(t) = Cparny™ (t)(T* — T;(t)),
AH;(t)=0, i=N+1,...,n

i=1,...,N

The coupled ordinary differential equation model (1) so ob-
tained is nonlinear because of the presence of the bilinear
term7n"T; in defining the ventilation heat exchangé;.

Note that the tern@'i + AH; can be together interpreted as

a current source injected into (or extracted from) the node

of the RC-network, except that the source strength depends
on the “voltage"T; of nodei as well: The full-order model

can be thought as a RC-network model with additional cur-
rent sources, where the source strengths are dependent on
the voltage of the nodes they are connected to.

In the following sections, a compact state-space reprasent

of heat generated by occupants, equipments, lights, etc. intion of the building thermal model (1) is used. The outside

theith zone, and@?t denotes thexternal heat gaini.e.,
the rate of solar radiation entering tith zone.

The supplied air temperatufg® is usually constant for a
VAV system, at least over short intervals of time [7]. All
other inputs are time varying. In this paper, it is assumed
that (i) the supply air temperatuf’ is given as a constant,
(ii) the (estimation of) the outside temperatufig and the
heat gaing)”, Q"*, Q°** are available based on historical
data, weather predictions, and various sensors.

The thermal dynamics of a multi-zone building, described by

temperature is taken as a “virtual stafg; ; to the system.

We assign a very large “virtual capacitance” to the outside
node:C, 11 > C;, fori = 1,...,n. Letting C,,;.1 — o0,

the system of equations (1) is expressed as a state-space rep
resentation:

dr

= AT + L(T, U, C
7 + L(T,U, Q)

)

where the state vectdr := [T7,. .. ,Tr,+1]T, the control
vector U := ", ...,m%,0,...,0]7, and the heat gain
vector Q := [Q1,...,Qn,0,...,0]7. The transition rate
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Fig. 2. (a) Two zones separated by a single surface, ands(ibyritped RC-network model.

matrix A is an(n+1) x (n+1) matrix with entries givenby ~ whereR,5, Rys, R4 are thermal resistances, tide = Q7 +
Q" + Q¢ is the heat gain, and H; = Cp,mi™(T* —T;)
0, it A4, (i,5) ¢ € is the heat exchange due to ventilation o+ 1,4, with

Cyq being the specific heat capacitance of the supplymair.

Aiji=9 1/(CiRy), it j#i,(,5)eE @)
= Dkpi Aie, TG =10, (i,5) €€ 2.2 Problem statement of model reduction
and the nonlinear function: For a building with N zones, the number of states in the
. . full-order model (2) described above is of the ordef7 df,
LT, U,Q) = CpaUi(T* —T3) + Qi i=1... .. N usually more. A medium size commercial building has close
e C; ’ Y to 100 zones and a larger building can have several hun-
Li(T,U,Q)=0, i=N+1,....n dreds. The dimension of the full-order model thus can be

quite large. The goal of this paper is to obtain a reduced-
order model of smaller dimension such that model reduction
produces the RC-network physical structure.

Li(T,U,Q)=n, i=n+1

wherer(t) € R is chosen such thaj(t) = 7,(t). To see

the equivalence between (1) and (2), note that the entries inTo achieve this goal, an aggregation methodology is consid-

the last row ofA approach) asC,, 11 — o© (since they are  ered: Mathematically, suppose the goal is to reduce the stat

of the form1/( n+1Rn+1 ;))- In the limit, Tn+1 = n(t), dimension fromrm to m, wherem < n is the (user-specified)

which givesT,, 11 (t) = T,(¢) for all t > 0. number of super-nodes. The first step is to chogsarttion
functiong : V — V, whereV = {1,...,m+ 1} denotes the

Example 1 (A simple two-zone building) Consider  the set of “super-nodes” for the reduced-order model, and recal

simplest example where two zones are separated by a singléhat) = {1, ..., n+1} denotes the set of nodes for the full-

wall/surface as shown in Fig. 2 (a). Here it is assumed that order model. A part|t|on functionis an onto function but pos

two zones have no thermal interaction with other zones or sibly many-to-one. The elements Bfare the super-nodes,

the outside. A3R2C network model is used to model the and for everyk € V, the inverse mapping (k) C V de-

surface as shown in Fig. 2 (b). Ventilation air enters each notes the group of nodes in the full-order model that are

zone at temperatur@®, and leaves the zone at the same aggregated into thith super-node using the partition func-

temperature as that of the zone. Therebrilding nodes,  tion ¢. The second step is to define a graphoby defin-

two zone nodes plus two internal nod&%.and 7, denote  ing “super-edges” between super-nodes. The third step is to

the space temperatures of zohand zone2, respectively.  define appropriate super-capacitances and super-resstan

T> andT5 denote temperatures of the points internal to the

surface that arise due to the 3R2C model of the surface.To perform such a structure-preserving model reduction, we

The parameter§; andC, are the thermal capacitances of need to answer the following questions:

the two zones, whil&’;, C5 are thermal capacitances for

the 3R2C model of the surface. The dynamics for the RC- Q 1: How to choose the partition function?

network model are described by the following differential Q 2: Given a partition function, how to find the super-

equations obtained by using the heat balance: capacitances and super-resistances, and how to aggre-
gate the nonlinear terms of the full-order model?
dTy 1 Q 3: How to compare the full and reduced-order models?
11— =——""T1 + T2+Q1+AH1
dt Ry R1 . . .
dT. 1 The rest of the paper is about answering these questions. A
Cg 2 = —(=—+ —)Tg + —T1 + —T3 brief outline of the approach is provided below.
Ra1  Ras R Ra3 4)
@ _ _(L + L)Tg + LTQ + LT4 A 1: Partition by Markov chain aggregationt is shown in
dt R3s  Rsy R3o Ray Section 3 that the linear thermal dynamics is analogous
o ar, 1 T 1 T AH to a continuous-time Markov chain. A recently devel-
Ydt T Ry ! + Ry ° +Qat 4 oped aggregation method for Markov chains is then



employed to obtain a (sub)-optimal partition function.
In this method, a measure of optimality of the aggre-
gation is defined in terms of the Kullback-Leibler di-

vergence rate. Solving the optimal partition problem is
shown to be hard, and a recursive bi-partition algorithm
is proposed here to obtain sub-optimal partitions. De-
tails of the algorithm are summarized in Appendix B.

A 2: Finding super-quantities and the reduced-order

model: The super-capacitances and super-resistances

are obtained directly based on the Markov chain anal-
ogy. Details appears in Section 4.1. Due to the current
source interpretation of the nonlinear part, the current
sources connecting to the same group of the aggre-
gated nodes are directly added up to form a super-
current source for the corresponding super-node. It is
shown that the reduced-order model is a RC-network
model defined with super-quantities. Details appear in
Section 4.2.

Comparison between full and reduced-order models:
We obtain the reduced-order model by aggregating the
nodes into a smaller number of super-nodes. Then we
employ thelifting techniqueto lift the reduced-order
model to the one with the same number of nodes as
the full-order model. Details of the lifting technique
is summarized in Section 4.1. We can now directly
compare the temperatures of zone nodes for the full
and reduced-order models.

A 3:

3 Markov Chain Analogy and Aggregation

In this section, it is shown that the linear part of the burfgli
thermal model (2) is analogous t@antinuous-time Markov
chain Thelinear dynamic®f the building thermal model (2)
are given by:

o _ar

5
7 (5)
Due to the special structure of the matrixsee (3)), the lin-
ear thermal model (5) isonservativeSpecifically, a scalar-
valued functionV'(t) := >, ,, C;T;(t) is conserved for all
time:

>

_ iﬁ(t)
(2%

=3 Ti(t)>  Cidy;
JjEV =%
=D CTi()Y A
JjEV %
=0

(6)
(7)
(8)

where the equality (6) follows from (5), the equality (7) is
due to the fact that’; A;; = C; A ; forall i, j € V (see (3)),
and the equality (8) uses the fact that each row sum of the
matrix A is zero. We denot&) := V' (0) = >, CiT;(0)

as theinvariant quantityof the linear thermal model (5).

3.1 Analogy to a Markov chain

Based upon the conservative property of the linear thermal
model (5), define th¢hermal distributionas a row vector,
denoted byf, where

Cs

=T 1 .
f T 1€V

Note that} .., fi(t) = 1 forall ¢t > 0.
On differentiatingf; with respect ta, and using (5),
dfi

By substituting (3) in (9), we have
df; C; 1 G
— =AuT; = L
dt Vo + ; CiRi; Vo’
C; 1 C;
= Ay—T; + =T 10
=> fidji (11)

JEV

where the fact thak;; = R;; is used in deriving the equality
(10). Using matrix notation for representing (11), we oibtai
the dynamics of the thermal distribution and its solution

4 _

dt_fA

F(0)e™,

=

£(b) vt > 0.

The Markov chain analogy is now clear. Note that each
row sum ofA is zero, its diagonal entries are negative, and
its non-diagonal entries are non-negative (see (3)). Thus,
the transition rate matri¥d is the infinitesimal generator

of a transition semigroup{e“t},>o: For anyt,s > 0, (i)

eA0 = T, (ii) et is a stochastic matrix (That is? is a
nonnegative matrix whose row sums are equal to one), and
(iii) eAltts) = eAteds,

Consider now a continuous-time Markov chdi (¢)}:>o
on the state space’ with the transition semigroup
{eA*},>0 [40]. Let g(t) denote theprobability distribution
at timet, i.e.,

9i(t) = Pr(X(t) =1), i€V

Using the transition semigroup property, we have

gi(t) = Y _PHX(0) = j)Pr(X(t) =i | X(0 = j))
JEV

=" g;(0)(e™);.

JEV



If £(0) is the initial distribution of{ X (¢)},>0, i.e., g(0) =
£(0), then

(12)

Thus, starting from the same initial distribution, the prob
ability distribution of the continuous-time Markov chain
{X(t)}+>0 is equal to the thermal distribution of the lin-
ear thermal model (5). For more details on continuous-time

V ={1,...,n+1}. The KL divergence betweehand( is
given by:

if ¢£€<¢

otherwise

2iev &ilog(&i/G),

—+00

D(¢]I¢) :={ (15)

3

where¢ < ¢ means that is absolutely continuouwith re-
specttoc, i.e.,((; = 0) = (& = 0) forall ¢ € V. Note that

Markov chains, we refer the reader to [35,40] and referencesKL divergence is not a true metric since it is not symmet-

therein.

For any ergodic Markov chain, there exists a unicp@-
tionary distribution7 (obtained as a solution t8A = 0),
whereby starting from any initial distribution

lim ¢(t) = 7.

t—o0

For linear thermal model (5), the associated Markov chain is
shown to be ergodic in [14], and the stationary distribution
is given by:

Ci

=, 1€V
Zjev Cj

(13)

T, =

3.2 Discretization of the continuous-time Markov chain

In practice, it is more convenient to work with discretedim
Markov chains (DTMC) instead of continuous-time Markov
chains (CTMC). The DTMQ X (kAt) }r>o is obtained by
discretizing the CTMQ X (¢) },>0 with a step-sizeAt. Let
&(k) denote the probability distribution of the DTMC at
kth time-step, i.e.£;(k) = Pr(X(kAt) = i) for i € V.
Using (12),

(k) = E(0)PF(AL), k>0

where thetransition matrixis defined as

P(At) := A5t (14)
For anyt > 0, there exists an integér> 0 such that At <

t < (k+ 1)At and et ~ e4*2* for small enoughAt.
Thus the CTMC{ X (¢) }+>0 with the transition semigroup
{eAt},>0 is approximated by the DTMQ X (kAt)} >0
with the transition matrixP(At) asAt — 0. One can ver-
ify that = given in (13) is also the stationary distribution of
the DTMC, i.e. limy_,o £(k) = 7.

3.3 Kullback-Leibler metric

ric and it does not satisfy the triangle inequality [12]. How
ever, KL divergence is a natural pseudo-metric for compar-
ing probability distributions and is widely used in statist
information theory, and control theory [15, 41]. It has two
useful properties:

(1) KL divergence is gre-metric
D(&||¢) > 0, with equality if and only if§ = .

(2) Ifthe KL divergence between two distributions is small
then the two distributions are also close in the sense of
the standard.; metric [12]:

D(ENC) > 21iE — I with € — ¢l =S 16 — Gl

%

For the model reduction problem, it is of interest to com-
pare two probability distributions defined on differenttsta
spaces. Lef and¢ denote two probability distributions de-
fined onV = {1,...,n+ 1} andV = {1,...,m + 1}

(m < n), respectively. The relationship betwegrandV is
described by a given partition functigh: V — V. Since¢
and¢ are not defined on the same space, one can not directly
use the formula (15) to compute the KL divergence between
& and&. One strategy, proposed in [15], is kft & from

the space) to the spacé’ according difting distribution

u, wherep; > 0 andy ., u; = 1. The lifted probability

distributiongis defined as

L 1

() ;
() == eV
Zkew(i) Mk

where(i) = ¢! o ¢(i) C V denotes the set of states
belonging to the same group as tith state. The KL di-
vergence is then extended for two distributions defined on
different state spaces:

Dy (€[|€) := min D(E[EX ().

For the model reduction problem, one needs a metric to TheKullback-Leibler divergence ratis a generalization of

quantify the differences between the full and the reduced-

order models. In this paper, th€llback-Leibler (KL) di-
vergenceis proposed as a “probability metric” to quan-
tify the difference between distributions. Letand ¢ de-

the KL divergence. It is a measure of distance between the
probability laws of two stochastic processes. The formula
for KL divergence rate, denoted @y, (P|| P), between two
Markov chains(r, P) defined onV and (7, P) defined on

note two probability distributions defined on the same space V, appears in Appendix A with additional details in [15].



3.4 Aggregation of Markov chain

Let (7, P) denote a discrete-time Markov chain defined on
the state spac® = {1,...,n + 1} with the transition
matrix P and the stationary distribution. The model re-
duction problem is to find an optimal aggregated Markov
chain, denoted by#, P), defined on the state spate=
{1,...,m+1}, wherem < n, such that the KL divergence
rateR¢(P||P) between two Markov chains is minimized.

The m-partition problemis to find a partition functiorp :
V + V and an aggregated transition matfxthat solves
the following optimization problem:

min Ry(P|P)
o, P

st. P1=1,P>0.

As shown in Theorem of [15], for a fixed (whether optimal
or not) partition functiorp, the optimal aggregated Markov
chain(w(¢), P(¢)) is given by:

Dieo—1 (k) 2ojep—r ) Tibis

, kileVv (16)
Zieqzrl(k)ﬁi

pkl(d)) =

where the stationary distribution @t(¢) is given by

17)
icp—1(k)

As a result, then-partition problem reduces to finding only
anoptimal partition functionp* : V — V such that

9" € argflin Ry (P|P(¢)) (18)

Itis shown in [15] that solving the optimization problem {18
exactly is difficult form > 2, but a sub-optimal solution
for m = 2 can be easily computed. This leads to a sub-
optimal solution for arbitraryn > 2 through therecursive
bi-partition algorithmAlgoBIPA, which is described in Ap-
pendix B. Here we summarize the basic ideas: Fiiip-
BIPA is used to obtain/;,), so thatV, UV, = V and
V1 NV, = &, whered denotes the empty set. Thekigo-
BIPA is used on the sat; to obtain);; andV;, such that
V11UVis = YV andV1 NV = &. If the model order is less
thanm, AlgoBIPA is used on the s@ét, to obtain partitions
Va1 and Vs such thafs; U Vs = Vo andVo; N Voy = @
This procedure is repeated until partitions are obtained.
At each step the number of partition increaseshy.

3.5 Analogy to thermal dynamics

Based on the Markov chain analogy for the linear thermal

dynamics (see Section 3.1), the model reduction framework

for Markov chains is extended to building thermal models:

e Metric for comparing thermal distributionsThe KL di-

vergence is employed as a metric to compare two thermal
distributionsf andg defined on the same building node

setV:
D(fllg) = filog(fi/g:)-
eV

For the model reduction problem, it is of interest to com-
pare two thermal distributions defined on building graphs
of different cardinalities. Lef and f denote two thermal
distributions defined oW andV, respectively. The low-
dimensional distributioryf is lifted to a high-dimensional

distributionfdefined onV by using partition functior
and lifting distributiong:

Fu (¢) = ieV. (19

R el FIOW
Zkedz(z

The lifting may be viewed as a linear transformation that
conserves the total heat. The KL metric is then used to
compare the two thermal distributionsand f on the
same node séf.

Metric for comparing thermal model$he KL divergence
rate is used as a measure to compare two building ther-
mal models. In particular, suppose full-order model is
simulated starting from an initial distributiofi(0). De-
note the resulting trajectory of the thermal distributien a
{f(kAt)}o<r<n. Now, suppose the reduced-order model
is also simulated starting from the initial distribution

Z fz

i€p

ley.

Denote the resulting trajectory of thermal distribution as
{f(kAt)}o<r<n, which evolves over reduced graph
The trajectory{ f(kAt)}o<k<w is lifted to the full build-

ing graph by using (19), and denoted{of(kAt) }o<k<n-

The KL divergence rate between full and reduced-order
models is given by,

_ZD

Thus, the KL divergence rate is a measure of average
distance between trajectories generated from simulating
two thermal models.

Bi-partition: An optimal bi-partition of a given model
produces &-state reduced-order model that is closest to
the full-order model in the sense of distance (20). Since
the distance is a time average, discrepancies between two
models at the slow(est) time-scales contribute more to the
error compared to the fast transients. The choice of metric
thus leads to &-state model that approximates the full-
order model on the slowest time-scale.

Recursive bi-partition The recursive application of bi-
partition algorithm produces a reduced-order model that
progressively captures multiple time-scales in the prob-
lem. The first bi-partition results in splitting of the graph

FRAD | F(kAL)). (20)



into two clusters, and a-state model that captures the the equation (22) becomes
slowest time-scale. The next bi-partition further spliteo

of the two clusters so as to capture the slowest time-scale - 2
in that cluster and so on. In effect afterapplications of Lir=iy + Au(9)At + O(AE7)

the algorithm, the reduced-order model describesnthe i1k 2jes-10) Tillpi=jy + Ay At + O(AL?))
slowest time-scales of the full-order model. =

Diep—1(k) i
Zi “1(k) 2ojes—1() TiAij
4 Aggregated Building Thermal Model =M=y + ce (k) el " (1 '7At+O(At2).
Dieo-1() Ti
(23)

In this section, the aggregation methodology is applied to
obtain a reduced-order model for building thermal model
(2). We first describe the reduced-order model for the linear By matching terms on both sides of (23), we obtain the
part of the building thermal model (2), and then the reduced- formula for the optimal super-transition-rate matrix

order model for the nonlinear part of (2).

— e h— e — 1A1
4.1 Aggregated linear thermal dynamics Ap(9) = 21@5 ' (k) Zaeaﬁ L it
Diep-1(k) i

. kleV. (24)

For the linear thermal model (5), the goal is to aggregate the

node set’ = {1,...,n + 1} into a smaller super-node set By substituting (3) and (13) into (24), one can verify that
V ={1,...,m+1} wherem < n. For each super-nodec A(¢) is indeed atransition-rate matrixfor any partition
V, we introduce the super-temperatilijg super-capacitance  functiong, i.e., the row sums afl(¢) are zeros, diagonal en-

Ck, and super-resistandey;. For a given partition function  tries are negative, and non-diagonal entries are non-negat
¢, the reduced-order model for (5) has the form:

ar ;5 1 Dieo—1 (k) 2ujes—r () 1/ Ris 5
— = A(9)T, 21 Api(9) = . k#leVy
(®) (21) S ico 1) Ci

dt

whereT = [T1,...,T,,+1]" denotes the super-temperature A (9) = — ZAkl(¢)’ kevy
vector, andA(¢) denotes them + 1) x (m + 1) super- l#k

transition-rate matrix. The Markov chain analogy also veork
for the reduced-order model with the associated transition
semigroup{e?(®)t},>,. Discretizing with a small step-size
At, one obtains the transition matrix for the aggregated
Markov chain defined oiv: e According to (13), the stationary distribution of the ag-

gregated Markov chain has the form:

(25)
The super-capacitances and super-resistances can also be
expressed in terms @f; and R;;:

P(AL) := MDA,

Recall that the transition matrix for the discrete-time kiar () = C’“i@, key (26)
chain associated with the full-order linear thermal dynam- > ey Ci(9)

ics is denoted byP(At) (see (14)). The goal is to choose
A(¢) so that the aggregated Markov chain with the tran-
sition matrix P(At) optimally approximates the original
Markov chain with the transition matri®(At). The ag-
gregation method described in Section 3.4 is employed to
determine the formula for the optimal aggregated transitio

whereCy(¢) denotes thesuper-capacitancefor the kth
node. By substituting (13) into (17), we obtain formula
for the the optimal stationary distribution:

matrix A(¢). According to (16), the formula for the optimal - Zi@b,l(k) C; _
aggregated Markov transition matrix is given by: (o) = Y m= S5 oo kEV
ico—1(k) ley Lujep=1(l) I

_ it Dics1 ) TiPij (AL) _ (27)

P(At) = =0 ) Zice” () " kileV. By comparing (26) and (27), we obtain the formulae for
Zieqb’l(k) i the super-capacitances:
(22)
By expressingP(At) and P(At) in the form Crle)= Y. Ci, keV. (28)
i€p=1(k)

P(At) = I + AAt + O(At?),
P(At) = I + A(¢)At + O(At?), e By using (25) and (28), we obtain the formulae for the



super-resistances Substituting (13) and (31) into (33), we have

R 1 - C; Coyiy ~ C. _
Bul9) = & 5@ = 2Ty = Ty (34
Cr(6)Ani () f, S G Wy oo = T (34)

1 _
Dico1(k) 2jes—1ay L/ Rij’ kAlev. where we use the factthal,;) = >- ;) Cj andVy = Vp.
(29) By comparing (32) and (34), we have the explicit expression
for the lifted temperature
Thus, the reduced-order linear model (21) corresponds to o
a reduced RC-network with super-capacitances and super- T; =Tyu, 1€V.
resistances given by (28) and (29), respectively. The super

capacitance’ (¢), given in (28), is the equivalent capac- Note that the lifted temperatuf® of the nodei is indeed a
itance of parallel configuration of all capacitors in thih temperature quantity for the corresponding aggregated nod
partition. Similarly, the super-resistanBeg; (¢) givenin (29) (). Thus, we can compare the full and reduced-order mod-

is the equivalent resistance of parallel configuration of al g|s by directly comparing; and T, for each node.
resistors connecting thith partition and theéth partition.

These observations also serve to provide an intuitivefijusti - 4 » Aggregated building thermal model
cation of the aggregation approach.

Recall that the outside node is taken as a virfuak 1)th
node in the full-order building thermal model (2), and the
outside temperature is denoted Bs, ;. We also take the
outside node as a virtugh + 1)th node in the reduced-
order model and we denote its temperaturdas ;. That
B o is, for any given partition functiow, the building node set

Vo := Y _ CrTk(0). {1,...,n} is aggregated into the super-node§et . ., m},

kev and the(n + 1)th outside node has a one-to-one correspon-
dence to thgm + 1)th super-node.

If one chooses the initial condition for the reduced-order
model (21) as Due to the current source interpretation of nonlinear ttarm
dynamicsL(T, U, Q) (see Section 2.1), the current sources

T(0) = Z (Ci/Cr(d))T3(0), ke V, (30) connecting to the same group of the aggregated nodes are
directly added up to form a super-current source for the

Similar to the full-order model (2), the reduced-order
model (21) is als@onservativddecause of the fact thalt(¢)

is a super-transition-rate matrix. The invariant quantfity
the reduced-order model is given by

etk corresponding super-node:
then e Fork=1,...,m, the aggregated nonlinear thermal dy-
Vo = Z Z CLTi(0) = ZCiTi(O) — V. namics is given by:
Vicg—1 ieV ~ . =
revieeT ) LT, U,Q)= > GL(T,U,Q)/Ck(®)
This implies that the invariant quantity of the linear thetm ieeTHk) '
dynamics is ung:ha!nge_zd_after_the aggregation. apere- = (Cpa(T?Ui(9) — Wi(0)) + Qr(0))/Cr(¢) (35)
gated thermal distributions defined as
~ where Z
:_ G . Ui (¢) = U;
=T, keV. 31 '

fr 7, T (31) e
Recall that we introduce the lifting technique to compaee th Qr(¢) := Z Qi (36)
low and high-dimensional distributions. Thi&ed thermal icp™ (k)
distributionis defined as Wi(o) = Z UT:.

~ C;~ i€y~ (k)
Ji= VZTl teV (32) e Fork = m+1, the aggregated nonlinear thermal dynamics
0 is given by: B .

whereﬁ» is called thelifted temperaturefor the nodesi. . L1 (T U, Q) =11 )
Using (19) and choosing the lifting distribution as= T, wherer(t) = T,(t) andT,(t) denotes the outside temper-
we obtain ature. The construction here is to make siifg;1(t) =

ﬁ' _ i f¢(i)~ (33) T,(t) for all ¢ > 0 in the reduced-order model (38) de-

Zjew(i) Ty scribed later.

10
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Fig. 3. The RC-network representation of (a) the full-orttesrmal model and (b) the reduced-order thermal model fersthgle surface
separating two zones.

SinceU and( are external inputs to the full-order model, denotes the heat gain for théh super-node, and the ventila-

we can also tak& (¢) andQ(¢) defined in (36) as the super-  tion heat exchanga Hy(¢) for the kth super-node is given
inputs to the reduced-order model. One problem is that the by _ Cin -

term W(q&) defined in (36) depends d@f, which is the state AHK(9)(t) = Cpamy* () (0)(T* = Ti(1))

vector of the full-order model. We ush, (the temperature  with the mass flow rate entering tli¢h super-node given
of the kth super-node) to approximatg (the temperature by mi"(¢) = Zi€¢,1(k) m". The initial condition of the
of theith node that belongs to thgh group) inWy,(¢): reduced-order model (39) is chosen as (30).

Wi(0) := Z UTy =Up($)T, k=1,...,m. The reduced-order model so far depends on the choice of
ico—1 (k) the partition functionp. The sub-optimal partition function

¢* is obtained by using the recursive bi-partition algorithm

AlgoBIPA. However, one can also directly choose a sub-

. optimal ¢* based on physical intuition (e.g., floor plans in

Ly (T, U, Q) by a multi-zone building), or some other kinds of expert-based

o . heuristics.
Ly(T\U(9),Q(¢))

7 r ) o (37) Exam i-partiti - ildi
— s _ ple 2 (Bi-partition of the two-zone building)
(Cank(ng)(T T) +Qk(¢)) /Cx(@) Consider the model reduction problem for the two-zone
_ o . building shown in Example 1. The goal is to find a reduced-
for k = 1,...,m and L, 11 (T,U(¢), Q(¢)) = n. Note order model with two super-states. The thermal dynamics
that the aggregated nonlinear thermal dynamics in (37) only of this two-zone building is described by (4). To perform
depends on super-quantities for the reduced-order model. model reduction, we consider the linear dynamics of (2)

o ) ] first. The linear model is given by (5) with the transition
By combining the aggregated linear thermal dynamics (21) rate matrix

with the aggregated nonlinear thermal (37), we obtain the
state-space representation of the reduced-order buildéng

Replacing Wk(¢) by Wi(¢) in (35), we approximate

1 1 0 0
mal model: C1Ri12 C1Ri12
1 _ Ro1+Ros 1 0
dT B N - . — C2R21 C2R21 Ra3 12232;
R — 1 3 2 1
o = AT+ L(T,U(9), Q(¢))- (38) 0 eryeraiiitery 2s il eryiom
0 0 _r o __1
The model reduction method proposed in this paper pre- Calta Calag

serves the RC-network structure of the original building . . .
model, that is, the reduced-order model (38) is still a RC- Where the capacitances and resistances are giver by
network defined with super-nodes with super-edges connect0-1, €2 = 0.15, C5 = 0.2, €y = 0.25, Rz = 0.15, R3q =
ing these super-nodes. According to state-space repeesent 0.15, and Ry3 = 1.5.

tion (38), the aggregated building thermal dynamics can be

also expressed by the following coupled differential equa- Using the bi-partition algorithmIigoBIPA described in Ap-
tions: For eachk = 1,...,m, pendix B, the sub-optimal bi-partition is obtained accogdi

to the sign structure of the second largest eigenvalue of the

_ T, _ _ _ Markov transition matrixP(At) = e“4%, where the step-
Cr(9)—- () = D (Ti(t) = Tw(t)/Ria(9) size At = 0.01. The second eigenvector &f(At) is given
+ OK(d)(t) + AH(4) (1) u® = [-0.639, —0.601, +0.312, 4+0.366].

_ o The sign-structure of,(?) suggests the optimal bi-partition
whereT}, is the temperature of theth super-node\;. C V function ¢* = [1,1,2,2]. That is, the node$1} and {2}

denotes the set of neighbors of thih super-nodeQ(¢) are aggregated to form one super-node, and the sfales

11
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Fig. 4. (a) The layout of the four-zone building of the HVACstgm shown in Fig. 1, and (b) its RC-network representation.

and {4} are aggregated to form the other super-node. The

optimal bi-partition is shown in Fig. 3 (a).

Using (24) with the optimal bi-partition functiop*, we
obtain the super-transition-rate matrix

1 1
A= CiRi12  CiRi2
C2Ra21 Ca R

consistent with the heuristic that would partition the il
ing based on the thermal interactions among the nodes.

e The reduced-order model is also a RC-network, just as
the original model is. [ ]

5 Simulation and Discussion

5.1 Simulation setup

where the super-capacitances and super-resistances-are ol this section, we apply the aggregation-based model reduc

tained according to (28) and (29)

Cl =C1 + Cy =0.25,
CQ =C3+ Cy = 0.45,
Ris = Roy = Ro3 = 1.5.

tion method to the downstream part of the four-zone building
HVAC system shown in Fig. 1, where each zone is serviced
by a single terminal box. The layout of the four-zone build-
ing is shown in Fig. 4 (a). Each of the four rooms/zones has
an equal floor area dim x 5m and each wall iSm tall,
which provides a volumetric area @bm? for each room.
Room1 has a small windowsm?) on the north facing wall,

The RC-network representation of the reduced-order modelwhereas room8 and4 have larger windows7fn” each) on

is shown in Fig. 3 (b). Lefl}, denote the temperatures of
super-nodeg for £k = 1,2. Using (39), we represent the
reduced-order building thermal model by the following dif-
ferential equations:

= dTl 1 - 1 - - _
Ci—=——T + —T. AH
1 B 1+R12 2+ Q1+ 1
=, dTQ 1 — 1 — kR _
Col = — T4+ — T AH
27 oo 2+R21 1+ Q2+ 2

where the heat gain@l = @, and @2 = Qg, the heat
exchanged\H,; = AH; andAH; = AHy.

The main observations from this model reduction example
are as follows:

e The thermal interaction between the group of nodeg}
and the group{3,4} is much weaker compared to the
interactions within each group since the resistaRee
separating the two groups 19 times larger than the re-
sistancesRk,> and R34 within each group. The optimal
bi-partition produced by the algorithilgoBIPA thus is

12

the east facing wall. Roor® does not have a window.

The HVAC system used for simulation is designed to supply
maximal mass flow rate d@f.25 kg/s per room. The supplied
air temperature is fixed ar* = 12.8°C. Here we assume
that there is no return air anth0% of the outside air is
sent to the AHU. The number of occupants in each room
is uniformly generated as a random integer betw@amd

4. Outside temperature and outside solar radiation data is
obtained for a summer dayd/24/1996) of Gainesville,

FL [2]. Numerical results presented here are simulatedusin
ode45 function in Matlab for24 hours with the time step
size chosen as0 minutes. All temperatures are initialized
at 24°C, respectively. The mass flow rates entering four
zones are given by = 0.15 kg/sec, andmy® = mi* =

mi"* = 0 kg/sec. Fig. 5 shows the other two inputs: outside
temperaturd, and the heat gaing;.

5.2 Recursive bi-partition of building graph

The RC-network representation of the four-zone building is
shown in Fig. 4 (b). There are totab building nodes plus
1 outside node for the model of this four-zone building:
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Fig. 5. (a) The outside temperatufg, and (b) the total heat gaing;, for roomi (z = 1,...,4).

zone nodeg1, ..., 4}, 8 internal-wall nodeg5,...,12}, 8
internal-floor nodeg13,...,20}, 8 internal-ceiling nodes
{21,...,28}, 8 external wall node$29, . . ., 36}, and1 out- 3
side node{37}. Each node is assigned with a thermal ca- 25}
pacitance, and two adjacent nodes are connected with a ther
mal resistance. The windows are modeled as single resis-
tors since they have relatively little capacitance. Theleal

of capacitances and resistances used for simulation are ob
tained from commercially available software Carrier Hgurl
Analysis Program [1]. The outside node is assumed to have 0
a very large capacitandgs; = 10'° KJ/(m?K). m

N
T

1.5F

KL divergence rate

et
IS
T T

27 32 37

Fig. 6. Modeling error (KL divergence rate) in aggregatimg t

The recursive bi-partition algorithilgoBIPA, described in linear thermal dynamics vs. number of partitions.

Appendix B, is used to find sub-optimal partitions of the
buiIding graph b_ase_d on the analysis O_f the linear th_ermal to the zero as the number of partitions increases to the di-
dynamics. The first iteration of the algorithhigoBIPA di-  engion of the full-order model, and that there is little ad-
wdes_the node set into two groups: the first group contains yitional improvement beyond a model order of arousd

all building nodes{1, 2, ..., 36}, and the second group con- - Athough the KL divergence rate is only applicable to the

tains only the outside nod¢37}. Such a2-partition result  jinear part of the model, one can still use it as a conserva-
makes sense since it captures the slowest time-scale dibuil e guideline for the reduction of the nonlinear model. In
ing thermal dynamics. that case, we can guess that for good prediction accuracy,

. . . the reduced order model should have abfustates. This
The second iteration of the algorithAlgoBIPA leads to a is verified by simulations we report next.

3-partition, which divides the nodes into three groups: the
first group consists of all (zone, wall, ceiling, window, and
floor) nodes associated with the rodnthe second group
contains all other building nodes associated with the rooms
1,2, 4, and the third group contains only the outside node: The full-order model (2) is used to describe the full build-
{37}. Compared with th&-partition results, the-partition ing thermal dynamics, witB6 building nodes plug outside
identifies a new group containing all nodes associated with node. The multiple partition results obtained in Sectich 5.
room1. For the5-partition, the algorithm returns five groups  are used to construct the reduced-order models through ag-
of nodes with clear physical intuition: groudpcontains all gregation of building nodes into groups, where each group
nodes corresponding to rooinfor: =1, ..., 4, and group of nodes is represented by a super-node.AFerl, ..., 36,
5 consists of the single outside no¢&7}! For m > 5, the the kth-order reduced model (38) is used to describe the re-
m-partition further partitions the nodes associated with in duced building thermal dynamics with super-nodes plus
dividual rooms. The largest possibie is 37, which corre- 1 outside node. For comparison, we lift the reduced model
sponds to no reduction in model order. to one with36 building nodes plug outside node (see Sec-
tion 4.1 for more details). That allows direct comparison
Recall that the KL divergence rate (20) is used as a measuredetween the temperature of a zone predicted by the full and
of the modeling error for aggregating the linear thermal dy- reduced-order models.
namics. Fig. 6 depicts the KL divergence rate with respect
to the number of partitions: for 2 < m < 37. We observe  All simulations reported here are open-loop simulatiohs: t
from Fig. 6 that the modeling error monotonically decreases same mass flow ratesinf” = 0.15 kg/sec and %" =

5.3 Simulation of full and reduced-order models
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Fig. 8. Four zone temperature simulation errors are given; by T, — T, fori = 1,...,4, whereT; is the temperature simulated by the
full-order model andr; is the lifted temperature simulated by thest-order,4th-order, andl8th-order) reduced models.

mi* = mi" = 0 kg/sec) are used as inputs in conducting errors corresponding to reduced-order models with varying
simulations for both full and reduced-order models; the in- degree of reduction: (i}st-order reduced model (super-
puts are shown in Fig. 5. Note that the inputs are aggregatednode corresponding to all building nodes), @ith-order re-
accordingly to obtain the super-inputs for the reducedcenrd duced model4 super-nodes corresponding 4ogroups of
model (see Section 4.2 for more details). To test the good- nodes associated withzones), and (jii)l8th-order reduced
ness of the reduced-order models, we compare the four zonenodel. Note that &th-order reduced model corresponds to
temperatures simulated by the full and reduced-order mod-the (k + 1)-partition described in Section 5.2 withsuper-
els. When simulated by the full-order model, the temper- building nodes and outside node.
ature of roomi is denoted byT;. When simulated by the
reduced-order model, the lifted temperature of radmde- We observe from Fig. 8 that, as expected, prediction errors
noted by7; (see Section 4.1 for more details). Ttile zone dggf?ase ﬁs the order Ot]; thedredulgﬁdd_m()da increase?]. In
- ; S addition, the conjecture based on ivergence rate that
temperature prediction error is denoteddy=T; — .. the 18th-order model will have predictions close to that of
the full-order model turns out to be true. In the 18th-order
Fig. 7 shows the temperatures of the four zones predicted bymodel, the prediction error for the zone with the maximum
the full-order model. Fig. 8 shows the temperature pregiicti ~ error (zone 1 here) has a meanla$0°C and standard de-
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viation of 0.46°C. Note that even in a building that meets

directly corresponds to a building with smaller number of

ASHRAE thermal comfort standards, the temperature inside zones: groups of zones in the original building are now ag-

a zone may vary by up t8°C [6]. A lumped model that

uses the well-mixed air assumption therefore is fundamen-

tally limited to about al.5°C prediction error.

We also observe from the Fig. 8 thetcept for zone,tem-
perature prediction with even thigh-order model (middle
plot), which represents a nine-fold reduction in model orde
is quite accurate, where the prediction error for the zortle wi
the maximum error (zone 4 here) has a mean-6f77°C
and the standard deviation 6f44°C. However, the mean
and standard deviation of prediction error for zaneith

the 4th-order model aré.14°C and0.37°C, which is much
larger. Thus, large reduction in the model order is not Jikel
to be useful for control design and analysis studies. How-
ever, we expect such low order models to be still useful in
preliminary building and HVAC system design studies.

The higher error in the temperature prediction of zone 1
could be due to the the method’s inability to accurately ap-
proximate enthalpy dynamics due to the ventilation (note
that zone 1 is the only one with the ventilation), or due to
the error introduced in lifting the reduced model to a full

order model for purposes of comparison. Future work will
examine these factors in greater detail.

The computation time for executing the Matlab simulation

gregated to form super-zones. The degree of reduction can
be controlled by the user. This property makes the method
applicable to not only real-time optimization-based cohtr
techniques and off-line control design and analysis, zd al

to parametric studies during building design phase.

Application of the proposed method to a four-zone build-
ing show that with with a reduction in the model order up
to 50%, the maximum error in the time-domain predictions
of temperature are quite accurate. With more reduction in
the model order, time domain predictions are less accurate.
However, for preliminary design studies such levels of ierro
might still be acceptable, especially considering fundame
tal limits of prediction accuracy of any lumped model of
temperature that relies on the “well-mixed air” assumption

In the current work, the full-order model we consider does
not have inter-zone convection effects. Inter-zone convec
tion is difficult to model due to the complex physics that
govern this phenomena. Recently, a data-driven identifica-
tion scheme was proposed to obtain a RC-network model of
convection among zones [21]. The model reduction method
proposed here is immediately applicable if the full-scale
model is augmented by such convection models. We are also
developing the innovative control schemes based on the re-
duced building model proposed in this paper [13].

code increases as the order of the reduced model increases.
For the case considered in this paper, the computation timesR
eferences

for simulation are6.829s, 6.988s, 7.623s, 349.86s for the
1st-order4th-order,18th-order, and fulB6th-order models,

respectively. In practice, one can make a tradeoff betweenl(!]
the accuracy and complexity of the reduced order model by

choosing an appropriate order of the reduced model.

6 Conclusions and Future Directions

We proposed a method to reduce the order of a build-

ing thermal model via aggregation of states. The original
model is a large number of coupled nonlinear differential
equations. Structurally, it is an RC-network with nonlinea

terms due to ventilation air enthalpy. The heat conserva-
tion property of the system is used to obtain an analogy

between the linear portion of the thermal dynamics and
the continuous-time Markov chains. A recently developed

aggregation-based model reduction technique for Markov [8]

chains can now be applied to the linear portion, with the

associated KL divergence rate serving as a metric for the
modeling error. Extension of the aggregation method to the [°]

nonlinear building thermal model is then carried out by
aggregating inputs accordingly into the super-inputs.
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A KL divergence rate for comparing Markov chains

Let (7, P) denote a discrete-time Markov chain defined on
the state space = {1, ...,n+1} with the transition matrix

P and the stationary distribution. For two Markov chain
models(w, P) and(w, Q) defined on thesame state space
V, the KL divergence rate is defined as:

R(PIQ) = Jm <DPx|Qy) (A1)



whereD(-||-) denote the KL divergence between two distri-
butions, and® (or Q) denotes thgoint probability dis-
tribution defined on the cartesian product sp#teé associ-
ated with the Markov chain modéfk, P) (or (w, Q)). We
can write R(P]|@) more explicitly as

In particular, we have a closed-form formula for the KL
divergence rate defined in (A.1) (see [34]):

R(P||Q)
Py(iy ™)
Qu(iy )

o L

(ig ") log (

iy TtevnN

R(P|Q) =Y miP;log(Pij/Qi)-

i,jEV

For model reduction problems, it is of interest to compare
two Markov chaing(r, P) and (7, P) defined on different
state space¥ = {1,...,n+ 1} andV = {1,...,m + 1},
respectively. Without loss of generality, we et < n. The
relationship betwee® andV is described by a partition
function¢ : V — V. The formula (A.2) can not be directly
used to compute the KL divergence rate betweerP) and
(7, P). The strategy is tdift the Markov transition matrix
P to another one defined on the state spHagsing a lift-
ing distribution. As shown in [15]x is the optimal lifting
distribution and the optimal lifted Markov transition matr
is given by

Ty

B(m)
P,, = =
D kew() Tk

ij (9) Pyiysiy, 53 €V

The KL divergence rate is then extended for two Markov
chains defined odifferent state spaces

Ry(P|[P):= R(P|[P")(g)).

B Algorithm AlgoBIPA for finding ¢*

The optimization problem (18) is aimteger nonlinear
program due to the fact thatp is integer valued and
R4(P||P(¢)) is a nonlinear function of. The problem is
non-convex on account of the non-convex constraints on
¢. In general, it is prohibitively time-consuming to obtain
the optimal solution of (18) for Markov chains with large

Letu(® denote the eigenvector corresponding to the second
largest eigenvalue oP. A sub-optimal bi-partition func-
tion ¢* is obtained by considering the sign-structure:6?

(see [15] for more details):

i~

A recursive bi-partition algorithmAlgoBIPA) is also de-
scribed in [15] to obtain then > 2 partitions in a sub-
optimal way: In themth iteration of the algorithm, we as-
sume that a partition with, groups (or super-states) is given.
The objective of thenth-iteration is to obtain a refinement
that has(m + 1) groups. Fori = 1,...,m, we denote
by P the sub-Markov transition matrix that describes the
transition probabilities within théth group. Theith group

is split into two sub-groups according to the sign-struetur
of the second eigenvector for the eigenvalue problem asso-
ciated with P(), The spectral split of théth group alone
provides a partition of the states infe: + 1) groups. We
denote this partition ag(?), and use it to evaluate the opti-
mal aggregated transition matri(¢(*)) according to (16).
From the resultingr. possible choices qin+ 1)-partitions,
we select the one that minimizég,., (P|| P(¢")), i.e.,

1, if ul® >0
2, otherwise

imin = argmin Ry (P||P(¢")).
ie{l,...,m}

The associated aggregated transition matrix is chosen as
p((b(lmm))

The recursive algorithm is a heuristic based on the consid-
eration of the bi-partition problem. A termination strateg
can be based on a threshold value for the modeling error,
e.g., the algorithm can be terminated if

R, (P P(ém)) = R, (PIIP(dm-1))| < €tal

(m—1

whereg,, := ¢lnn ), g1 := ¢l
specified tolerated error.

"), ande,,, is the pre-

state space. In this section, we summarize some heuristics

to approach the optimal solution to (18).

In [15], we first consider the bi-partitiom{ = 2) problem
for (18). After relaxing the integer constraints on the part
tion function¢, the optimization problem is shown to lead
to a spectral partition associated with the following eigen
value problem for reversible Markov chain:

Pu = \u. (B.1)

17



