
Stupid OpenGL
Shader Tricks
Simon Green, NVIDIA

Overview
• New OpenGL shading capabilities:
– fragment programs
– floating point textures
– high level shading languages

• Make possible interesting new effects
• 2 examples:
– Image space motion blur
– Cloth simulation using fragment

programs

Motion Blur
• What is motion blur?
– Rapidly moving objects appear to be

blurred in direction of motion
• What causes motion blur?
– In real cameras, film is exposed to

moving scene while shutter is open
• Why do motion blur?
– Avoids temporal aliasing (jerkiness)
– Adds realism, “cinematic” look to games
– 24fps with motion blur can look better

than 60fps without

Image Space Motion Blur
• To do motion blur correctly is hard:
– Temporal supersampling (accumulation/T-buffer)
– Distributed ray tracing

• Drawing trails behind objects is not the
same as real motion blur

• Image space (2.5D) motion blur
– Works as a post process (fast)
– Blurs an image of the scene based on object

velocities
– Preserves surface detail
– Is a commonly used shortcut in production

(available in Maya, Softimage, Shake)
– Doesn’t handle occlusion well

Algorithm
• 3 stages:
– 1. Render scene to texture
• At current time

– 2. Calculate velocity at each pixel
• Using vertex shader
• Calculate current position – previous position

– 3. Render motion blurred scene
• Using fragment shader
• Look up into scene texture

• Last two stages can be combined into
a single pass

Motion Blur

Pt-1

Pt

Velocity = dP / dt

0
1

2
3

4

Nsamples = 5

dP = Pt – Pt-1

Psample = P + dP * u

Calculating Velocities
• We need to know the window space velocity

of each pixel on the screen
• Reverse of “optical flow” problem in image

processing
• Easy to calculate in vertex shader
– transform each vertex to window coordinates by

current and previous transform
– for skinning / deformation, need to do all

calculations twice
– Velocity = (current_pos – previous_pos) / dt

• Velocity is interpolated across triangles
• Can render to float/color buffer, or use

directly

Calculating Velocities (2)
• Problem: velocity outside silhouette of

object is zero (= no blur)
• Solution: use Matthias Wloka’s trick to

stretch object geometry between previous
and current position

• Compare normal direction with motion
vector using dot product

• If normal is pointing in direction of motion,
transform vertex by current transform, else
transform it by the previous transform

• Not perfect, but it works

Geometry Stretching

N (normal)

dP (motion vector)
Pt

Pt-1

Vertex Shader Code
struct a2v {
 float4 coord;
 float4 prevCoord;
 float3 normal;
 float2 texture;
};
struct v2f {
 float4 hpos : HPOS;
 float3 velocity : TEX0;
};
v2f main(a2v in,
 uniform float4x4 modelView,
 uniform float4x4 prevModelView,
 uniform float4x4 modelViewProj,
 uniform float4x4 prevModelViewProj,
 uniform float3 halfWinSize,
)
{
 v2f out;
 // transform previous and current pos to eye space
 float4 P = mul(modelView, in.coord);
 float4 Pprev = mul(prevModelView, in.prevCoord);
 // transform normal to eye space
 float3 N = vecMul(modelView, in.normal);

 // calculate eye space motion vector
 float3 motionVector = P.xyz - Pprev.xyz;

 // calculate clip space motion vector
 P = mul(modelViewProj, in.coord);
 Pprev = mul(prevModelViewProj, in.prevCoord);
 // choose previous or current position based
 // on dot product between motion vector and normal
 float flag = dot(motionVector, N) > 0;
 float4 Pstretch = flag ? P : Pprev;
 out.hpos = Pstretch;
 // do divide by W -> NDC coordinates
 P.xyz = P.xyz / P.w;
 Pprev.xyz = Pprev.xyz / Pprev.w;
 Pstretch.xyz = Pstretch.xyz / Pstretch.w;
 // calculate window space velocity
 float3 dP = halfWinSize.xyz * (P.xyz - Pprev.xyz);
 out.velocity = dP;
 return v2f;
}

Motion Blur Shader
• Looks up into scene texture multiple times

based on motion vector
• Result is weighted sum of samples
– Can use equal weights (box filter), Gaussian or

emphasise end of motion (ramp)
• Number of samples needed depends on

amount of motion
– 8 samples is good, 16 is better
– Ironically, more samples will reduce frame rate,

and therefore increase motion magnitude
• Effectively we are using velocity information

to recreate approximate in-between frames

Motion Blur Shader Code
struct v2f {
 float4 wpos : WPOS;
 float3 velocity : TEX0;
};
struct f2f {
 float4 col;
};
f2fConnector main(v2f in,
 uniform samplerRECT sceneTex,
 uniform float blurScale = 1.0
)
{
 f2f out;
 // read velocity from texture coordinate
 half2 velocity = v2f.velocity.xy * blurScale;
 // sample scene texture along direction of motion
 const float samples = SAMPLES;
 const float w = 1.0 / samples; // sample weight
 fixed4 a = 0; // accumulator
 float i;
 for(i=0; i<samples; i+=1) {
 float t = i / (samples-1);
 a = a + x4texRECT(sceneTex, in.wpos + velocity*t) * w;
 }
 out.col = a;
}

Original Image

Stretched Geometry

Velocity Visualization

Motion Blurred Image

Future Work
• Stochastic sampling
– Replaces banding with noise

• Use depth information to avoid
occlusion artifacts
• Store image of previous and current

frame, interpolate in both directions
• Motion blurred shadows, reflections

Physical Simulation
• Simple CA-like simulations were possible on

previous generation hardware:
– Greg James’ Game of Life / water simulation
– Mark Harris’ CML work

• Use textures to represent physical
quantities (e.g. displacement, velocity,
force) on a regular grid

• Multiple texture lookups allow access to
neighbouring values

• Pixel shader calculates new values, renders
results back to texture

• Each rendering pass draws a single quad,
calculating next time step in simulation

Physical Simulation
• Problem: 8 bit precision was not

enough, causing drifting, stability
problems
• Float precision of new fragment

programs allows GPU physics to
match CPU accuracy
• New fragment programming model

(longer programs, flexible dependent
texture reads) allows much more
interesting simulations

Example: Cloth Simulation
• Uses Verlet integration
– see: Jakobsen, GDC 2001

• Avoids storing explicit velocity
– new_x = x + (x – old_x)*damping + a*dt*dt

• Not always accurate, but stable!
• Store current and previous position of each

particle in 2 RGB float textures
• Fragment program calculates new position,

writes result to float buffer / texture
• Then swap current and previous textures

Cloth Simulation Algorithm
• 4 passes
• Each passes renders a single quad

with a fragment program:
– 1. Perform integration (move particles)
– 2. Apply constraints:
• Distance constraints between particles
• Floor collision constraint
• Sphere collision constraint

– 3. Calculate normals from positions using
partial differences
– 4. Render mesh

Integration Pass Code
// Verlet integration step
void Integrate(inout float3 x, float3 oldx, float3 a, float timestep2, float damping)
{
 x = x + damping*(x - oldx) + a*timestep2;
}
fragout_float main(vf30 In,
 uniform samplerRECT x_tex,
 uniform samplerRECT ox_tex
 uniform float timestep = 0.01,
 uniform float damping = 0.99,
 uniform float3 gravity = float3(0.0, -1.0, 0.0)
)
{
 fragout_float Out;
 float2 s = In.TEX0.xy;
 // get current and previous position
 float3 x = f3texRECT(x_tex, s);
 float3 oldx = f3texRECT(ox_tex, s);
 // move the particle
 Integrate(x, oldx, gravity, timestep*timestep, damping);
 Out.col.xyz = x;
 return Out;
}

Constraint Code
// constrain a particle to be a fixed distance from another particle
float3 DistanceConstraint(float3 x, float3 x2, float restlength, float stiffness)
{
 float3 delta = x2 - x;
 float deltalength = length(delta);
 float diff = (deltalength - restlength) / deltalength;
 return delta*stiffness*diff;
}
// constrain particle to be outside volume of a sphere
void SphereConstraint(inout float3 x, float3 center, float r)
{
 float3 delta = x - center;
 float dist = length(delta);
 if (dist < r) {
 x = center + delta*(r / dist);
 }
}
// constrain particle to be above floor
void FloorConstraint(inout float3 x, float level)
{
 if (x.y < level) {
 x.y = level;
 }
}

Constraint Pass Code
fragout_float main(vf30 In,
 uniform texobjRECT x_tex,
 uniform texobjRECT ox_tex,
 uniform float meshSize = 32.0,
 uniform float constraintDist = 1.0,
 uniform float4 spherePosRad = float3(0.0, 0.0, 0.0, 1.0),
 uniform float stiffness = 0.2;
)
{
 fragout_float Out;
 // get current position
 float3 x = f3texRECT(x_tex, In.TEX0.xy);
 // satisfy constraints
 FloorConstraint(x, 0.0f);
 SphereConstraint(x, spherePosRad.xyz, spherePosRad.z);
 // get positions of neighbouring particles
 float3 x1 = f3texRECT(x_tex, In.TEX0.xy + float2(1.0, 0.0));
 float3 x2 = f3texRECT(x_tex, In.TEX0.xy + float2(-1.0, 0.0));
 float3 x3 = f3texRECT(x_tex, In.TEX0.xy + float2(0.0, 1.0));
 float3 x4 = f3texRECT(x_tex, In.TEX0.xy + float2(0.0, -1.0));
 // apply distance constraints
 float3 dx = 0;
 if (s.x < meshSize) dx = DistanceConstraint(x, x1, constraintDist, stiffness);
 if (s.x > 0.5) dx = dx + DistanceConstraint(x, x2, constraintDist, stiffness);
 if (s.y < meshSize) dx = dx + DistanceConstraint(x, x3, constraintDist, stiffness);
 if (s.y > 0.5) dx = dx + DistanceConstraint(x, x4, constraintDist, stiffness);
 Out.col.xyz = x + dx;
 return Out;
}

Screenshot

Textures

Position texture Normal texture

Render to Vertex Array
• Enables interpretation of floating point

textures as geometry
• Possible on NVIDIA hardware using the

“NV_pixel_data_range” (PDR) extension
– Allocate vertex array in video memory (VAR)
– Setup PDR to point to same video memory
– Do glReadPixels from float buffer to PDR memory
– Render vertex array
– Happens entirely on card, no CPU intervention

• Future ARB extensions may offer same
functionality

Future Work
• Use additional textures to encode

particle weights, arbitrary
connections between particles
(springy objects)
• Collision detection with height fields

(encoded in texture)

References
• Advanced Character Physics, Thomas

Jakobsen, GDC 2001
• A Two-and-a-Half-D Motion-Blur

Algorithm, Max and Lerner, Siggraph
1985

• Modeling Motion Blur in Computer-
Generated Images, Potmesil, Siggraph
1983

http://www.ioi.dk/Homepages/thomasj/publications/gdc2001.htm

	Stupid OpenGL Shader Tricks
	Overview
	Motion Blur
	Image Space Motion Blur
	Algorithm
	Slide 6
	Calculating Velocities
	Calculating Velocities (2)
	Geometry Stretching
	Vertex Shader Code
	Motion Blur Shader
	Motion Blur Shader Code
	Original Image
	Stretched Geometry
	Velocity Visualization
	Motion Blurred Image
	Future Work
	Physical Simulation
	Slide 19
	Example: Cloth Simulation
	Cloth Simulation Algorithm
	Integration Pass Code
	Constraint Code
	Constraint Pass Code
	Screenshot
	Textures
	Render to Vertex Array
	Slide 28
	References

