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Abstract

We propose several control algorithms to compare theiropednce and com-
plexity through simulations; the control algorithms reagelthe indoor climate of
commercial buildings. The goal of these control algorithe® use occupancy
information to reduce energy use—over conventional coadgorithms—while
maintaining thermal comfort and indoor air quality. Thresvel control algo-
rithms are proposed, one that uses feedback from occupaddgrperature sen-
sors, while the other two computes optimal control acticasselol on predictions of
a dynamic model to reduce energy use. Both the optimal-cblb#sed schemes
use a model predictive control (MPC) methodology; the diffee between the
two is that one is allowed occupancy measurements while ttner @s allowed
long term occupancy prediction. Simulation results shoat #ach of the pro-
posed controllers lead to significant amount of energy ggvaver a baseline con-
ventional controller without sacrificing occupant healtidl@omfort. Another key
finding is that the feedback controller performs almost al$ asethe more com-
plex MPC-based controllers. In light of the informatioaihputational com-
plexity of the MPC algorithms compared to the feedback adralgorithm, we
conclude that feedback control is more suitable for eneffgient zone-climate
control than MPC-based control, and that the difficulty ofadting occupancy
predictions is not commensurate with the resulting benefits
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Nomenclature
CLG Cooling set-point
Dy Humidity violation
DY  Average humidity violation
Dr  Temperature violation
T  Average temperature violation
Ec  Energy consumed by controll€r
Egc Energy consumed by the baseline controller
H Relative humidity

HTG Heating set-point

K Number of steps chosen for prediction horizon during thénoigation

P Total power

P Fan power

PR Re-heating power, i.e., power consumed in reheating at dnieable-air-
volume (VAV) box

Ry Conditioning power, i.e., power consumed by chiller

Q°  Rate of heat gain due to solar radiation

RTG Re-heating set-point

RRA  Return air ratio (ratio of return air to mixed air flowrate)
T Temperature

TSe  Desired set-point



Trre Re-heating set-point

Thigh Maximum temperature allowed in the zone

Tiow Minimum temperature allowed in the zone

W Humidity ratio

Whigh Maximum humidity ratio allowed in the zone
Wow Minimum humidity ratio allowed in the zone

At Discretization time

a IAQ factor of safety

h Enthalpy of air

m,  Amount of fresh outside air required per unit area
mOA  Amount of fresh outside air required per person

me”  Amount of supply air required per person

nﬁi’ah Maximum amount of supply air during occupied or unoccupistet

A

ow  Minimum amount of supply air during unoccupied time

nP Number of people
u Controllable input vector
% Exogenous input vector

A Floor area

B Fan power constant
subscripts
d Designed

superscripts



z Zone

OA Outside air

occ During occupied time

unocc During unoccupied time

CA  Conditioned air: air being supplied by air handling unit (8H
SA  Supply air (air leaving the VAV box)

1. Introduction

Buildings are one of the primary energy consumers worldwide¢he United
States, they account for about 40% of the total energy copsam[1]. Heating
ventilation and air-conditioning (HVAC) contributes to readhan 50% of the en-
ergy consumed in buildingd]. Poor design and inefficient operation of HVAC
system cause a large fraction of energy used to be waat8H [Though it is pos-
sible to improve energy efficiency through better HVAC systiesign, it requires
substantial investment to retrofit an existing buildingwrhproved HVAC equip-
ment. In contrast, improving control algorithms (that aggerthe HVAC system)
to achieve higher efficiency is far more cost effective, aglas such a solution
does not require expensive additional sensors. Indeednderof recent papers
have focused on improving energy efficiency in buildingetigh advanced con-
trol algorithms that use occupancy informatieh $, 6, 7, 8, 9, 10]. This is the
subject of our paper as well; we consider control algorithinas use occupancy
information to maintain the climate of individual zones ppeopriate conditions
with reduced energy use compared to conventional congotighms. An impor-
tant constraint is cost; one should be able to apply thesgai@igorithms with
minimal investment.

We limit ourselves to commercial buildings with variable~2lume (VAV)
system. More than 30% of the commercial building floor spacthe United
States is served by VAV systentsl|. In a VAV system, a building is divided into a
number of “zones”, where a zone can be single room or a caleof rooms. The
flow rate of supply air, i.e., air supplied to a zone, is coltgbthrough dampers in
the VAV box of the respective zone. The conditioned air, Whgcthe air supplied
by an AHU, may be reheated at the VAV box before being suppbettie zone.
We focus on control strategies that can be applied at each b#%/ where the



control inputs that need to be decided are the mass flow ratéeamperature of
the supply air.

Typically, a simple rule-based feedback control strategyded at the VAV
box that does not use real-time occupancy measuremeiftse controller de-
termines the flow rate of air supplied to the zone, as well asraheat to be
applied, to maintain the temperature of the zone at speaifiges that are based
on predetermined occupancy schedules. To maintain indoquality (IAQ), the
minimum airflow rate is determined based on the occupanogdcedhs and build-
ing standards, such as ASHRAE (American Society of HeaRegyigerating and
Air-Conditioning Engineers) ventilation standard 62A%Q [12]. This minimum
flow rate is usually 30—40% of the designed maximum. Henaggzare typically
over-ventilated, especially when the zone is not occupigdtlis expected to be,
e.g., in “daytime” mode. This causes wastage of energy.

Over-ventilation can be prevented by applying demand obmentilation
(DCV), i.e., by changing the supply air flow rate based on-tieaé occupancy
measurements @O, measurements instead of a pre-defined schedule. Real-time
occupancy measurements can be obtained from motion detectch as PIR and
ultrasound sensors, which are inexpensive and work weliallsoffice spaces
where the nominal occupancy value is 0Bgl[3]. In very large space§ O, mea-
surements can be effectively used for DCV in lieu of an ocoggaensor. DCV
is typically used in large spaces with the helpG®, sensors; its use in small
zones (such as office rooms) is less common. In medium-spaaces where the
nominal occupancy is more than one but not very large, magagaccupancy is
non-trivial. Efforts in developing occupancy measurenteohnology are carried
out by several researchers; s&d][and references therein.

As sensors and/or algorithms for inexpensive yet reliaddé-time occupancy
measurement/estimation become available, it should bsiljedo do more to
reduce energy use apart from controlling ventilation. Baneple, we can save
energy by reducing the airflow rate as well as letting the &naoire float during
unoccupied times in a wider range than when it is occupiediti@ais required
while developing a control algorithm to achieve that objext For instance, if
we let the temperature during unoccupied times deviateViaygrom what is
considered comfortable, it might take a while for the zormmagerature to come
back to a comfortable condition when the zone becomes ocedwgain. Same
goes for humidity and IAQ. Thus, the dynamics of temperatuenidity, and 1AQ

1n this paper, “occupancy” is used to denote the number oplesio a space.



have to be taken into account in designing such control ghgos. Moreover, the
controller should also have some robustness to error ingactry measurements.

In this paper, we examine how much energy can be saved byot@hdo-
rithms that use information of occupancy and system dynsnaied how the sav-
ings depend on the fidelity of the information. As more finahged information
is available, we may be able to save more, but the controligttgo may become
more complex. Our focus is on control algorithms that candeslun VAV boxes
of individual zones in existing (and new) commercial builgh: the controller has
to decide the flow rate and temperature of the air suppliethé¢ozbne. It can
vary the airflow rate between 0 and some upper bound, whileethperature can
be only increased beyond the temperature of the conditiaivg@ir leaving the
AHU) by using the reheat coil, but not decreased. Though oissible to add
additional actuation such as controllable window blintigytrequire significant
hardware upgrade, and therefore are not considered here.

The first and the simplest controller we propose is a ruletésedback con-
trol law that decides the control inputs based on instamiasieneasured occu-
pancy. This control strategy is callédOBS(Measured Occupancy Based Set-
back), since it typically “sets back” the zone temperat@tepoints and flow rate
to smaller values during unoccupied times. During occufpireds, the zone tem-
perature is maintained in the same range as that a convahtiontroller would
do, and the flow rate is determined based on the measuredauoup

A natural choice for a control algorithm is one that mininsgznergy con-
sumption while satisfying constraints on the thermal catmdmd 1AQ. We next
propose a controller that does so by solving an optimal cbptoblem in a re-
ceding horizon fashion. That s, given a dynamic model iedgthe control inputs
to the relevant outputs (temperature, humidity, etc.g,dbntroller computes the
control inputs that will minimize the total energy consumptover some finite
time interval, sayAT, as well as maintain pre-specified constraints on zone tem-
perature, humidity etc. It applies the resulting inputsdaime interval that is
shorter thar\T, and then re-computes the control inputs for the next ialest/
lengthAT by utilizing up-to-date measurements. The process is teged his
method of computing the control inputs is called recedingzom control (RHC)
or MPC, and is widely used in practic&q] due to its ability to efficiently com-
pute optimal control solutions in problems that involve stwaints. Several re-
cent papers have proposed MPC-based controllers for effibiglding control,
which we discuss in Sectioh.1. Application of MPC to energy minimization
control requires a model of the dynamics of temperature,ititynand 1AQ (i.e.,
contaminants), as well as predictions of the exogenoustsnguch as solar ra-
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diation, temperatures of surrounding spaces, and mostrianty, occupancy.
Occupancy affects not only the heat gains and humidity ad #le constraints.
For instance, the temperature of the zone can be allowedydrva wider range
during unoccupied times compared to the range during oedupnes. A model
of the hygro-thermal dynamics, i.e., of temperature andibityn are obtained
using lumped parameter modelss]. However, IAQ dynamics are not modeled
since there is no well accepted numerical metric for meaguAQ. Instead con-
straints are posed on the air flow rate according to ASHRAEHilation standard
62.1-2010 12] so that IAQ is assured. The proposed MPC-based contraller i
calledPOBO (Predicted Occupancy Based Optimal), because it uses aaccyp
predictions, among other things, to calculate the contolis.

Obtaining occupancy prediction is quite challenging. Ef@re, we next con-
sider the case when an MPC algorithm is sought that uses @olypancy mea-
surements, not predictions. In this case, to use an MPC fation, future occu-
pancy is assumed to stay at the currently measured occupaieayall the result-
ing control scheme thBIOBO (Measured Occupancy Based Optimal) controller
because it uses occupancy measurements—as opposed ttipnedio calcu-
late the optimal control inputs. This controller is expelcte retain some of the
benefits of MPC, such as directly minimizing energy and nadirihg constraints,
while making the information requirements of the contnoitere realistic.

Performance of the proposed algorithms are compared threiagulations to
that of a conventional controller used in existing comnmadrbuildings; the so-
called “dual maximum” control 17, Chapter 47]. We henceforth refer to dual
maximum as th&L (baseling controller. TheBL andMOBScontrol algorithms
are pure feedback strategies. TBlecontroller uses only zone temperature mea-
surements but not occupancy measurements M@BScontroller uses measure-
ments of both zone temperature and occupancy. Bottvi@8O controller and
the POBOcontroller need a model of the hygro-thermal dynamics ofztbree to
solve the underlying optimal control problems. WHilkOBOrequires occupancy
measurements, theOBO algorithm requires occupancy prediction. Thus, the
complexity of the control algorithms increases in the ofldey MOBS MOBO,
POBQ

Simulations are performed for three different types of zmgosed to several
types of outside weather and climates. The zone consistsigiiesroom in all
simulations, with design occupancy varying between onethrek. The main
conclusions from the simulations are the following:

1. Itis possible to obtain significant energy savings by gisiocupancy mea-



surement or prediction, with negligible effect on the zoA& land occu-
pants thermal comfort. The proposed controllers that usamancy mea-
surement or prediction provide savings of-460% over the baseline con-
troller that does not use real-time occupancy measuremerdriby night-
time setback.

2. A simple rule-based feedback control algorithm can perfjust as well
as an MPC-based control algorithm, if only occupancy mesasants (not
predictions) are available.

3. If occupancy predictions are available, an MPC contrdahat uses these
predictions can yield higher energy savings over contrelteat use only
occupancy measurements. However, the additional saviegsyaall; about
1-13%. This is due to the minimum ventilation required by terent
building standards, which prevents the controller fronmstically reducing
the airflow even when it is known that the zone will remain ungued.

These results show that by installing sensors capable ofding occupancy
measurements and augmenting the control logic at the VA\ebaa use these
measurements, substantial energy savings can be achigviedstudy shows that
the benefit of using MPC for energy-efficient zone-climatetod is questionable;
both the feedback controller and the MPC controller proiaeilar energy sav-
ings while the MPC controller is much more complex. The ressalso indicate
that the effort required in obtaining occupancy predictioaly not be commensu-
rate with the benefit obtained. It should be noted that oaoeypprediction is quite
challenging; there are only a few papers on dynamic occypaaciels L3, 5]. It
is also not clear how easily such models can be calibratattividual buildings
and zones, and how accurate their predictions will be iniggne

The rest of paper is organized as follows. In the remaindénetection, we
discuss the related literature. The baseline control amg@tbposed control, along
with the model of hygro-thermal dynamics and power consionpare described
in Section2. Section3 describes performance metrics related to thermal comfort
and energy savings. Simulation results with the contrebee shown in Sectioh
Section5 concludes the paper with a discussion of the results and teaggend
this work.

1.1. Related work

A number of papers have investigated the use of occupanoyniattion (ei-
ther measurements or predictions) to reduce energy corgump buildings.
The papers§, 7, 8, 9] compare MPC-based controllers that use occupancy pre-
diction with conventional controllers that do not use sucédgction, apart from
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day/night schedules. They report substantial energy gawith MPC compared
to conventional controllers. However, these papers domastigate how much
energy savings are possible with any controller that is tessplex than MPC
and that uses occupancy measurements, which are easi¢aitotblan occupancy
prediction.

A number of papers have proposed simple rule-based carsdhat use oc-
cupancy measurements, and conclude that significant eeawyygs are possible
with the rule-based controllers compared to the conveatioantrollers that do
not use occupancy measuremeris, [19, 20, 21]. The controller in L8] uses
occupancy measurements to turn off the HVAC system, whiectintrollers in
papers 19, 20, 21] modulate only the ventilation rate based on measured occu-
pancy. However, these papers do not compare rule-basemkatth complex
control schemes such as MPC. While MPC may require morenrdton (i.e.,
dynamic model and occupancy prediction) compared to raked control it may
also lead to more energy savings. The papgrcpmpares several rule-based
controllers that use various types of occupancy infornmatiavo use occupancy
prediction while one uses binary occupancy measuremergsgpce/absence). It
is concluded that significant energy savings are possitiletive rule-based feed-
back control that uses binary occupancy measurements cethftathe baseline
controller that does not. It also concludes that a small arhofiadditional en-
ergy savings are possible if the predictive rule-basedrobiet is used instead of
the feedback controller. However, it does not compare tediptive rule-based
controller with complex predictive control algorithms suas MPC, which may
result in more savings than the rule-based control.

While some of the previous work has compared either MPC @-lpalsed
controllers with conventional controllers, they did notqmare all three. The con-
ventional controllers used for comparison were distin@kimg such comparison
harder. It is useful to know how performance (as measuredneygg savings
and/or comfort) varies with the complexity of the contra@iithm. In particular,
the value of occupancy measurement vs. occupancy pretistioot clear from
the prior work. Since prediction is much more difficult to aiot than measure-
ment, it is particularly useful to know their relative valu€hough p] compares
performance of the rule-based controllers that use ocaypamrediction with that
of the feedback controller, the feedback controller usdg presence/absence
measurement but not occupancy measurement.

In this paper we examine the performance of a baseline ctiomahcontroller
(without occupancy measurement or prediction), a feedloackroller (with oc-
cupancy measurement), and two MPC-based control schenmesof@he MPC-

9



based control schemes uses occupancy prediction whilghke wses occupancy
measurement in lieu of prediction. This way, we are able tagare the perfor-
mance of feedback control to that of MPC-based control whath bre allowed
only occupancy measurement. In short, we examine tradbetifeen energy
savings achieved and the information requirements/coxiplef the control al-
gorithm in a unified manner. This is the key difference betwear work and
much of prior work. In addition, the papers mentioned abtnt propose MPC-
based controllers do not take humidity into the control catapon, while hu-
midity is taken into account as part of thermal comfort caaists in the MPC
schemes proposed here.

A preliminary version of this work appeared i4]] which compares feed-
back, MPC, and baseline controllers. There are severafisgmt differences be-
tween B] and this paper. The baseline conventional controller Unszd is more
energy-efficient than the one used #.[ The feedback controller used id][
modulates only the ventilation rate based on measured aocyp However, the
feedback strategy in this paper controls not only the vainih rate but also the
zone temperature, which results in high energy savings. dBsegn parameters
have been fine-tuned in this paper to get better performamce &ll the con-
trollers. One of the controllers proposed 4 allowed O flow rate when the zone
was known to be unoccupied. In this paper, all controlleesd@signed to supply a
minimum airflow rate in accordance with the latest ASHRAEtitahion standard
62.1-2010 12]. This significantly changes some of the conclusions, eafigc
one about the value of occupancy predictions. Moreoves, ghper provides a
more comprehensive simulation study of the performanchetobntrollers com-
pared to #l]. While [4] considers one type of zone with three occupants exposed
to only one type of outside weather, here we examine sewgrastof zones with
varying levels of occupancy that is exposed to multiple ioletsveather and cli-
mate conditions.

2. Control Algorithms

A schematic of a typical multi-zone commercial building kvd VAV-based
HVAC system and a conceptual representation of a controkilgn that can be
implemented in a zone is shown in Figute Part of the air removed from the
zones, which is called return air, is mixed with the outsidd®afore being condi-
tioned at the AHU to temperatufé? and humidity ratioV“A. The conditioned
air, which is usually cold and dry, is distributed to the VAdXes at the zones
through the ductwork. The air supplied to a zone by its VAV loax be heated
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using the reheat coils at the box. The amount of return airargide air that
needs to be mixed is decided by the return air r&ftd. The humidity ratio of
the supply air (WS4 is same as the humidity ratio of air being supplied by the
AHU, i.e., WSA=WCA), since reheating does not change the humidity ratio. The
parameterd “A WCA andRR” are assumed constant in this paper.

Outside Air ... Exogenous Inputs
Conditioned Air 1 Outside Temperaturd PA), '
1 Solar Radiation@®), Occupancy{®) _,
. I e e e o e - o’ m -l
VAV | | VAV —l 4 > \ Qutputs
| / U _|Zone[—> "
Supply Air S Su N\ :
(SA) | | & h ’ .
1 \ S e !
2 Zone | I Zone| !
g \ . ! .
€ 9 1SA TemperatureT54) | )
4
: A,\JL lIL—JIIJ"’ ‘ =SAFI Rate (r5A EContr_oI o -
o];‘ == =~ | SAFlowRare (7)) _iJ Algorithm
% Return Air Control Inputs (u)

Figure 1: Generic scheme for the implementation of a zowettmntrol algorithm.

The task of a zone-climate control algorithm is to decidediatrol inputs in
such a way that thermal comfort and IAQ are maintained inzbae. The con-
trol inputs are temperaturd £4) and flow rate %) of the air supplied to that
zone by its VAV box. The control algorithm may require canmtaieasurements
and/or predictions to compute the control inputs, whichyv@epending on the
control algorithm. For instance, the commonly used singéximum and dual
maximum control logics 7, Chapter 47] require only zone temperature mea-
surements. However, an MPC-based controller, such as tbpoged in 4] or
in this paper, requires measurement and prediction of deiteimperature, solar
radiation, occupancy, zone temperature and humidity.

We now describe thBL (baseline) controller, and three proposed control al-
gorithms,MOBS(Measured Occupancy Based SetbatkBO (Measured Oc-
cupancy Based Optimal) arODBO(Predicted Occupancy Based Optimal).

2.1. BaselineBL) Controller

Among the common control logics used at the VAV boxes to naamntAQ
and temperature in a zone, we choose the dual maximChapter 47] as the
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baseline controller Even though the single maximum contrdl7/[ Chapter 47]
is more common in existing commercial building, dual maximis the more ef-
ficient of the two. In this scheme, the control logic is divdd@to four modes
based on the zone temperature: (i) Re-heating (ii) Heatind>ead-Band and
(iv) Cooling, which are shown schematically in Fig@elf the zone temperature
stays below the “Re-heating Set-Point (RTG)” for more th@Gnrinutes, the re-
heating mode is turned on. Similarly, if the zone tempermtemains above the
“Cooling Set-Point (CLG)” for more than 10 minutes, the énglmode is turned
on. If the zone temperature stays between RTG and “Heatit@&at (HTG)”
for more than 10 minutes, the heating mode is turned on. Iztime temperature
stays between HTG and CLG for more than 10 minutes, the daad-tmode is
turned on. In the re-heating mode, the supply air tempegasuset to maximum
possible valuem?é*rl), and the supply air flow rate is varied using a PID controller
to maintain the zone temperature to a desired set-gdfit In the heating mode,
the supply air flow rate is set to the minimum allowed value] #re supply air
temperature is controlled by a PID controller so that theezZemperature is main-
tained close to the set-poirff$®). The minimum allowed value for the flow rate
is determined as follows

Minimum Allowed Flow Rate= my™ + anmjgy,

wheremS? = m2#/(1— REY), mSh, = meA,/(1— RRA). (1)

Whena = 1, these calculations yield the minimum airflow requirersesptecified

by ASHRAE ventilation standard 62.1-20102]. Since the baseline controller
does not use occupancy measurement, the minimum alloweddkens calcu-
lated using the designed occupan@( which is assumed constant. We usually
choosea > 1 to make IAQ robust to mismatches between actual and designe
occupancy. In the dead-band mode, no re-heating is peréhrinee, TSA= TCA,

and supply air flow rate is set to the minimum allowed valije (n the cooling
mode, no heating or re-heating is performed, TTé, = TA, but the supply flow
rate is varied to maintain the desired set-pdiffttin the zone.

The desired set-poifit*®t used by the PID controllers in the re-heating, heating
and cooling modes is usually the temperature preferred épticupants. If the
temperature preferred by the occupants is not known, trexe thre several other
ways to decide the value @®®. One way is to choos&**'asRTG HTG and
CLG during the re-heating, heating, and cooling modes, res@é¢t Another
way is to chose *®t as an average ¢ TG andCLG during all the modes. We
chooseTS* as the average ¢ T G andCLG in this paper, i.e.J 58t = HTGCLG,
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Note that the baseline controller uses nighttime setbdeksét-pointlkRT Gand
HT G are decreased while the set-pd@itG is increased during a pre-specified
period deemed “nighttime”. The set-points are changeddasdhe assumption
that the zone is not occupied during the night, which resalt®duced energy

usage.

2 % ARe-heatlng Supply Air Supply Air as:
> Temperature =0
3 Flow Rate <®
-
a3 / >0
5 = \ o Q
\ Heating Cooling 3]
Minimum Dead-Band
Flow Rate
Re-heating Heating Cooling Room
Set-Point Set-Point Set-Point  Temperature

Figure 2: Schematic representation of the baseline costirategy (“dual maximum”) used at the
VAV terminal boxes of commercial buildings.

2.2. Measured Occupancy Based Setb&d®BS) Controller

The proposedMOBS control strategy requires occupancy measurements in
addition to the zone temperature measurements. It is quiitasto theBL con-
troller described in Sectial 1, except for two key differences. First, the minimum
allowed flow mentioned inl| is calculated based on the measured occupancy in-
stead of the design occupancy, which is expressed as

Minimum Allowed Flow Rate at time = ms"P(t) + anyy,, )

wherenP(t) is the occupancy measured at timyeand m”, i, are computed
using (). Second, the temperature set-points are determined lamsedhether

the zone is occupied or not:

RT G(t) = Tunoce RTG(t) = T,
HTG(t) = Tunoce Lit nP(t) =0, HTG(t) =T LifnP(t)£0. (3)
CTG(t) = Tnoce CTG(t) = T
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The choice of design variablgees T8, T,Un00C T8¢, Tunoce To%¢ involves

atrade-off between energy savings and thermal comforarylehe rang€T,cir, Togrl
should be chosen to ensure that occupants are comfortabéezbne temperature
is within this range. A wider range will in general reduce rgyeconsumption,
since the controller may be able to reduce reheating duowghermal load con-
ditions and reduce the airflow during high thermal load cbods. Too wide a
range will, however, lead to discomfort on the occupants. p&s a general rule,

the parameters for the unoccupied periods should be chogbats
(Tiow: Tughl < [Tiow - Thigh 1 4)

i.e., the temperature is allowed to vary within a wider ranfjealues during un-
occupied periods than in occupied ones. This is expectegtbtb energy savings
as well. However, even in unoccupied times it is not advisablet the tempera-
ture deviate too far from what is allowed during occupiedesmOtherwise, when
the zone becomes occupied again, it will take a long timeit@lihe temperature
back to the range allowed during the occupied time, whichaailise discomfort
to the occupants. In addition, letting the temperature fmectoo low may cause
condensation on surfaces leading to mold growth. SimilahHgosing the reheat-
ing set-points TRTR S, Tero) far from the heating set-point$£1°°, T,2°) is likely
to lead to not only more the energy savings but also more difmo.

The algorithm described above is termd@®BS(Measured Occupancy Based
Setback) control because, in general, it sets back the ratupe set-pointRT G
HT G, andCLG) and the airflow rate when the zone is not occupied.

2.3. MPC-based Controllers

In this section, we propose two MPC-based control algosthdlOBO and
POBQ The block diagram of the implementation of thk©BO andPOBOcon-
trollers is shown in Figur8. Time is measured with a discrete index 0,1,...,
where the time period betwe&randk+ 1 is denoted byt. Both the controllers
compute the control inputsT 8Ak), m>A(k)) overK time indices by solving an
optimization problem which minimizes total energy constiompover that period
while maintaining thermal comfort and IAQ. The control inpare applied at the
current time indeXx. The optimization problem is solved again at time inéexl
to compute the control inputs for the ndkttime instants. The whole process is
repeated ad infinitum.

To solve the underlying optimization problem, the contdineed (i) predic-
tions of the exogenous inputs suchTd¥, WA Q3 andnP, over the time horizon
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Figure 3: Schematic representation of MPC-based contsofOBO andPOBO) implementa-
tion for a zone-level control.

of optimization, and (ii) a model of the zone hygro-thermahamics and the ini-
tial state of the hygro-thermal dynamics model. Predictibh®A, WO andQS is
assumed available from weather forecasts. Obtaining @raypprediction ifP)
is explained later when both the controllers are explainatkiail. The model of
building hygro-thermal dynamics and power used by the otlets is explained
next. An EKF (Extended Kalman Filter)-based state obsesvemployed to esti-
mate the initial state of the model at the start of the optatian.

The model of the zone thermal dynamics is constructed by aantbelemen-
tal models of conductive interaction (RC networks) betwsemspaces separated
by a solid surface such as a wall, as well as heat exchangeodine tsupply
and return air. Humidity dynamics are derived from massraada The resulting
model of the hygro-thermal dynamics of the zone is a set oplemllODEs. We
refer the reader tdlfg] for the details of the model. The continuous-time coupled
ODE model is discretized using Euler’s forward method taoba discrete-time
model, which can be expressed as

T(k+1) = AT(K) +Bw(k) + f (TZ(k),W(K), u(k), v(K)),
WA (k+1) = g(T*(k), W*(k), u(k), v(k)), (5)

where the vectoT (k) € R" consists of the zone temperatdrg k) and the tem-
peratures of the nodes interior to the walls. The veetky consists of exogenous
inputs, while the vectoun(k) consists of the control inputsnPA(k), TSAK)), i.e.,

u(k) = [m>AKk), TSAK)]T. The interior nodes come from the resistance-capacitance
network used to model conduction. The parameters in suchdelyia particular,
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the resistances and the capacitances of the walls and windepend on their
construction, and can be determined from properties listd@2] and methods
described in23)].

The total power consumptidd(k) at the time indeX, which consists of fan
powerP: (K), reheating poweRk(k), and conditioning poweR, (k), is given by

P(k) £ P (k) + Ry (K) + Pr(K). (6)

We write the total power consumption Béu(k) when we want to emphasize its
dependency on control inputs. Since the dynamics of the AFHUhauch faster
than the thermal dynamics of a zone, we ignore the AHU dynsuimis a result,
the power consumed in conditioning the air is a function efitistantaneous tem-
perature and humidity. The fan power, the reheating powel tlae conditioning
power are given by

R = mSA(hOA— hCA), P = BmSA, P = mSA(hSA— hCA), (7)

wheref is a system dependent constant. We refer the interesteelrreg/d 6] for
details about the enthalpy terrhS*, h°A andhSA The energyE (k) consumed
during the time/(k — 1)At, kAt] is estimated as:

E(k) = AtP(u(k)). (8)

2.3.1. POBO(Predicted Occupancy Based Optimal) Controller

In this control algorithm, we assume that prediction of guamncy is available
from the time index to k+ K, and the optimal control inputs for the nékttime
indices are obtained by solving the following optimizatgmoblem:

U*:=arg min G(U), 9)
UeR2K

whereU = [u(k)T,---,u" (k+K)]T andG(U) = S KAtP(u(i)), subject to the
following constraints:
Tiow < T(1) < Tiigp, if nP(i) # 0
Wow < WE(i) < Wi, if nP(i) # 0
eA < TG < 74

MEAP(i) + amh, < mSA) < mih,

The first two constraints mean that the zone temperature amdity ratio are

allowed to vary in the range of I7, Tiackl and MZEE WiRcH], respectively, during

Vi=k,... k+K. (10)
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the occupied time, while there are no constraints on the remperature and
humidity ratio when the zone is not occupied. The third cast is simply to
take into account actuator capabilities, since the VAV bar only increase the
temperature of the supply air above the conditioned air aatpre. In addition,
there is an upper bound on the amount by which the reheataoilncrease the
temperature of the supply air. The fourth constraint mehasthere is a lower
and upper bound on the flow rate entering the zom#Y), The lower bound on the
flow rate is same a2, while the upper boundﬁ{gh reflects the maximum flow
rate possible when the dampers in the VAV box are completeéno

As in the Measured Occupancy Based Setback controllerhihiee of the de-
sign variablesT,5i7, Tk, Wi, Whigh involve a trade-off between energy savings
and potential occupant discomfort. The greater the rargjehle temperature and
humidity are allowed to vary in, both the potential energyirsgs and occupant
discomfort are larger.

After solving the optimization problen®f—(10) at timek, only the part ofJ*
corresponding to the current time indels implemented.

2.3.2. MOBO (Measured Occupancy Based Optimal) Controller

The proposed1OBOcontroller is also an MPC-based control strategy similar
to the POBO controller, but with an important difference.eTMOBO controller
only has access to instantaneous occupancy measurenwrsedictions. Since
MPC requires predictions of all exogenous inputs to perftins optimization
involved in computing the control inputs, some form of ocangy prediction must
be provided to the controller. Moreover, occupancy préalictlecides the range
in which the zone temperature is allowed to stay based onheh¢he zone is
occupied or not. Since only occupancy measurements araleaithe predicted
occupancy for the neX time indices is assumed to be the same as the measured
occupancy at thk-th time period:nP(i) = nP(k),i > k.

The control logic is divided into two modes: (i) Occupiedddii) Unoccu-
pied, which are explained below in detail.

Occupied Mode The controller operates in the occupied mode if the mea-
sured occupancy at theth time index, i.e., at the beginning of the time interval
[kAt, (k+1)At], is at least 1. The optimal control inputs for the né&time
indices are obtained by solving the optimization probl&w-(10).

Unoccupied Mode If the measured occupancy at the time in#eke., at the
beginning of thek-th time period, is observed to be 0, then the controller aigsr
in the unoccupied mode. At tirme the optimal control inputs for the neKttime
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indices are obtained by solving the following optimizatgmoblem:

* . :
U*:= argurgﬂl\)rleG(U), (12)

subject to the following constraints:
Tunoce < T2(7) < Tnoce
Wunocc< WZ<|) < anOCC
low — — "Yhigh ;
A : A Vi=k,...,.k+K. (12)
o <70 <
TCA TSN <Todh
The reason for these constraints is the same as that exgblpregiously. The
constraints on the zone temperature and humidity ratioeérutioccupied mode,
however, are chosen to be such tHE§P, Tuor“I2[Tow, Tigel, and MEEPeS

Whigh 1 2[Wigw, Wiighl- This allows the controller grela?tvér flexibility in rg\cljvug'n
energy consumption by letting the temperature and humiditip to vary in a
wide range when the zone is unoccupied. The choice of tharedesas for the
unoccupied times also involves a trade-off. The farthey tre from their coun-
terparts for the occupied mode, greater is the energy saygotential, but also

greater is the risk of occupant discomfort when occupaneynghs.

Remark 1. By choosingxr > 1, we ensure that for all the controllers the minimum
flow rate during unoccupied times is greater than that prisst by ASHRAE
ventilation standard 62.1-2010LR]. One reason for doing so is to make the
resulting IAQ robust to the errors in occupancy measuresientpredictions. It
also makes the IAQ robust to the uncertainty in the measwed flte and damper
position. By ensuring good IAQ even during times when the mpredicted to
be unoccupied (whether correctly or not), we eliminate tiablem of predicting
the effect of control inputs on I1AQ for the proposed conénl!

3. Performance Metrics

j_AT
The energy consumed by a control@over a period\T is Ec = z:;ft Ec(i),

whereEc(i) is the energy consumed by the control@during the time[(i —
1)At, iAt], calculated usingd). An energy related performance metric is the %
savings over the baseline controllevhich is defined as

Egc —Ec

% Savings= £
BC

(13)
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whereEc andEgc are the energy consumed by the controleaind the baseline
controller, respectively, over the same time period. Thaup&terAT is chosen
as 24hrsin this paper.

Two metrics are chosen for analyzing the thermal comfoateel performance
of the controllers: (i) Temperature Violatid, and (i) Humidity ViolationDy,
which are defined as

—T2(t) + T9oC, if T#(t) < T3 andnP(t) # 0
Dr={ TAU - T it T21) > T andnP(t) # 0
0, otherwise

Y

“W(t) +WOSS, if WE(t) < WOCC andnP(t) O

Dh = ¢ WA(t) —Wigh, if WA(t) >Wr?|§(ﬁ andnP(t) #0
0, otherwise

These metrics measure the deviation of the zone tempeffatunelity from the
allowed range during occupied times. During the unoccupiees, both the tem-
perature and humidity violations are considered 0 sincetiseno one in the zone.
Theaverage temperature violatiqid7) and theaverage humidity violatiofDy;)
during time period\T are defined as

Dx ! D EL Df, = ! o D 1 EL
T QT T H _QT 0 H E
(14)

whereL = AT /At. According to ASHRAE 22, Chapter 8], as long as people are
wearing clothing of thermal resistance betweed7@5n?K /W and 0155mPK /W,
doing primarily sedentary activity, and the air speed in to@e is less than
0.2 m/s, then ensuring that the temperature and humidity of the stayes within
certain range ensures thermal comfort of occupants (seedgn Section4.2).
Therefore, with appropriate choice of the parameTg?ﬁandV\{?)Cc, the tempera-
ture violation and the humidity violations defined above bamsed as metrics for
thermal comfort. Though Predicted Mean Vote (PM22,[Chapter 8] is a widely
used metric to evaluate thermal comfort, it is a function@hplex factors such
as metabolism rate, clothes worn by the occupant, etc.,lwkiquite difficult to
compute in real-time. Therefore, we use temperature vasland the humidity
violation to evaluate the thermal comfort, which are simpéecompute as well
as more robust to assumptions made about the occupants.
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Though IAQ is as important a concern as thermal comfort, ifmore, we do
not define a metric to measure “IAQ performance” of the cdlgrs. ThoughCO,
and volatile organic compounds contribute to poor 1AQ, ¢hisrno well defined
numerical measure to calculate IAQ4]. Instead, we impose constraints on the
minimum flow rate such that IAQ is maintained by all the coltérs, even during
unoccupied times (see also Remajk

4. Simulation Results

4.1. Model Calibration and Validation

Data from room 247 in Pugh Hall at the University of Floridagiesville,
FL, USA is used to calibrate the modé) ( The thermal capacitance per unit area
and thermal resistance per unit area of external walls fahalzones obtained
from [22, Chapter 39] are 36RJ/(nPK) and 269 (mPK /W), respectively. Mea-
surements of the zone temperatures, supply air tempesatocflow rates are ob-
tained from the Building Automation System at 10-minuteiaals. The model
is calibrated by tuning the total thermal resistance pet arg@a of thenternal
walls to minimize the error between the measured temperaturehenprédicted
temperature of the zone. Data for a 48 hour long period (JaiRB0, 2011) is
used to calibrate the model. Since this time correspondsateekend, it is as-
sumed that there are no occupants during this time. The casopaetween the
measured and predicted temperatures with the calibratelélrace shown in Fig-
ures4(ay4(b). The validation data set (midnight Feb 5th through midnagtieb
6th, 2011) also is from a weekend. It is clear from the figued the temperature
predictions by the model are close to the measured values.

4.2. Choice of parameters

Simulations are carried out for a model of three types of zoAdl the zones
have one external wall, one window and three internal wale internal walls are
of the same type. Itis assumed that the floor and the cellmgenfectly insulated,
and the window has negligible thermal capacitance. Each has the same win-
dow and same external wall construction, but the interndiswary from zone to
zone. A type-1 zone has internal walls of high thermal rasis¢ and low thermal
capacitance. The internal walls of a type-2 zone have lowriakeresistance and
high thermal capacitance. The internal walls of a type-3sZoave low thermal
resistance and low thermal capacitance. We do not consigienewith internal
walls of high thermal capacitance and high thermal rest®asince this is un-
usual. The calibration and validation for the dynamic maxfelbom 247, which
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Figure 4: Comparison of predicted and measured temperiatthie room 247 in the Pugh Hall at
the University of Florida, Gainesville, FL, USA.

is of zone type-3, is shown earlier in Sectidrl. The total thermal resistance
and capacitance of internal walls of this zone are increésednstruct models

of type-1 and type-2 zones. The resulting resistance anacdapce values are
shown in Tablel.

Table 1: Total thermal resistance and capacitance of theamirand the walls (internal and exter-
nal) of three types of zones.

Internal Wall External Wall Window
Zone Total Thermal Total Thermal Total Thermal Total Thermal Total Thermal
Type Resistance#) Capacitance#??) Resistance%) Capacitance#%() Resistance#)
1 2.7 31
2 0.5 368 2.7 368 0.5
3 0.5 31

The boundaries of each zone that are separated from the gahe mternal
walls are assumed to have a constant temperature.8f@2The external wall
separates a zone from outside weather, and three typessfl@wteather con-
ditions are considered: cold, hot and pleasant. Figusbows the temperature
and humidity data for the cold (Jan 14, 2011), hot (Jul 31,120&nd pleasant
(Mar 16, 2011) days in Gainesville, FL, USA. “Pleasant wedtls non-standard
terminology; we use it to denote weather that is neitheheeihot nor cold.

The maximum flow rate for all the controllers is chosen d28kg/s. From
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Figure 5: Outside temperatur€?”) and relative humidityi©?) for the cold (Jan 14, 2011), hot
(Jul 31, 2011), and pleasant (Mar 16, 2011) day in Gaines\HIL, USA.

ASHRAE ventilation standard 62.1-20107 requirements and return air ratio
shown in Table, it turns out thatn;” = 0.005kg/s andniyy, = 0.015Kg/s and.
These values are computed usifg, (ith A, = 25 m?. For theBL controller,
the Minimum Allowed Flow Rate is chosen a®98kg/s, which corresponds to a
designed occupancy of approximately 5 persons for the gieee. This is also
the minimum flow rate that is currently being used by the @xgstontrol logic
in room 247 of Pugh Hall. The IAQ factor of safety is chosemas 1.7, so that
the minimum flow rate for thtAOBS MOBO, andPOBOcontrollers during the
unoccupied mode turns out to lben>s, = 0.0255Kg/s. For theBL controller,
the temperatures: RTG, HTG, and CLG are set t@21, 219°C, and 236°C,
respectively, from 6 : 30 a.m. to 10 : 30 p.m. During the time 30 p.m.—6 : 30
a.m., the temperatures: RTG, HTG, and CLG for Blecontroller are chosen
as 209°C, 211°C, and 244°C, respectively. This nighttime setback is currently
used in the Pugh Hall.

Other design parameters are shown in Tablelt is shown in table2 that
the set-pointsRT G HT G, andCT G) are changed symmetrically around the set-
point TS based on whether the zone is occupied or not. STit€e= RTCICLE g5
mentioned in the SectioR 1, the desired set-poifit®® stays constant.

The comfort envelope (which is defined by the constraintderzone temper-
ature and humidity ratio) used in this paper during the ommipnd unoccupied
times are shown in Figui@ As long as certain assumptions on occupants clothing
etc., are satisfied (see Secti@) thermal comfort is ensured if temperature and
humidity ratio are maintained within the shaded regionsshim the figure. The
constraints on the zone temperature and humidity ratio lapeen so that when
they are met, the zone-climate meets the ASHRAE mandatetitoors [22].
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Table 2: The design parameters used in the various consolle

Design Parameters
Temperature Parameters
T Tow | Tomn | W02 | TR | Towr | Ten | T | Tameee [ TO8
(G | O | (9 G | (9 | (O | (O | (Q Q) | (9
22.8 12.8 30.0 209 | 218 | 219 | 23.6 21.1 244 | 12.8
Humidity and Other Parameters
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@ | @] @ | @@ min) | () | (%)
7.4 7.4 10 10 7.4 3 10 24 40 5

Comfort envejope dur}( |
/] the unoccupied time /4 A5

S cused jn this ppper
ey\ Lupy B e

/ N
7

\|\ } g
? WINTER AR SUMMER]| <

T RS NSN 5

70

65

60
10

55,

50

45

L L L L L |

40
35

30
25
20

10

DEW-POINT TEMPERATURE, °F

\

HUMIDITY RATIO, Ib water vapor per 1000 Ib dry air

Comfort envelope during|
qlhe occupied time
111 1 111 1 111 1 SIe(I‘ IInlthlls Iplarfer I 1 1 11p
60 65 70 75 80 85 90

OPERATIVE TEMPERATURE, °F

Figure 6: Comfort envelope specified 22 Chapter 8], shown in the striped black area, and the
envelope chosen in this paper during the occupied and up@attime, shown in dashed red and
blue boxes, respectively.
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4.3. Performance Comparison

In this section, we compare the performancBbfMOBS MOBO, andPOBOcon-
trol algorithms that are described in Sect@dnSimulations are performed using
MATLAB; while IPOPT [25] is used to solve the optimization problems for the
MOBOandPOBOcontrol algorithms.

Each zone is occupied by a person from 8 : 00 a.m. to 12 : 00 ard.1 : 00
p.m. to 5:00 p.m., everyday. The total daily energy consuonpaverage tem-
perature violation, average humidity violation, and % sgsi over the baseline
controller are shown in Tablgé We see from the table that depending on the zone
type and outside weather, th@¢OBS and MOBO controllers result in 42-59%
and 45-59% energy savings, respectively, over the basetingoller. Recall
that both theMOBSand MOBO controllers use occupancy measurements; not
predictions. The table also shows that B@BO controller—which requires oc-
cupancy predictions—can result in additional energy sg/over thelOBSand
MOBO controllers by an amount varying from 1% to 13%, again dependn
zone type and weather. All the controllers have very smaliaye temperature vi-
olation, and uniformly zero average humidity discomfargspective of the type
of zone or weather. Recall that IAQ is maintained at all tiragshe constraint
on the minimum airflow rate. The results thus indicate thatehergy savings
from the proposed controllers are achieved with minimalacton either thermal
comfort or IAQ.

Table 3: Energy consumption, average temperature violagwerage humidity violation, and
% savings over a 24-hour period for single zone with varioostollers. The three weather
conditions are chosen for Gainesville, Fl, USA.

38.4 49.9 0.021
36.2 52.8 0.005
32.9 57.2 0

92.2 48.3 0.013
90.0 49.5 0.002
83.3 53.3 0

3 MOBS | 49.7 45.9 0.023
MOBO | 47.3 48.5 0.006
POBO | 40.5 56.0 0

Cold Hot Pleasant
Zone | Control E Savings| Df ¥ E Savings | D7 Df E Savings| D7 5
Type | Scheme| MJ % °C k% MJ % °C k% MJ % °C k%
BL 93.4 - 0.007| 0 | 179.4 - 0.003| 0 | 78.3 - 0.004| O
1 MOBS | 53.5 42.7 0.026| O 97.5 45.6 0.014| O 415 47.0 0.018| 0
MOBO | 50.6 | 458 | 0.006| O 93.7 477 | 0.004| 0 | 39.0 50.1 | 0.006 | O
POBO | 41.5 55.6 0 0 83.9 53.2 0 0 33.6 57.1 0 0
BL 86.8 - 0.005| O 173.7 - 0.001| O 72.2 - 0.003| O
2 MOBS | 42.1 51.4 | 0.016| O 79.6 54.2 | 0.001| 0 | 29.9 58.6 | 0.008| O
MOBO | 40.2 53.7 0.004| O 80.0 54.0 0 0 30.2 58.2 0.001| O
POBO | 35.9 58.7 0 0 78.9 54.6 0 0 28.4 60.7 0 0
BL 91.9 0.007| 0 | 178.4 0.002| 0 | 76.8 0.004| O
0 0 0
0 0 0
0 0 0
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The energy savings come from the reduction of supply air flate and the
increase in the allowable temperature range when the zamat isccupied. Re-
duction in the flow rate decreases fan-, conditioning-, afebating-energy con-
sumption. Increasing the allowable temperature rangdtsesuless reheating
energy consumption at the VAV box, because the zone temyerest allowed to
be lower during unoccupied times than what the baselineraibert allows. For
every zone, the total energy consumption is maximum duratgeather because
more energy is consumed by the AHU to condition the hot andithaotside air
than to condition the cold dry air. Among the three weathpisasant weather
leads to the minimal energy consumption because apart froafl sonditioning
energy requirements in such a weather, only a small amoumthefating energy
is required. For a fixed zone, the fan energy is approximaitye during all the
weather conditions.

Given a controller and outside weather, we observeEhat type 2 < Ezone type3 <
Ezone type-1. Among the three types of zones, the type-2 zone consumésetsie
amount of energy. This is because the zone type-2 walls lvavéhlermal resis-
tance and high thermal capacitance, and the surroundirggsud the zone that
are separated by the internal walls are maintained 222 The low thermal re-
sistance helps maintain the zone temperature close.BQ@dy fast transfer of
energy through the internal walls from the surroundingsheut the controller
having to expend much energy. In addition, the high therraphcitance causes
the internal walls to store energy, which helps in maintagrthe zone tempera-
ture. Type-1 zone consumes the maximum amount of energyibecd the high
thermal resistance and low thermal capacitance of thenakevalls. The high
thermal resistance does not allow easy transfer of eneoyy the surroundings
through the internal walls, which, since they are maintiae222°C, could have
helped the control maintain the zone temperature arour @2vith less effort.
In addition, the low thermal capacitance does not help irirgjcenergy as in the
case of type-2 and type-3 zone.

The average temperature violati@} with either theBL controller or the
MOBScontroller is more than the average temperature violatitmttve MOBOcon-
troller for a fixed zone. It occurs because #ie andMOBScontrollers wait for
10 minutes to turn on the heating/cooling mode. Among allabetrollers, the
average temperature violation is maximum for M&®BScontroller. Since the
MOBScontroller increases the temperature range during therdayt unoccu-
pied, it takes some time for the zone temperature to come toaitle allowable
range when the zone becomes occupied again. HoweveBLtlzentroller does
not increase the allowable temperature range during thendeyeven if it is not
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occupied. Therefore, the average temperature violatitimtiveMOBScontroller
is more than that with thBL controller.

The simulation results shown above are for the case wherpaocy varies
between 0 and 1, and for the Gainesville, FL, USA location. NAfe also con-
ducted simulations for three more cases: 1) occupancysvhgeveen 0 and 3;
location: Gainesville, FL, USA, ii) occupancy varies beéned and 1, location:
Phoenix, AZ, USA, and ii) occupancy varies between 0 and@&tlon: Phoenix,
AZ, USA. The weather days for Phoenix are chosen to be the sant®se for
Gainesville; see Sectioh2 Very similar % savings over the baseline controller,
and average temperature/humidity violations, are obthioeall the cases. The
results are not shown due to space limits.

MPC vs. feedback, with occupancy measurementa/Vhile theMOBScon-
troller uses simple rule-based feedback control based rapdeature and occu-
pancy measurement, thdOBO controller is a much more complex MPC-based
control scheme that requires prediction of relevant stat@kles and exogenous
signals. Yet, the results above show that the performanabheoMOBS and
MOBO controllers are quite similar, both in terms of energy sgsiand thermal
comfort. This is due to the fact that without occupancy predn, the MPC-based
controller cannot really take advantage of its powerfuirajation algorithm. If
predictions are available, the optimization routine maybke to reduce the air-
flow and let the temperature “float”, thus saving energy, drahtbring it back
up right before the zone is about to be occupied. In the alesehsuch predic-
tion, the MPC-controller can only do whatveell-designedieedback controller
will also do, that is, set back the zone temperature whendhe & unoccupied,
but not too much so that it can be changed quickly when ocaypeimanges, and
maintain some minimum airflow to ensure good IAQ.

One concern during the initial stages of the research washtealow thermal
dynamics of a typical zone, along with the limitations of #etuators, will make
the response of the closed-loop control system too slowdarernccupant com-
fort during the transition period when occupancy changeswéaver, the results
reported here show that this concern can be mitigated byopppte choice of the
temperature and humidity bands.

Utility of occupancy prediction: One surprising observation is that the addi-
tional % savings of th€OBOcontroller over theMOBSandMOBO controllers
are small, 1-13%, even though it uses occupancy predictbiie the other two
only uses measurements. One could expect that since oayupeedictions are
available, the controller can turn the airflow rate quite,ltivereby resulting in
large energy savings. The small additional savings are dued ventilation
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requirements. ASHRAE ventilation standard 62.1-201# fequires a certain
amount of outside air that depends on the floor area even wigerone is unoc-
cupied. For a medium sized office with a small design occupéiid people), the
resulting minimum flow rate turns out to be a significant fiactof the nominal
airflow rate during occupied periods. Savings would be higfiie ventilation
rates during the unoccupied times were to be smaller than areaprescribed
by current standards. For instance, the older ASHRAE \agiuit standard 62.1-
2001 6] did not require outside air supply during unoccupied timé¢e per-
formed simulations with a minimum airflow rate of O during eoopied times.
In that case the savings with tR®OBOcontroller increases up to about 80% over
the baseline controller. That is, the additional savingssfme with occupancy
prediction—compared to occupancy measurement—is nowt Z98a.

5. Discussion and Future Work

We examine how a controller performance is affected by itsmexity, where
the goal of the controller is to minimize energy consumptidrile maintaining
comfort level in a zone in a commercial building with a vatehir-volume HVAC
system. For that purpose, we propose three control stestefivarying complex-
ity and requiring varying fidelity of informationfOBS MOBO andPOBQ The
performance of the proposed controllers are compared ghreimulations with
that of a conventional baseline controller. The baselingrotler uses temper-
ature feedback but not real-time occupancy information.cdntrast, the pro-
posedMOBSand MOBO controllers require occupancy measurements, and the
POBO controller requires occupancy predictions. WHiKOBS controller is a
feedback control algorithm, thRiIOBO and POBO controllers are MPC-based
algorithms. Simulation results show that all three comgrsllead to substantial
improvement in energy savings (about 50% on average depgiodi zone type,
weather, climate, design occupancy, etc.,) with neglegitvipact on IAQ or ther-
mal comfort.

The study shows that even a simple feedback-based algocémperform
as well as an MPC-based algorithm, if only occupancy measemés are avail-
able. In the absence of occupancy prediction, MPC simply katk the zone
temperature to save energy; while the feedback contraleesigned to mimic
that behavior as well. Another conclusion of the study i¢ tha additional sav-
ings with an MPC-based control that uses occupancy predictover one that
only uses measurements - is small. The small additionahgawre due to the re-
striction on the minimum airflow, which come from current ABAE ventilation
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standard 62.1-201QLP]. If lower ventilation rates are allowed during unoccu-
pied times, as earlier standards did, it is possible to sgwéficantly more energy
by using occupancy prediction; assuming of course that puetiictions can be
obtained. However, with the current standards, MPC-basatta does not pro-
vide significant energy savings over much simpler feediimded schemes, even
when occupancy predictions are available. At the same toesiderable effort
is required in developing/calibrating/validating dynamodels required by the
controller, and the numerical optimization involved malke tontroller computa-
tionally complex. Thus, the use of MPC-based zone-climaterol of existing
VAV systems may not be economically justified. A feedbacktoater is the
most appropriate control algorithm to be used at the zonel lEnce it is sim-
ple, computationally fast, requires minimal investmentandware and software,
and delivers energy savings quite similar to that of muchamamplex control
algorithms.

The study shows that occupancy measurement is a key conipafresrtergy-
efficient zone-climate control. When the zone is designhedafsingle person,
such as an office, a motion detector can be used to measungaoayu However,
if the zone is designed for multiple occupants, measurirgpancy is not triv-
ial. Development of reliable yet inexpensive occupancysueament technology
will greatly facilitate the deployment of occupancy-basergy-efficient build-
ing control. The controllers proposed in this paper haveesorbustness to errors
in occupancy measurements due to their higher-than-neadechum airflow. A
detailed study of their performance with varying levels acfasurement error is
planned as part of future work.

There are several additional avenues for further explomathll the proposed
control algorithms require choice of several parametergchvinvolve a trade-
off between energy savings and potential discomfort. Tiaide-off needs to be
more carefully examined to determine a set of guidelinesamto choose these
parameters. Implementing the proposed controllers in lebrelling is required
to verify the simulation results. Work on experimental fieation is ongoing.
In this paper, we have assumed that a zone consists of somie. rThe control
algorithms can be extended in a straightforward manner eppécable to a zone
that consists of multiple rooms. Their performance in sudtenario, though,
needs to be studied.

In this paper, the AHU control inputs (such as conditioned@inperature,
flow rate and return air dampers position) are assumed ctratal treated as
exogenous inputs. It is possible that through a coordinatedrol among the
AHU and multiple zones, more energy efficiency can be acligvan what can be
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achieved by keeping the AHU controller and zone-level aulgrs independent.
This is another interesting direction to pursue.
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