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Abstract

We propose several control algorithms to compare their performance and com-
plexity through simulations; the control algorithms regulate the indoor climate of
commercial buildings. The goal of these control algorithmsis to use occupancy
information to reduce energy use—over conventional control algorithms—while
maintaining thermal comfort and indoor air quality. Three novel control algo-
rithms are proposed, one that uses feedback from occupancy and temperature sen-
sors, while the other two computes optimal control actions based on predictions of
a dynamic model to reduce energy use. Both the optimal-control based schemes
use a model predictive control (MPC) methodology; the difference between the
two is that one is allowed occupancy measurements while the other is allowed
long term occupancy prediction. Simulation results show that each of the pro-
posed controllers lead to significant amount of energy savings over a baseline con-
ventional controller without sacrificing occupant health and comfort. Another key
finding is that the feedback controller performs almost as well as the more com-
plex MPC-based controllers. In light of the informational/computational com-
plexity of the MPC algorithms compared to the feedback control algorithm, we
conclude that feedback control is more suitable for energy-efficient zone-climate
control than MPC-based control, and that the difficulty of obtaining occupancy
predictions is not commensurate with the resulting benefits.
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Nomenclature

CLG Cooling set-point

DH Humidity violation

D⋆
H Average humidity violation

DT Temperature violation

D⋆
T Average temperature violation

EC Energy consumed by controllerC

EBC Energy consumed by the baseline controller

H Relative humidity

HTG Heating set-point

K Number of steps chosen for prediction horizon during the optimization

P Total power

PF Fan power

PR Re-heating power, i.e., power consumed in reheating at the variable-air-
volume (VAV) box

PU Conditioning power, i.e., power consumed by chiller

Qs Rate of heat gain due to solar radiation

RTG Re-heating set-point

RRA Return air ratio (ratio of return air to mixed air flowrate)

T Temperature

Tset Desired set-point
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TRTG Re-heating set-point

Thigh Maximum temperature allowed in the zone

Tlow Minimum temperature allowed in the zone

W Humidity ratio

Whigh Maximum humidity ratio allowed in the zone

Wlow Minimum humidity ratio allowed in the zone

∆t Discretization time

α IAQ factor of safety

h Enthalpy of air

mA
z Amount of fresh outside air required per unit area

mOA
p Amount of fresh outside air required per person

mSA
p Amount of supply air required per person

mSA
high Maximum amount of supply air during occupied or unoccupied time

mSA
low Minimum amount of supply air during unoccupied time

np Number of people

u Controllable input vector

v Exogenous input vector

A Floor area

β Fan power constant

subscripts

d Designed

superscripts
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z Zone

OA Outside air

occ During occupied time

unocc During unoccupied time

CA Conditioned air: air being supplied by air handling unit (AHU)

SA Supply air (air leaving the VAV box)

1. Introduction

Buildings are one of the primary energy consumers worldwide. In the United
States, they account for about 40% of the total energy consumption [1]. Heating
ventilation and air-conditioning (HVAC) contributes to more than 50% of the en-
ergy consumed in buildings [1]. Poor design and inefficient operation of HVAC
system cause a large fraction of energy used to be wasted [2, 3]. Though it is pos-
sible to improve energy efficiency through better HVAC system design, it requires
substantial investment to retrofit an existing building with improved HVAC equip-
ment. In contrast, improving control algorithms (that operate the HVAC system)
to achieve higher efficiency is far more cost effective, as long as such a solution
does not require expensive additional sensors. Indeed, a number of recent papers
have focused on improving energy efficiency in buildings through advanced con-
trol algorithms that use occupancy information [4, 5, 6, 7, 8, 9, 10]. This is the
subject of our paper as well; we consider control algorithmsthat use occupancy
information to maintain the climate of individual zones at appropriate conditions
with reduced energy use compared to conventional control algorithms. An impor-
tant constraint is cost; one should be able to apply these control algorithms with
minimal investment.

We limit ourselves to commercial buildings with variable-air-volume (VAV)
system. More than 30% of the commercial building floor space in the United
States is served by VAV systems [11]. In a VAV system, a building is divided into a
number of “zones”, where a zone can be single room or a collection of rooms. The
flow rate of supply air, i.e., air supplied to a zone, is controlled through dampers in
the VAV box of the respective zone. The conditioned air, which is the air supplied
by an AHU, may be reheated at the VAV box before being suppliedto the zone.
We focus on control strategies that can be applied at each VAVbox, where the
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control inputs that need to be decided are the mass flow rate and temperature of
the supply air.

Typically, a simple rule-based feedback control strategy is used at the VAV
box that does not use real-time occupancy measurements1. The controller de-
termines the flow rate of air supplied to the zone, as well as any reheat to be
applied, to maintain the temperature of the zone at specific ranges that are based
on predetermined occupancy schedules. To maintain indoor air quality (IAQ), the
minimum airflow rate is determined based on the occupancy schedules and build-
ing standards, such as ASHRAE (American Society of Heating,Refrigerating and
Air-Conditioning Engineers) ventilation standard 62.1-2010 [12]. This minimum
flow rate is usually 30–40% of the designed maximum. Hence, zones are typically
over-ventilated, especially when the zone is not occupied but it is expected to be,
e.g., in “daytime” mode. This causes wastage of energy.

Over-ventilation can be prevented by applying demand control ventilation
(DCV), i.e., by changing the supply air flow rate based on real-time occupancy
measurements orCO2 measurements instead of a pre-defined schedule. Real-time
occupancy measurements can be obtained from motion detectors such as PIR and
ultrasound sensors, which are inexpensive and work well in small office spaces
where the nominal occupancy value is one [5, 13]. In very large spaces,CO2 mea-
surements can be effectively used for DCV in lieu of an occupancy sensor. DCV
is typically used in large spaces with the help ofCO2 sensors; its use in small
zones (such as office rooms) is less common. In medium-sized spaces where the
nominal occupancy is more than one but not very large, measuring occupancy is
non-trivial. Efforts in developing occupancy measurementtechnology are carried
out by several researchers; see [14] and references therein.

As sensors and/or algorithms for inexpensive yet reliable real-time occupancy
measurement/estimation become available, it should be possible to do more to
reduce energy use apart from controlling ventilation. For example, we can save
energy by reducing the airflow rate as well as letting the temperature float during
unoccupied times in a wider range than when it is occupied. Caution is required
while developing a control algorithm to achieve that objective. For instance, if
we let the temperature during unoccupied times deviate far away from what is
considered comfortable, it might take a while for the zone temperature to come
back to a comfortable condition when the zone becomes occupied again. Same
goes for humidity and IAQ. Thus, the dynamics of temperature, humidity, and IAQ

1In this paper, “occupancy” is used to denote the number of people in a space.
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have to be taken into account in designing such control algorithms. Moreover, the
controller should also have some robustness to error in occupancy measurements.

In this paper, we examine how much energy can be saved by control algo-
rithms that use information of occupancy and system dynamics, and how the sav-
ings depend on the fidelity of the information. As more fine-grained information
is available, we may be able to save more, but the control algorithm may become
more complex. Our focus is on control algorithms that can be used in VAV boxes
of individual zones in existing (and new) commercial buildings: the controller has
to decide the flow rate and temperature of the air supplied to the zone. It can
vary the airflow rate between 0 and some upper bound, while thetemperature can
be only increased beyond the temperature of the conditionedair (air leaving the
AHU) by using the reheat coil, but not decreased. Though it ispossible to add
additional actuation such as controllable window blinds, they require significant
hardware upgrade, and therefore are not considered here.

The first and the simplest controller we propose is a rule-based feedback con-
trol law that decides the control inputs based on instantaneous measured occu-
pancy. This control strategy is calledMOBS(Measured Occupancy Based Set-
back), since it typically “sets back” the zone temperature set-points and flow rate
to smaller values during unoccupied times. During occupiedtimes, the zone tem-
perature is maintained in the same range as that a conventional controller would
do, and the flow rate is determined based on the measured occupancy.

A natural choice for a control algorithm is one that minimizes energy con-
sumption while satisfying constraints on the thermal comfort and IAQ. We next
propose a controller that does so by solving an optimal control problem in a re-
ceding horizon fashion. That is, given a dynamic model relating the control inputs
to the relevant outputs (temperature, humidity, etc.,), the controller computes the
control inputs that will minimize the total energy consumption over some finite
time interval, say∆T, as well as maintain pre-specified constraints on zone tem-
perature, humidity etc. It applies the resulting inputs fora time interval that is
shorter than∆T, and then re-computes the control inputs for the next interval of
length∆T by utilizing up-to-date measurements. The process is repeated. This
method of computing the control inputs is called receding horizon control (RHC)
or MPC, and is widely used in practice [15] due to its ability to efficiently com-
pute optimal control solutions in problems that involve constraints. Several re-
cent papers have proposed MPC-based controllers for efficient building control,
which we discuss in Section1.1. Application of MPC to energy minimization
control requires a model of the dynamics of temperature, humidity, and IAQ (i.e.,
contaminants), as well as predictions of the exogenous inputs such as solar ra-
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diation, temperatures of surrounding spaces, and most importantly, occupancy.
Occupancy affects not only the heat gains and humidity but also the constraints.
For instance, the temperature of the zone can be allowed to vary in a wider range
during unoccupied times compared to the range during occupied times. A model
of the hygro-thermal dynamics, i.e., of temperature and humidity, are obtained
using lumped parameter models [16]. However, IAQ dynamics are not modeled
since there is no well accepted numerical metric for measuring IAQ. Instead con-
straints are posed on the air flow rate according to ASHRAE ventilation standard
62.1-2010 [12] so that IAQ is assured. The proposed MPC-based controller is
calledPOBO(Predicted Occupancy Based Optimal), because it uses occupancy
predictions, among other things, to calculate the control inputs.

Obtaining occupancy prediction is quite challenging. Therefore, we next con-
sider the case when an MPC algorithm is sought that uses only occupancy mea-
surements, not predictions. In this case, to use an MPC formulation, future occu-
pancy is assumed to stay at the currently measured occupancy. We call the result-
ing control scheme theMOBO (Measured Occupancy Based Optimal) controller
because it uses occupancy measurements—as opposed to prediction—to calcu-
late the optimal control inputs. This controller is expected to retain some of the
benefits of MPC, such as directly minimizing energy and maintaining constraints,
while making the information requirements of the controller more realistic.

Performance of the proposed algorithms are compared through simulations to
that of a conventional controller used in existing commercial buildings; the so-
called “dual maximum” control [17, Chapter 47]. We henceforth refer to dual
maximum as theBL (baseline) controller. TheBL andMOBScontrol algorithms
are pure feedback strategies. TheBL controller uses only zone temperature mea-
surements but not occupancy measurements. TheMOBScontroller uses measure-
ments of both zone temperature and occupancy. Both theMOBO controller and
thePOBOcontroller need a model of the hygro-thermal dynamics of thezone to
solve the underlying optimal control problems. WhileMOBOrequires occupancy
measurements, thePOBO algorithm requires occupancy prediction. Thus, the
complexity of the control algorithms increases in the orderBL, MOBS, MOBO,
POBO.

Simulations are performed for three different types of zones exposed to several
types of outside weather and climates. The zone consists of single room in all
simulations, with design occupancy varying between one andthree. The main
conclusions from the simulations are the following:

1. It is possible to obtain significant energy savings by using occupancy mea-
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surement or prediction, with negligible effect on the zone IAQ and occu-
pants thermal comfort. The proposed controllers that use occupancy mea-
surement or prediction provide savings of 40−60% over the baseline con-
troller that does not use real-time occupancy measurement but only night-
time setback.

2. A simple rule-based feedback control algorithm can perform just as well
as an MPC-based control algorithm, if only occupancy measurements (not
predictions) are available.

3. If occupancy predictions are available, an MPC controller that uses these
predictions can yield higher energy savings over controllers that use only
occupancy measurements. However, the additional savings are small; about
1–13%. This is due to the minimum ventilation required by thecurrent
building standards, which prevents the controller from drastically reducing
the airflow even when it is known that the zone will remain unoccupied.

These results show that by installing sensors capable of providing occupancy
measurements and augmenting the control logic at the VAV boxes to use these
measurements, substantial energy savings can be achieved.This study shows that
the benefit of using MPC for energy-efficient zone-climate control is questionable;
both the feedback controller and the MPC controller providesimilar energy sav-
ings while the MPC controller is much more complex. The results also indicate
that the effort required in obtaining occupancy predictionmay not be commensu-
rate with the benefit obtained. It should be noted that occupancy prediction is quite
challenging; there are only a few papers on dynamic occupancy models [13, 5]. It
is also not clear how easily such models can be calibrated to individual buildings
and zones, and how accurate their predictions will be in general.

The rest of paper is organized as follows. In the remainder ofthe section, we
discuss the related literature. The baseline control and the proposed control, along
with the model of hygro-thermal dynamics and power consumption, are described
in Section2. Section3 describes performance metrics related to thermal comfort
and energy savings. Simulation results with the controllers are shown in Section4.
Section5 concludes the paper with a discussion of the results and waysto extend
this work.

1.1. Related work
A number of papers have investigated the use of occupancy information (ei-

ther measurements or predictions) to reduce energy consumption in buildings.
The papers [6, 7, 8, 9] compare MPC-based controllers that use occupancy pre-
diction with conventional controllers that do not use such prediction, apart from
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day/night schedules. They report substantial energy savings with MPC compared
to conventional controllers. However, these papers do not investigate how much
energy savings are possible with any controller that is lesscomplex than MPC
and that uses occupancy measurements, which are easier to obtain than occupancy
prediction.

A number of papers have proposed simple rule-based controllers that use oc-
cupancy measurements, and conclude that significant energysavings are possible
with the rule-based controllers compared to the conventional controllers that do
not use occupancy measurements [18, 19, 20, 21]. The controller in [18] uses
occupancy measurements to turn off the HVAC system, while the controllers in
papers [19, 20, 21] modulate only the ventilation rate based on measured occu-
pancy. However, these papers do not compare rule-based control with complex
control schemes such as MPC. While MPC may require more information (i.e.,
dynamic model and occupancy prediction) compared to rule-based control it may
also lead to more energy savings. The paper [5] compares several rule-based
controllers that use various types of occupancy information: two use occupancy
prediction while one uses binary occupancy measurements (presence/absence). It
is concluded that significant energy savings are possible with the rule-based feed-
back control that uses binary occupancy measurements compared to the baseline
controller that does not. It also concludes that a small amount of additional en-
ergy savings are possible if the predictive rule-based controller is used instead of
the feedback controller. However, it does not compare the predictive rule-based
controller with complex predictive control algorithms such as MPC, which may
result in more savings than the rule-based control.

While some of the previous work has compared either MPC or rule-based
controllers with conventional controllers, they did not compare all three. The con-
ventional controllers used for comparison were distinct, making such comparison
harder. It is useful to know how performance (as measured by energy savings
and/or comfort) varies with the complexity of the control algorithm. In particular,
the value of occupancy measurement vs. occupancy prediction is not clear from
the prior work. Since prediction is much more difficult to obtain than measure-
ment, it is particularly useful to know their relative value. Though [5] compares
performance of the rule-based controllers that use occupancy prediction with that
of the feedback controller, the feedback controller uses only presence/absence
measurement but not occupancy measurement.

In this paper we examine the performance of a baseline conventional controller
(without occupancy measurement or prediction), a feedbackcontroller (with oc-
cupancy measurement), and two MPC-based control schemes. One of the MPC-
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based control schemes uses occupancy prediction while the other uses occupancy
measurement in lieu of prediction. This way, we are able to compare the perfor-
mance of feedback control to that of MPC-based control when both are allowed
only occupancy measurement. In short, we examine trade-offbetween energy
savings achieved and the information requirements/complexity of the control al-
gorithm in a unified manner. This is the key difference between our work and
much of prior work. In addition, the papers mentioned above that propose MPC-
based controllers do not take humidity into the control computation, while hu-
midity is taken into account as part of thermal comfort constraints in the MPC
schemes proposed here.

A preliminary version of this work appeared in [4]; which compares feed-
back, MPC, and baseline controllers. There are several significant differences be-
tween [4] and this paper. The baseline conventional controller usedhere is more
energy-efficient than the one used in [4]. The feedback controller used in [4]
modulates only the ventilation rate based on measured occupancy. However, the
feedback strategy in this paper controls not only the ventilation rate but also the
zone temperature, which results in high energy savings. Thedesign parameters
have been fine-tuned in this paper to get better performance from all the con-
trollers. One of the controllers proposed in [4] allowed 0 flow rate when the zone
was known to be unoccupied. In this paper, all controllers are designed to supply a
minimum airflow rate in accordance with the latest ASHRAE ventilation standard
62.1-2010 [12]. This significantly changes some of the conclusions, especially
one about the value of occupancy predictions. Moreover, this paper provides a
more comprehensive simulation study of the performance of the controllers com-
pared to [4]. While [4] considers one type of zone with three occupants exposed
to only one type of outside weather, here we examine several types of zones with
varying levels of occupancy that is exposed to multiple outside weather and cli-
mate conditions.

2. Control Algorithms

A schematic of a typical multi-zone commercial building with a VAV-based
HVAC system and a conceptual representation of a control algorithm that can be
implemented in a zone is shown in Figure1. Part of the air removed from the
zones, which is called return air, is mixed with the outside air before being condi-
tioned at the AHU to temperatureTCA and humidity ratioWCA. The conditioned
air, which is usually cold and dry, is distributed to the VAV boxes at the zones
through the ductwork. The air supplied to a zone by its VAV boxcan be heated
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using the reheat coils at the box. The amount of return air andoutside air that
needs to be mixed is decided by the return air ratioRRA. The humidity ratio of
the supply air (WSA) is same as the humidity ratio of air being supplied by the
AHU, i.e., (WSA=WCA), since reheating does not change the humidity ratio. The
parametersTCA, WCA andRRA are assumed constant in this paper.

Exogenous Inputs

Control Inputs (u)

 

Supply Air
(SA)

Conditioned Air

VAV VAV

Zone

Control
Algorithm

Zone

Zone
Outputs

Outside Temperature (TOA),
Solar Radiation (Qs), Occupancy (np)

Outside Air

AHU

D
am

pe
rs

SA Temperature (TSA)

SA Flow Rate (mSA)

Return Air

Figure 1: Generic scheme for the implementation of a zone-level control algorithm.

The task of a zone-climate control algorithm is to decide thecontrol inputs in
such a way that thermal comfort and IAQ are maintained in thatzone. The con-
trol inputs are temperature (TSA) and flow rate (mSA) of the air supplied to that
zone by its VAV box. The control algorithm may require certain measurements
and/or predictions to compute the control inputs, which vary depending on the
control algorithm. For instance, the commonly used single maximum and dual
maximum control logics [17, Chapter 47] require only zone temperature mea-
surements. However, an MPC-based controller, such as that proposed in [4] or
in this paper, requires measurement and prediction of outside temperature, solar
radiation, occupancy, zone temperature and humidity.

We now describe theBL (baseline) controller, and three proposed control al-
gorithms,MOBS(Measured Occupancy Based Setback),MOBO (Measured Oc-
cupancy Based Optimal) andPOBO(Predicted Occupancy Based Optimal).

2.1. Baseline (BL) Controller
Among the common control logics used at the VAV boxes to maintain IAQ

and temperature in a zone, we choose the dual maximum [17, Chapter 47] as the
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baseline controller. Even though the single maximum control [17, Chapter 47]
is more common in existing commercial building, dual maximum is the more ef-
ficient of the two. In this scheme, the control logic is divided into four modes
based on the zone temperature: (i) Re-heating (ii) Heating (iii) Dead-Band and
(iv) Cooling, which are shown schematically in Figure2. If the zone temperature
stays below the “Re-heating Set-Point (RTG)” for more than 10 minutes, the re-
heating mode is turned on. Similarly, if the zone temperature remains above the
“Cooling Set-Point (CLG)” for more than 10 minutes, the cooling mode is turned
on. If the zone temperature stays between RTG and “Heating Set-Point (HTG)”
for more than 10 minutes, the heating mode is turned on. If thezone temperature
stays between HTG and CLG for more than 10 minutes, the dead-band mode is
turned on. In the re-heating mode, the supply air temperature is set to maximum
possible value (TSA

high), and the supply air flow rate is varied using a PID controller
to maintain the zone temperature to a desired set-pointTset. In the heating mode,
the supply air flow rate is set to the minimum allowed value, and the supply air
temperature is controlled by a PID controller so that the zone temperature is main-
tained close to the set-point (Tset). The minimum allowed value for the flow rate
is determined as follows

Minimum Allowed Flow Rate= mSA
p np

d +αmSA
low,

wheremSA
p = mOA

p /(1−RRA), mSA
low = mA

zAz/(1−RRA). (1)

Whenα = 1, these calculations yield the minimum airflow requirements specified
by ASHRAE ventilation standard 62.1-2010 [12]. Since the baseline controller
does not use occupancy measurement, the minimum allowed flowrate is calcu-
lated using the designed occupancynp

d, which is assumed constant. We usually
chooseα > 1 to make IAQ robust to mismatches between actual and designed
occupancy. In the dead-band mode, no re-heating is performed, i.e.,TSA= TCA,
and supply air flow rate is set to the minimum allowed value (1). In the cooling
mode, no heating or re-heating is performed, i.e.,TSA= TCA, but the supply flow
rate is varied to maintain the desired set-pointTset in the zone.

The desired set-pointTsetused by the PID controllers in the re-heating, heating
and cooling modes is usually the temperature preferred by the occupants. If the
temperature preferred by the occupants is not known, then there are several other
ways to decide the value ofTset. One way is to chooseTset asRTG, HTG and
CLG during the re-heating, heating, and cooling modes, respectively. Another
way is to choseTset as an average ofHTG andCLG during all the modes. We
chooseTset as the average ofHTG andCLG in this paper, i.e.,Tset= HTG+CLG

2 .
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Note that the baseline controller uses nighttime setback: the set-pointsRTGand
HTG are decreased while the set-pointCLG is increased during a pre-specified
period deemed “nighttime”. The set-points are changed based on the assumption
that the zone is not occupied during the night, which resultsin reduced energy
usage.

Room 

Temperature

Heating

Set-Point

Cooling

Set-Point

Minimum

Flow Rate

Dead-Band

Heating Cooling

Supply Air 

Temperature
Supply Air 

Flow Rate
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ir

 
Te

m
p
e
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S
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 A
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F
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Re-heating

Set-Point

Re-heating

Figure 2: Schematic representation of the baseline controlstrategy (“dual maximum”) used at the
VAV terminal boxes of commercial buildings.

2.2. Measured Occupancy Based Setback (MOBS) Controller
The proposedMOBScontrol strategy requires occupancy measurements in

addition to the zone temperature measurements. It is quite similar to theBL con-
troller described in Section2.1, except for two key differences. First, the minimum
allowed flow mentioned in (1) is calculated based on the measured occupancy in-
stead of the design occupancy, which is expressed as

Minimum Allowed Flow Rate at timet = mSA
p np(t)+αmSA

low, (2)

wherenp(t) is the occupancy measured at timet, andmSA
p , mSA

low are computed
using (1). Second, the temperature set-points are determined basedon whether
the zone is occupied or not:

RTG(t) = Tunocc
RTG

HTG(t) = Tunocc
low

CTG(t) = Tunocc
high







if np(t) = 0,
RTG(t) = Tocc

RTG
HTG(t) = Tocc

low
CTG(t) = Tocc

high







if np(t) 6= 0. (3)
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The choice of design variablesTunocc
RTG ,Tocc

RTG,T
unocc
low ,Tocc

low ,T
unocc
high ,Tocc

high involves
a trade-off between energy savings and thermal comfort. Clearly, the range[Tocc

low ,T
occ
high]

should be chosen to ensure that occupants are comfortable ifthe zone temperature
is within this range. A wider range will in general reduce energy consumption,
since the controller may be able to reduce reheating during low thermal load con-
ditions and reduce the airflow during high thermal load conditions. Too wide a
range will, however, lead to discomfort on the occupants part. As a general rule,
the parameters for the unoccupied periods should be chosen so that

[Tocc
low ,T

occ
high]⊆ [Tunocc

low ,Tunocc
high ], (4)

i.e., the temperature is allowed to vary within a wider rangeof values during un-
occupied periods than in occupied ones. This is expected to lead to energy savings
as well. However, even in unoccupied times it is not advisable to let the tempera-
ture deviate too far from what is allowed during occupied times. Otherwise, when
the zone becomes occupied again, it will take a long time to bring the temperature
back to the range allowed during the occupied time, which will cause discomfort
to the occupants. In addition, letting the temperature become too low may cause
condensation on surfaces leading to mold growth. Similarly, choosing the reheat-
ing set-points (Tunocc

RTG ,Tocc
RTG) far from the heating set-points (Tunocc

low , Tocc
low ) is likely

to lead to not only more the energy savings but also more discomfort.
The algorithm described above is termedMOBS(Measured Occupancy Based

Setback) control because, in general, it sets back the temperature set-points (RTG,
HTG, andCLG) and the airflow rate when the zone is not occupied.

2.3. MPC-based Controllers

In this section, we propose two MPC-based control algorithms: MOBO and
POBO. The block diagram of the implementation of theMOBO andPOBOcon-
trollers is shown in Figure3. Time is measured with a discrete indexk= 0,1, . . . ,
where the time period betweenk andk+1 is denoted by∆t. Both the controllers
compute the control inputs (TSA(k),mSA(k)) over K time indices by solving an
optimization problem which minimizes total energy consumption over that period
while maintaining thermal comfort and IAQ. The control inputs are applied at the
current time indexk. The optimization problem is solved again at time indexk+1
to compute the control inputs for the nextK time instants. The whole process is
repeated ad infinitum.

To solve the underlying optimization problem, the controllers need (i) predic-
tions of the exogenous inputs such asTOA, WOA, Qs andnp, over the time horizon
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Figure 3: Schematic representation of MPC-based controllers (MOBO andPOBO) implementa-
tion for a zone-level control.

of optimization, and (ii) a model of the zone hygro-thermal dynamics and the ini-
tial state of the hygro-thermal dynamics model. Predictionof TOA, WOA andQs is
assumed available from weather forecasts. Obtaining occupancy prediction (np)
is explained later when both the controllers are explained in detail. The model of
building hygro-thermal dynamics and power used by the controllers is explained
next. An EKF (Extended Kalman Filter)-based state observeris employed to esti-
mate the initial state of the model at the start of the optimization.

The model of the zone thermal dynamics is constructed by combining elemen-
tal models of conductive interaction (RC networks) betweentwo spaces separated
by a solid surface such as a wall, as well as heat exchange due to the supply
and return air. Humidity dynamics are derived from mass balance. The resulting
model of the hygro-thermal dynamics of the zone is a set of coupled ODEs. We
refer the reader to [16] for the details of the model. The continuous-time coupled
ODE model is discretized using Euler’s forward method to obtain a discrete-time
model, which can be expressed as

T(k+1) = AT(k)+Bv(k)+ f (Tz(k),Wz(k),u(k),v(k)),

Wz(k+1) = g(Tz(k),Wz(k),u(k),v(k)), (5)

where the vectorT(k) ∈ R
n consists of the zone temperatureTz(k) and the tem-

peratures of the nodes interior to the walls. The vectorv(k) consists of exogenous
inputs, while the vectoru(k) consists of the control inputs (mSA(k),TSA(k)), i.e.,
u(k)= [mSA(k),TSA(k)]T . The interior nodes come from the resistance-capacitance
network used to model conduction. The parameters in such a model, in particular,
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the resistances and the capacitances of the walls and windows depend on their
construction, and can be determined from properties listedin [22] and methods
described in [23].

The total power consumptionP(k) at the time indexk, which consists of fan
powerPF(k), reheating powerPR(k), and conditioning powerPU(k), is given by

P(k), PF(k)+PU(k)+PR(k). (6)

We write the total power consumption asP(u(k) when we want to emphasize its
dependency on control inputs. Since the dynamics of the AHU are much faster
than the thermal dynamics of a zone, we ignore the AHU dynamics. As a result,
the power consumed in conditioning the air is a function of the instantaneous tem-
perature and humidity. The fan power, the reheating power, and the conditioning
power are given by

PU = mSA(hOA−hCA), PF = βmSA,PR = mSA(hSA−hCA), (7)

whereβ is a system dependent constant. We refer the interested reader to [16] for
details about the enthalpy termshCA, hOA, andhSA. The energyE(k) consumed
during the time[(k−1)∆t, k∆t] is estimated as:

E(k) = ∆tP(u(k)). (8)

2.3.1. POBO(Predicted Occupancy Based Optimal) Controller
In this control algorithm, we assume that prediction of occupancy is available

from the time indexk to k+K, and the optimal control inputs for the nextK time
indices are obtained by solving the following optimizationproblem:

U⋆ := arg min
U∈R2K

G(U), (9)

whereU = [u(k)T , · · · ,uT(k+K)]T andG(U) = ∑k+K
i=k ∆tP(u(i)), subject to the

following constraints:

Tocc
low ≤ Tz(i)≤ Tocc

high, if np(i) 6= 0
Wocc

low ≤Wz(i)≤Wocc
high, if np(i) 6= 0

TCA ≤ TSA(i)≤ TSA
high

mSA
p np(i)+αmSA

low ≤ mSA(i)≤ mSA
high



















∀i = k, . . . ,k+K. (10)

The first two constraints mean that the zone temperature and humidity ratio are
allowed to vary in the range of [Tocc

low , Tocc
high] and [Wocc

low , Wocc
high], respectively, during
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the occupied time, while there are no constraints on the zonetemperature and
humidity ratio when the zone is not occupied. The third constraint is simply to
take into account actuator capabilities, since the VAV box can only increase the
temperature of the supply air above the conditioned air temperature. In addition,
there is an upper bound on the amount by which the reheat coil can increase the
temperature of the supply air. The fourth constraint means that there is a lower
and upper bound on the flow rate entering the zone (mSA). The lower bound on the
flow rate is same as (2), while the upper boundmSA

high reflects the maximum flow
rate possible when the dampers in the VAV box are completely open.

As in the Measured Occupancy Based Setback controller, the choice of the de-
sign variablesTocc

low , Tocc
high, Wocc

low , Wocc
high involve a trade-off between energy savings

and potential occupant discomfort. The greater the range that the temperature and
humidity are allowed to vary in, both the potential energy savings and occupant
discomfort are larger.

After solving the optimization problem (9)–(10) at timek, only the part ofU∗

corresponding to the current time indexk is implemented.

2.3.2. MOBO (Measured Occupancy Based Optimal) Controller
The proposedMOBOcontroller is also an MPC-based control strategy similar

to the POBO controller, but with an important difference. The MOBO controller
only has access to instantaneous occupancy measurements, not predictions. Since
MPC requires predictions of all exogenous inputs to performthe optimization
involved in computing the control inputs, some form of occupancy prediction must
be provided to the controller. Moreover, occupancy prediction decides the range
in which the zone temperature is allowed to stay based on whether the zone is
occupied or not. Since only occupancy measurements are available, the predicted
occupancy for the nextK time indices is assumed to be the same as the measured
occupancy at thek-th time period:np(i) = np(k), i ≥ k.

The control logic is divided into two modes: (i) Occupied, and (ii) Unoccu-
pied, which are explained below in detail.

Occupied Mode: The controller operates in the occupied mode if the mea-
sured occupancy at thek-th time index, i.e., at the beginning of the time interval
[k∆t, (k+ 1)∆t], is at least 1. The optimal control inputs for the nextK time
indices are obtained by solving the optimization problem (9)–(10).

Unoccupied Mode: If the measured occupancy at the time indexk, i.e., at the
beginning of thek-th time period, is observed to be 0, then the controller operates
in the unoccupied mode. At timek, the optimal control inputs for the nextK time
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indices are obtained by solving the following optimizationproblem:

U⋆ := arg min
U∈R2K

G(U), (11)

subject to the following constraints:

Tunocc
low ≤ Tz(i)≤ Tunocc

high
Wunocc

low ≤Wz(i)≤Wunocc
high

αmSA
low ≤ mSA(i)≤ mSA

high
TCA ≤ TSA(i)≤ TSA

high



















∀i = k, . . . ,k+K. (12)

The reason for these constraints is the same as that explained previously. The
constraints on the zone temperature and humidity ratio in the unoccupied mode,
however, are chosen to be such that [Tunocc

low , Tunocc
high ]⊇[Tocc

low , Tocc
high], and [Wunocc

low ,
Wunocc

high ]⊇[Wocc
low , Wocc

high]. This allows the controller greater flexibility in reducing
energy consumption by letting the temperature and humidityratio to vary in a
wide range when the zone is unoccupied. The choice of the parameters for the
unoccupied times also involves a trade-off. The farther they are from their coun-
terparts for the occupied mode, greater is the energy savings potential, but also
greater is the risk of occupant discomfort when occupancy changes.

Remark 1. By choosingα > 1, we ensure that for all the controllers the minimum
flow rate during unoccupied times is greater than that prescribed by ASHRAE
ventilation standard 62.1-2010 [12]. One reason for doing so is to make the
resulting IAQ robust to the errors in occupancy measurements or predictions. It
also makes the IAQ robust to the uncertainty in the measured flow rate and damper
position. By ensuring good IAQ even during times when the zone is predicted to
be unoccupied (whether correctly or not), we eliminate the problem of predicting
the effect of control inputs on IAQ for the proposed controllers.

3. Performance Metrics

The energy consumed by a controllerC over a period∆T is EC = ∑
i=∆T

∆t
i=1 Ec(i),

whereEC(i) is the energy consumed by the controllerC during the time[(i −
1)∆t, i∆t], calculated using (8). An energy related performance metric is the %
savings over the baseline controller, which is defined as

% Savings=
EBC−EC

EBC
, (13)
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whereEC andEBC are the energy consumed by the controllerC and the baseline
controller, respectively, over the same time period. The parameter∆T is chosen
as 24hrs in this paper.

Two metrics are chosen for analyzing the thermal comfort related performance
of the controllers: (i) Temperature ViolationDT , and (ii) Humidity ViolationDH ,
which are defined as

DT =







−Tz(t)+Tocc
low , if Tz(t)< Tocc

low andnp(t) 6= 0
Tz(t)−Tocc

high, if Tz(t)> Tocc
high andnp(t) 6= 0

0, otherwise







,

DH =







−Wz(t)+Wocc
low, if Wz(t)<Wocc

low andnp(t) 6= 0
Wz(t)−Wocc

high, if Wz(t)>Wocc
high andnp(t) 6= 0

0, otherwise







.

These metrics measure the deviation of the zone temperature/humidity from the
allowed range during occupied times. During the unoccupiedtimes, both the tem-
perature and humidity violations are considered 0 since there is no one in the zone.
Theaverage temperature violation(D⋆

T) and theaverage humidity violation(D⋆
H)

during time period∆T are defined as

D⋆
T =

1
∆T

∫ ∆T

0
DT(t)dt ≈

1
L

L

∑
k=1

DT(k), D⋆
H =

1
∆T

∫ ∆T

0
DH(t)dt ≈

1
L

L

∑
k=1

DH(k).

(14)

whereL = ∆T/∆t. According to ASHRAE [22, Chapter 8], as long as people are
wearing clothing of thermal resistance between 0.0775m2K/W and 0.155m2K/W,
doing primarily sedentary activity, and the air speed in thezone is less than
0.2 m/s, then ensuring that the temperature and humidity of the zonestays within
certain range ensures thermal comfort of occupants (see Figure6 in Section4.2).
Therefore, with appropriate choice of the parametersTocc

(·) andWocc
(·) , the tempera-

ture violation and the humidity violations defined above canbe used as metrics for
thermal comfort. Though Predicted Mean Vote (PMV) [22, Chapter 8] is a widely
used metric to evaluate thermal comfort, it is a function of complex factors such
as metabolism rate, clothes worn by the occupant, etc., which is quite difficult to
compute in real-time. Therefore, we use temperature violation and the humidity
violation to evaluate the thermal comfort, which are simpler to compute as well
as more robust to assumptions made about the occupants.
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Though IAQ is as important a concern as thermal comfort, if not more, we do
not define a metric to measure “IAQ performance” of the controllers. ThoughCO2

and volatile organic compounds contribute to poor IAQ, there is no well defined
numerical measure to calculate IAQ [24]. Instead, we impose constraints on the
minimum flow rate such that IAQ is maintained by all the controllers, even during
unoccupied times (see also Remark1).

4. Simulation Results

4.1. Model Calibration and Validation

Data from room 247 in Pugh Hall at the University of Florida, Gainesville,
FL, USA is used to calibrate the model (5). The thermal capacitance per unit area
and thermal resistance per unit area of external walls for all the zones obtained
from [22, Chapter 39] are 369kJ/(m2K) and 2.69 (m2K/W), respectively. Mea-
surements of the zone temperatures, supply air temperatures and flow rates are ob-
tained from the Building Automation System at 10-minute intervals. The model
is calibrated by tuning the total thermal resistance per unit area of theinternal
walls to minimize the error between the measured temperature and the predicted
temperature of the zone. Data for a 48 hour long period (Jan 29-Jan 30, 2011) is
used to calibrate the model. Since this time corresponds to aweekend, it is as-
sumed that there are no occupants during this time. The comparison between the
measured and predicted temperatures with the calibrated model are shown in Fig-
ures4(a)–4(b). The validation data set (midnight Feb 5th through midnightof Feb
6th, 2011) also is from a weekend. It is clear from the figure that the temperature
predictions by the model are close to the measured values.

4.2. Choice of parameters

Simulations are carried out for a model of three types of zones. All the zones
have one external wall, one window and three internal walls.The internal walls are
of the same type. It is assumed that the floor and the celling are perfectly insulated,
and the window has negligible thermal capacitance. Each zone has the same win-
dow and same external wall construction, but the internal walls vary from zone to
zone. A type-1 zone has internal walls of high thermal resistance and low thermal
capacitance. The internal walls of a type-2 zone have low thermal resistance and
high thermal capacitance. The internal walls of a type-3 zone have low thermal
resistance and low thermal capacitance. We do not consider azone with internal
walls of high thermal capacitance and high thermal resistance, since this is un-
usual. The calibration and validation for the dynamic modelof room 247, which
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Figure 4: Comparison of predicted and measured temperaturein the room 247 in the Pugh Hall at
the University of Florida, Gainesville, FL, USA.

is of zone type-3, is shown earlier in Section4.1. The total thermal resistance
and capacitance of internal walls of this zone are increasedto construct models
of type-1 and type-2 zones. The resulting resistance and capacitance values are
shown in Table1.

Table 1: Total thermal resistance and capacitance of the window and the walls (internal and exter-
nal) of three types of zones.

Internal Wall External Wall Window
Zone Total Thermal Total Thermal Total Thermal Total Thermal Total Thermal

Type Resistance (m
2K
W ) Capacitance (kJ

m2K
) Resistance (m

2K
W ) Capacitance (kJ

m2K
) Resistance (m

2K
W )

1 2.7 31
2 0.5 368 2.7 368 0.5
3 0.5 31

The boundaries of each zone that are separated from the zone by the internal
walls are assumed to have a constant temperature of 22.2◦C. The external wall
separates a zone from outside weather, and three types of outside weather con-
ditions are considered: cold, hot and pleasant. Figure5 shows the temperature
and humidity data for the cold (Jan 14, 2011), hot (Jul 31, 2011), and pleasant
(Mar 16, 2011) days in Gainesville, FL, USA. “Pleasant weather” is non-standard
terminology; we use it to denote weather that is neither neither hot nor cold.

The maximum flow rate for all the controllers is chosen as 0.125kg/s. From
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Figure 5: Outside temperature (TOA) and relative humidity (HOA) for the cold (Jan 14, 2011), hot
(Jul 31, 2011), and pleasant (Mar 16, 2011) day in Gainesville, FL, USA.

ASHRAE ventilation standard 62.1-2010 [12] requirements and return air ratio
shown in Table2, it turns out thatmSA

p = 0.005kg/sandmSA
low = 0.015Kg/sand.

These values are computed using (1), with Az = 25 m2. For theBL controller,
the Minimum Allowed Flow Rate is chosen as 0.05kg/s, which corresponds to a
designed occupancy of approximately 5 persons for the givenzone. This is also
the minimum flow rate that is currently being used by the existing control logic
in room 247 of Pugh Hall. The IAQ factor of safety is chosen asα = 1.7, so that
the minimum flow rate for theMOBS, MOBO, andPOBOcontrollers during the
unoccupied mode turns out to beαmSA

low = 0.0255Kg/s. For theBL controller,
the temperatures: RTG, HTG, and CLG are set to 21.8◦C, 21.9◦C, and 23.6◦C,
respectively, from 6 : 30 a.m. to 10 : 30 p.m. During the time 10: 30 p.m.–6 : 30
a.m., the temperatures: RTG, HTG, and CLG for theBL controller are chosen
as 20.9◦C, 21.1◦C, and 24.4◦C, respectively. This nighttime setback is currently
used in the Pugh Hall.

Other design parameters are shown in Table2. It is shown in table2 that
the set-points (RTG, HTG, andCTG) are changed symmetrically around the set-
pointTset based on whether the zone is occupied or not. SinceTset= RTG+CLG

2 as
mentioned in the Section2.1, the desired set-pointTset stays constant.

The comfort envelope (which is defined by the constraints on the zone temper-
ature and humidity ratio) used in this paper during the occupied and unoccupied
times are shown in Figure6. As long as certain assumptions on occupants clothing
etc., are satisfied (see Section3), thermal comfort is ensured if temperature and
humidity ratio are maintained within the shaded regions shown in the figure. The
constraints on the zone temperature and humidity ratio are chosen so that when
they are met, the zone-climate meets the ASHRAE mandated conditions [22].
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Table 2: The design parameters used in the various controllers.

Design Parameters
Temperature Parameters

Tset TSA
low TSA

high Tunocc
RTG Tocc

RT G Tocc
low Tocc

high Tunocc
low Tunocc

high TCA

(◦C) (◦C) (◦C) (◦C) (◦C) (◦C) (◦C) (◦C) (◦C) (◦C)
22.8 12.8 30.0 20.9 21.8 21.9 23.6 21.1 24.4 12.8

Humidity and Other Parameters
Wunocc

low Wocc
low Wunocc

high Wocc
high WCA K ∆t ∆T RRA np

d
( g

kg) ( g
kg) ( g

kg) ( g
kg) ( g

kg) (min) (hr) (%)
7.4 7.4 10 10 7.4 3 10 24 40 5

Comfort envelope during 

the occupied time 

used in this paper 

Comfort envelope during 

the unoccupied time 

used in this paper 

Figure 6: Comfort envelope specified in [22, Chapter 8], shown in the striped black area, and the
envelope chosen in this paper during the occupied and unoccupied time, shown in dashed red and
blue boxes, respectively.
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4.3. Performance Comparison

In this section, we compare the performance ofBL, MOBS, MOBO, andPOBOcon-
trol algorithms that are described in Section2. Simulations are performed using
MATLAB; while IPOPT [25] is used to solve the optimization problems for the
MOBOandPOBOcontrol algorithms.

Each zone is occupied by a person from 8 : 00 a.m. to 12 : 00 p.m.,and 1 : 00
p.m. to 5 : 00 p.m., everyday. The total daily energy consumption, average tem-
perature violation, average humidity violation, and % savings over the baseline
controller are shown in Table3. We see from the table that depending on the zone
type and outside weather, theMOBSand MOBO controllers result in 42–59%
and 45–59% energy savings, respectively, over the baselinecontroller. Recall
that both theMOBSand MOBO controllers use occupancy measurements; not
predictions. The table also shows that thePOBOcontroller—which requires oc-
cupancy predictions—can result in additional energy savings over theMOBSand
MOBO controllers by an amount varying from 1% to 13%, again depending on
zone type and weather. All the controllers have very small average temperature vi-
olation, and uniformly zero average humidity discomfort, irrespective of the type
of zone or weather. Recall that IAQ is maintained at all timesby the constraint
on the minimum airflow rate. The results thus indicate that the energy savings
from the proposed controllers are achieved with minimal impact on either thermal
comfort or IAQ.

Table 3: Energy consumption, average temperature violation, average humidity violation, and
% savings over a 24-hour period for single zone with various controllers. The three weather
conditions are chosen for Gainesville, Fl, USA.

Cold Hot Pleasant
Zone Control E Savings D⋆

T D⋆
H E Savings D⋆

T D⋆
H E Savings D⋆

T D⋆
H

Type Scheme MJ % ◦C g
kg MJ % ◦C g

kg MJ % ◦C g
kg

BL 93.4 - 0.007 0 179.4 - 0.003 0 78.3 - 0.004 0
1 MOBS 53.5 42.7 0.026 0 97.5 45.6 0.014 0 41.5 47.0 0.018 0

MOBO 50.6 45.8 0.006 0 93.7 47.7 0.004 0 39.0 50.1 0.006 0
POBO 41.5 55.6 0 0 83.9 53.2 0 0 33.6 57.1 0 0

BL 86.8 - 0.005 0 173.7 - 0.001 0 72.2 - 0.003 0
2 MOBS 42.1 51.4 0.016 0 79.6 54.2 0.001 0 29.9 58.6 0.008 0

MOBO 40.2 53.7 0.004 0 80.0 54.0 0 0 30.2 58.2 0.001 0
POBO 35.9 58.7 0 0 78.9 54.6 0 0 28.4 60.7 0 0

BL 91.9 - 0.007 0 178.4 - 0.002 0 76.8 - 0.004 0
3 MOBS 49.7 45.9 0.023 0 92.2 48.3 0.013 0 38.4 49.9 0.021 0

MOBO 47.3 48.5 0.006 0 90.0 49.5 0.002 0 36.2 52.8 0.005 0
POBO 40.5 56.0 0 0 83.3 53.3 0 0 32.9 57.2 0 0
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The energy savings come from the reduction of supply air flow rate and the
increase in the allowable temperature range when the zone isnot occupied. Re-
duction in the flow rate decreases fan-, conditioning-, and reheating-energy con-
sumption. Increasing the allowable temperature range results in less reheating
energy consumption at the VAV box, because the zone temperature is allowed to
be lower during unoccupied times than what the baseline controller allows. For
every zone, the total energy consumption is maximum during hot weather because
more energy is consumed by the AHU to condition the hot and humid outside air
than to condition the cold dry air. Among the three weathers,pleasant weather
leads to the minimal energy consumption because apart from small conditioning
energy requirements in such a weather, only a small amount ofreheating energy
is required. For a fixed zone, the fan energy is approximatelysame during all the
weather conditions.

Given a controller and outside weather, we observe thatEzone type−2<Ezone type−3<
Ezone type−1. Among the three types of zones, the type-2 zone consumes theleast
amount of energy. This is because the zone type-2 walls have low thermal resis-
tance and high thermal capacitance, and the surrounding spaces of the zone that
are separated by the internal walls are maintained at 22.2◦C. The low thermal re-
sistance helps maintain the zone temperature close to 22.2◦C by fast transfer of
energy through the internal walls from the surroundings, without the controller
having to expend much energy. In addition, the high thermal capacitance causes
the internal walls to store energy, which helps in maintaining the zone tempera-
ture. Type-1 zone consumes the maximum amount of energy because of the high
thermal resistance and low thermal capacitance of the internal walls. The high
thermal resistance does not allow easy transfer of energy from the surroundings
through the internal walls, which, since they are maintained at 22.2◦C, could have
helped the control maintain the zone temperature around 22.2◦C with less effort.
In addition, the low thermal capacitance does not help in storing energy as in the
case of type-2 and type-3 zone.

The average temperature violationD⋆
T with either theBL controller or the

MOBScontroller is more than the average temperature violation with theMOBOcon-
troller for a fixed zone. It occurs because theBL andMOBScontrollers wait for
10 minutes to turn on the heating/cooling mode. Among all thecontrollers, the
average temperature violation is maximum for theMOBScontroller. Since the
MOBScontroller increases the temperature range during the daytime if unoccu-
pied, it takes some time for the zone temperature to come backto the allowable
range when the zone becomes occupied again. However, theBL controller does
not increase the allowable temperature range during the daytime even if it is not
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occupied. Therefore, the average temperature violation with theMOBScontroller
is more than that with theBL controller.

The simulation results shown above are for the case when occupancy varies
between 0 and 1, and for the Gainesville, FL, USA location. Wehave also con-
ducted simulations for three more cases: 1) occupancy varies between 0 and 3;
location: Gainesville, FL, USA, ii) occupancy varies between 0 and 1, location:
Phoenix, AZ, USA, and ii) occupancy varies between 0 and 3, location: Phoenix,
AZ, USA. The weather days for Phoenix are chosen to be the sameas those for
Gainesville; see Section4.2. Very similar % savings over the baseline controller,
and average temperature/humidity violations, are obtained for all the cases. The
results are not shown due to space limits.

MPC vs. feedback, with occupancy measurements:While theMOBScon-
troller uses simple rule-based feedback control based on temperature and occu-
pancy measurement, theMOBOcontroller is a much more complex MPC-based
control scheme that requires prediction of relevant state variables and exogenous
signals. Yet, the results above show that the performance ofthe MOBS and
MOBOcontrollers are quite similar, both in terms of energy savings and thermal
comfort. This is due to the fact that without occupancy prediction, the MPC-based
controller cannot really take advantage of its powerful optimization algorithm. If
predictions are available, the optimization routine may beable to reduce the air-
flow and let the temperature “float”, thus saving energy, and then bring it back
up right before the zone is about to be occupied. In the absence of such predic-
tion, the MPC-controller can only do what awell-designedfeedback controller
will also do, that is, set back the zone temperature when the zone is unoccupied,
but not too much so that it can be changed quickly when occupancy changes, and
maintain some minimum airflow to ensure good IAQ.

One concern during the initial stages of the research was that the slow thermal
dynamics of a typical zone, along with the limitations of theactuators, will make
the response of the closed-loop control system too slow to ensure occupant com-
fort during the transition period when occupancy changes. However, the results
reported here show that this concern can be mitigated by appropriate choice of the
temperature and humidity bands.

Utility of occupancy prediction: One surprising observation is that the addi-
tional % savings of thePOBOcontroller over theMOBSandMOBOcontrollers
are small, 1–13%, even though it uses occupancy predictionswhile the other two
only uses measurements. One could expect that since occupancy predictions are
available, the controller can turn the airflow rate quite low, thereby resulting in
large energy savings. The small additional savings are due to the ventilation
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requirements. ASHRAE ventilation standard 62.1-2010 [12] requires a certain
amount of outside air that depends on the floor area even when the zone is unoc-
cupied. For a medium sized office with a small design occupancy (1-5 people), the
resulting minimum flow rate turns out to be a significant fraction of the nominal
airflow rate during occupied periods. Savings would be higher if the ventilation
rates during the unoccupied times were to be smaller than what are prescribed
by current standards. For instance, the older ASHRAE ventilation standard 62.1-
2001 [26] did not require outside air supply during unoccupied times. We per-
formed simulations with a minimum airflow rate of 0 during unoccupied times.
In that case the savings with thePOBOcontroller increases up to about 80% over
the baseline controller. That is, the additional savings possible with occupancy
prediction—compared to occupancy measurement—is now about 40%.

5. Discussion and Future Work

We examine how a controller performance is affected by its complexity, where
the goal of the controller is to minimize energy consumptionwhile maintaining
comfort level in a zone in a commercial building with a variable-air-volume HVAC
system. For that purpose, we propose three control strategies of varying complex-
ity and requiring varying fidelity of information:MOBS, MOBOandPOBO. The
performance of the proposed controllers are compared through simulations with
that of a conventional baseline controller. The baseline controller uses temper-
ature feedback but not real-time occupancy information. Incontrast, the pro-
posedMOBSandMOBO controllers require occupancy measurements, and the
POBOcontroller requires occupancy predictions. WhileMOBScontroller is a
feedback control algorithm, theMOBO and POBO controllers are MPC-based
algorithms. Simulation results show that all three controllers lead to substantial
improvement in energy savings (about 50% on average depending on zone type,
weather, climate, design occupancy, etc.,) with negligible impact on IAQ or ther-
mal comfort.

The study shows that even a simple feedback-based algorithmcan perform
as well as an MPC-based algorithm, if only occupancy measurements are avail-
able. In the absence of occupancy prediction, MPC simply sets back the zone
temperature to save energy; while the feedback controller is designed to mimic
that behavior as well. Another conclusion of the study is that the additional sav-
ings with an MPC-based control that uses occupancy prediction - over one that
only uses measurements - is small. The small additional savings are due to the re-
striction on the minimum airflow, which come from current ASHRAE ventilation
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standard 62.1-2010 [12]. If lower ventilation rates are allowed during unoccu-
pied times, as earlier standards did, it is possible to save significantly more energy
by using occupancy prediction; assuming of course that suchpredictions can be
obtained. However, with the current standards, MPC-based control does not pro-
vide significant energy savings over much simpler feedback-based schemes, even
when occupancy predictions are available. At the same time,considerable effort
is required in developing/calibrating/validating dynamic models required by the
controller, and the numerical optimization involved make the controller computa-
tionally complex. Thus, the use of MPC-based zone-climate control of existing
VAV systems may not be economically justified. A feedback controller is the
most appropriate control algorithm to be used at the zone level since it is sim-
ple, computationally fast, requires minimal investment inhardware and software,
and delivers energy savings quite similar to that of much more complex control
algorithms.

The study shows that occupancy measurement is a key component of energy-
efficient zone-climate control. When the zone is designed for a single person,
such as an office, a motion detector can be used to measure occupancy. However,
if the zone is designed for multiple occupants, measuring occupancy is not triv-
ial. Development of reliable yet inexpensive occupancy measurement technology
will greatly facilitate the deployment of occupancy-basedenergy-efficient build-
ing control. The controllers proposed in this paper have some robustness to errors
in occupancy measurements due to their higher-than-neededminimum airflow. A
detailed study of their performance with varying levels of measurement error is
planned as part of future work.

There are several additional avenues for further exploration. All the proposed
control algorithms require choice of several parameters, which involve a trade-
off between energy savings and potential discomfort. This trade-off needs to be
more carefully examined to determine a set of guidelines on how to choose these
parameters. Implementing the proposed controllers in a real building is required
to verify the simulation results. Work on experimental verification is ongoing.
In this paper, we have assumed that a zone consists of single room. The control
algorithms can be extended in a straightforward manner to beapplicable to a zone
that consists of multiple rooms. Their performance in such ascenario, though,
needs to be studied.

In this paper, the AHU control inputs (such as conditioned air temperature,
flow rate and return air dampers position) are assumed constant and treated as
exogenous inputs. It is possible that through a coordinatedcontrol among the
AHU and multiple zones, more energy efficiency can be achieved than what can be
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achieved by keeping the AHU controller and zone-level controllers independent.
This is another interesting direction to pursue.
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