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Overview
• New OpenGL shading capabilities:
– fragment programs
– floating point textures
– high level shading languages

• Make possible interesting new effects
• 2 examples:
– Image space motion blur
– Cloth simulation using fragment 

programs



Motion Blur
• What is motion blur?
– Rapidly moving objects appear to be 

blurred in direction of motion
• What causes motion blur?
– In real cameras, film is exposed to 

moving scene while shutter is open
• Why do motion blur?
– Avoids temporal aliasing (jerkiness)
– Adds realism, “cinematic” look to games
– 24fps with motion blur can look better 

than 60fps without



Image Space Motion Blur
• To do motion blur correctly is hard:
– Temporal supersampling (accumulation/T-buffer)
– Distributed ray tracing

• Drawing trails behind objects is not the 
same as real motion blur

• Image space (2.5D) motion blur
– Works as a post process (fast)
– Blurs an image of the scene based on object 

velocities
– Preserves surface detail
– Is a commonly used shortcut in production 

(available in Maya, Softimage, Shake)
– Doesn’t handle occlusion well



Algorithm
• 3 stages:
– 1. Render scene to texture
• At current time

– 2. Calculate velocity at each pixel
• Using vertex shader
• Calculate current position – previous position

– 3. Render motion blurred scene
• Using fragment shader
• Look up into scene texture

• Last two stages can be combined into 
a single pass
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Calculating Velocities
• We need to know the window space velocity 

of each pixel on the screen
• Reverse of “optical flow” problem in image 

processing
• Easy to calculate in vertex shader
– transform each vertex to window coordinates by 

current and previous transform 
– for skinning / deformation, need to do all 

calculations twice
– Velocity = (current_pos – previous_pos) / dt

• Velocity is interpolated across triangles
• Can render to float/color buffer, or use 

directly



Calculating Velocities (2)
• Problem: velocity outside silhouette of 

object is zero (= no blur)
• Solution: use Matthias Wloka’s trick to 

stretch object geometry between previous 
and current position

• Compare normal direction with motion 
vector using dot product

• If normal is pointing in direction of motion, 
transform vertex by current transform, else 
transform it by the previous transform

• Not perfect, but it works



Geometry Stretching
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Vertex Shader Code
struct a2v {
  float4 coord;
  float4 prevCoord;
  float3 normal;
  float2 texture;
};
struct v2f {
  float4 hpos     : HPOS;
  float3 velocity : TEX0;
};
v2f main(a2v in,
         uniform float4x4 modelView,
         uniform float4x4 prevModelView,
         uniform float4x4 modelViewProj,
         uniform float4x4 prevModelViewProj,
         uniform float3   halfWinSize,
         )
{
  v2f out;
  // transform previous and current pos to eye space
  float4 P = mul(modelView, in.coord);
  float4 Pprev = mul(prevModelView, in.prevCoord);
  // transform normal to eye space
  float3 N = vecMul(modelView, in.normal);

  // calculate eye space motion vector
  float3 motionVector = P.xyz - Pprev.xyz;

  // calculate clip space motion vector
  P = mul(modelViewProj, in.coord);
  Pprev = mul(prevModelViewProj, in.prevCoord);
  // choose previous or current position based
  // on dot product between motion vector and normal
  float flag = dot(motionVector, N) > 0;
  float4 Pstretch = flag ? P : Pprev;
  out.hpos = Pstretch;
  // do divide by W -> NDC coordinates
  P.xyz = P.xyz / P.w;
  Pprev.xyz = Pprev.xyz / Pprev.w;
  Pstretch.xyz = Pstretch.xyz / Pstretch.w;
  // calculate window space velocity
  float3 dP = halfWinSize.xyz * (P.xyz - Pprev.xyz);
  out.velocity = dP;
  return v2f;
}



Motion Blur Shader
• Looks up into scene texture multiple times 

based on motion vector
• Result is weighted sum of samples
– Can use equal weights (box filter), Gaussian or 

emphasise end of motion (ramp)
• Number of samples needed depends on 

amount of motion
– 8 samples is good, 16 is better
– Ironically, more samples will reduce frame rate, 

and therefore increase motion magnitude
• Effectively we are using velocity information 

to recreate approximate in-between frames



Motion Blur Shader Code
struct v2f {
  float4 wpos     : WPOS;
  float3 velocity : TEX0;
};
struct f2f {
  float4 col;
};
f2fConnector main(v2f in,
                  uniform samplerRECT sceneTex,
                  uniform float blurScale = 1.0
                  )
{
  f2f out;
  // read velocity from texture coordinate
  half2 velocity = v2f.velocity.xy * blurScale;
  // sample scene texture along direction of motion 
  const float samples = SAMPLES;
  const float w = 1.0 / samples; // sample weight
  fixed4 a = 0; // accumulator
  float i;
  for(i=0; i<samples; i+=1) {
    float t = i / (samples-1);
    a = a + x4texRECT(sceneTex, in.wpos + velocity*t) * w;
  }
  out.col = a;
}



Original Image



Stretched Geometry



Velocity Visualization



Motion Blurred Image



Future Work
• Stochastic sampling
– Replaces banding with noise

• Use depth information to avoid 
occlusion artifacts
• Store image of previous and current 

frame, interpolate in both directions
• Motion blurred shadows, reflections



Physical Simulation
• Simple CA-like simulations were possible on 

previous generation hardware:
– Greg James’ Game of Life / water simulation
– Mark Harris’ CML work

• Use textures to represent physical 
quantities (e.g. displacement, velocity, 
force) on a regular grid

• Multiple texture lookups allow access to 
neighbouring values

• Pixel shader calculates new values, renders 
results back to texture

• Each rendering pass draws a single quad, 
calculating next time step in simulation



Physical Simulation
• Problem: 8 bit precision was not 

enough, causing drifting, stability 
problems
• Float precision of new fragment 

programs allows GPU physics to 
match CPU accuracy
• New fragment programming model 

(longer programs, flexible dependent 
texture reads) allows much more 
interesting simulations



Example: Cloth Simulation
• Uses Verlet integration
– see: Jakobsen, GDC 2001

• Avoids storing explicit velocity
– new_x = x + (x – old_x)*damping + a*dt*dt

• Not always accurate, but stable!
• Store current and previous position of each 

particle in 2 RGB float textures
• Fragment program calculates new position, 

writes result to float buffer / texture
• Then swap current and previous textures 



Cloth Simulation Algorithm
• 4 passes
• Each passes renders a single quad 

with a fragment program:
– 1. Perform integration (move particles)
– 2. Apply constraints:
• Distance constraints between particles
• Floor collision constraint
• Sphere collision constraint

– 3. Calculate normals from positions using 
partial differences
– 4. Render mesh



Integration Pass Code
// Verlet integration step
void Integrate(inout float3 x, float3 oldx, float3 a, float timestep2, float damping)
{
  x = x + damping*(x - oldx) + a*timestep2;
}
fragout_float main(vf30 In,
                   uniform samplerRECT x_tex,
                   uniform samplerRECT ox_tex
                   uniform float timestep = 0.01,
                   uniform float damping = 0.99,
                   uniform float3 gravity = float3(0.0, -1.0, 0.0)
                   )
{
  fragout_float Out;
  float2 s = In.TEX0.xy;
  // get current and previous position
  float3 x =    f3texRECT(x_tex, s);
  float3 oldx = f3texRECT(ox_tex, s);
  // move the particle
  Integrate(x, oldx, gravity, timestep*timestep, damping);
  Out.col.xyz = x;
  return Out;
}



Constraint Code
// constrain a particle to be a fixed distance from another particle
float3 DistanceConstraint(float3 x, float3 x2, float restlength, float stiffness)
{
  float3 delta = x2 - x;
  float deltalength = length(delta);
  float diff = (deltalength - restlength) / deltalength;
  return delta*stiffness*diff;
}
// constrain particle to be outside volume of a sphere
void SphereConstraint(inout float3 x, float3 center, float r)
{
  float3 delta = x - center;
  float dist = length(delta);
  if (dist < r) {
    x = center + delta*(r / dist);
  }
}
// constrain particle to be above floor
void FloorConstraint(inout float3 x, float level)
{
  if (x.y < level) {
    x.y = level;
  }
}



Constraint Pass Code
fragout_float main(vf30 In,
                   uniform texobjRECT x_tex,
                   uniform texobjRECT ox_tex,
                   uniform float meshSize = 32.0,
                   uniform float constraintDist = 1.0,
                   uniform float4 spherePosRad = float3(0.0, 0.0, 0.0, 1.0),
                   uniform float stiffness = 0.2;
                   )
{
  fragout_float Out;
  // get current position
  float3 x = f3texRECT(x_tex, In.TEX0.xy);
  // satisfy constraints
  FloorConstraint(x, 0.0f);
  SphereConstraint(x, spherePosRad.xyz, spherePosRad.z);
  // get positions of neighbouring particles
  float3 x1 = f3texRECT(x_tex, In.TEX0.xy + float2(1.0, 0.0) );
  float3 x2 = f3texRECT(x_tex, In.TEX0.xy + float2(-1.0, 0.0) );
  float3 x3 = f3texRECT(x_tex, In.TEX0.xy + float2(0.0, 1.0) );
  float3 x4 = f3texRECT(x_tex, In.TEX0.xy + float2(0.0, -1.0) );
  // apply distance constraints
  float3 dx = 0;
  if (s.x < meshSize) dx = DistanceConstraint(x, x1, constraintDist, stiffness);
  if (s.x > 0.5)      dx = dx + DistanceConstraint(x, x2, constraintDist, stiffness);
  if (s.y < meshSize) dx = dx + DistanceConstraint(x, x3, constraintDist, stiffness);
  if (s.y > 0.5)      dx = dx + DistanceConstraint(x, x4, constraintDist, stiffness);
  Out.col.xyz = x + dx;
  return Out;
}



Screenshot



Textures
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Render to Vertex Array
• Enables interpretation of floating point 

textures as geometry
• Possible on NVIDIA hardware using the 

“NV_pixel_data_range” (PDR) extension
– Allocate vertex array in video memory (VAR)
– Setup PDR to point to same video memory
– Do glReadPixels from float buffer to PDR memory
– Render vertex array
– Happens entirely on card, no CPU intervention

• Future ARB extensions may offer same 
functionality



Future Work
• Use additional textures to encode 

particle weights, arbitrary 
connections between particles 
(springy objects)
• Collision detection with height fields 

(encoded in texture)
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