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Summary

1. Recent advances in occupancy estimation that adjust for imperfect detection have provided sub-

stantial improvements over traditional approaches and are receiving considerable use in applied

ecology. To estimate and adjust for detectability, occupancy modelling requires multiple surveys at

a site and requires the assumption of ‘closure’ between surveys, i.e. no changes in occupancy

between surveys. Violations of this assumption could bias parameter estimates; however, little work

has assessed model sensitivity to violations of this assumption or how commonly such violations

occur in nature.

2. We apply a modelling procedure that can test for closure to two avian point-count data sets in

Montana and New Hampshire, USA, that exemplify time-scales at which closure is often assumed.

These data sets illustrate different sampling designs that allow testing for closure but are currently

rarely employed in field investigations. Using a simulation study, we then evaluate the sensitivity of

parameter estimates to changes in site occupancy and evaluate a power analysis developed for sam-

pling designs that is aimed at limiting the likelihood of closure.

3. Application of our approach to point-count data indicates that habitats may frequently be open

to changes in site occupancy at time-scales typical of many occupancy investigations, with 71% and

100% of species investigated in Montana and New Hampshire respectively, showing violation of

closure across time periods of 3 weeks and 8 days respectively.

4. Simulations suggest that models assuming closure are sensitive to changes in occupancy.

Power analyses further suggest that the modelling procedure we apply can effectively test for

closure.

5. Synthesis and applications. Our demonstration that sites may be open to changes in site occu-

pancy over time-scales typical of many occupancy investigations, combined with the sensitivity of

models to violations of the closure assumption, highlights the importance of properly addressing

the closure assumption in both sampling designs and analysis. Furthermore, inappropriately apply-

ing closed models could have negative consequences when monitoring rare or declining species for

conservation and management decisions, because violations of closure typically lead to overesti-

mates of the probability of occurrence.
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Introduction

Estimating and interpreting patterns of occupancy lie at the

heart of many questions in ecology and problems in conserva-

tion. For example, metapopulation theory often explores vari-

ation in patch occupancy in fragmented landscapes (Hanski

1994). Species distribution models, which are widely used in

guiding conservation and management decisions, frequently

rely on observed patterns of detection and non-detection (Gui-

san et al. 2006). Additionally, occupancy can provide valuable

information on population trends when more detailed demo-

graphic or abundance estimates are not practical (Bailey,

Simons&Pollock 2004).

Traditional approaches to occurrence estimation, such as

logistic regression or Incidence Function Models (Hanski

1994), assume perfect detection of species. Recently, these

approaches have been criticized because even modest

amounts of false absences (i.e. modelling a species as absent*Correspondence author. E-mail: ctr4g2@mail.missouri.edu

Journal of Applied Ecology 2009, 46, 1173–1181 doi: 10.1111/j.1365-2664.2009.01734.x

� 2009 The Authors. Journal compilation � 2009 British Ecological Society



when it is in fact present) can bias parameter estimates in

metapopulation models and predicted habitat relationships

(Moilanen 2002; Tyre et al. 2003; Gu & Swihart 2004; Martin

et al. 2005).

Because of the bias introduced by non-detection errors,

several recent investigations have focused on how to model

occupancy, given imperfect detection (Geissler & Fuller

1987; Azuma, Baldwin & Noon 1990; MacKenzie et al.

2002; Tyre et al. 2003; Stauffer, Ralph & Miller 2004). Of

these new techniques, MacKenzie & Royle (2005) suggest

that the approach of MacKenzie et al. (2002) is the most

flexible and that other approaches are special cases of their

general model. This approach has provided significant

improvements over traditional approaches, which is reflected

in a recent surge in occupancy studies (Marsh & Trenham

2008).

To estimate detection probability, MacKenzie et al.’s (2002,

2006) occupancy-modelling approach requires multiple sur-

veys at each site. Detection probability is then estimated from

the pattern of detections and non-detections that arise from

these multiple surveys. A necessary assumption for estimating

and accounting for detectability is that sites are closed to

changes in occupancy between surveys, which has been

described as the ‘closure assumption’. The term ‘closure’

reflects the assumption that if a site is occupied during at least

one survey, it is assumed to have been occupied during all sur-

veys, and any non-detection during a survey is considered a

‘false zero’ or a ‘false negative’.

A commonly used sampling approach for occupancy studies

is to visit a site multiple times and conduct a single survey dur-

ing each site visit (e.g. Bailey, Simons & Pollock 2004; Ball,

Doherty &McDonald 2005). We will refer to this approach as

a standard occupancy sampling protocol. Site visits are fre-

quently separated by periods of weeks or months, and sites are

assumed to be closed during these time periods. Violations of

this assumption may lead to biased estimates of occupancy.

However, little work has been carried out to assess how viola-

tions of the closure assumption may affect occupancy esti-

mates, and MacKenzie et al. (2006) have only inferred the

strength and direction of these biases from Kendall’s (1999)

evaluation of capture–recapturemodels. AlthoughMacKenzie

et al. (2006) provide useful suggestions for reducing the prob-

lem of closure, no formal framework has been developed to

explicitly test the closure assumption.

Here, we address the closure assumption for occupancy

estimation by advocating the use of Pollock’s (1982) robust

design over short time intervals, wherein an observer con-

ducts multiple surveys during each site visit. We show that

this approach permits estimation of transitions in site occu-

pancy (i.e. local colonization and extinction) and formal sta-

tistical tests of closure between site visits. Using two data sets

on bird distributions, we test the likelihood of closure over

time-scales typical of many wildlife occupancy investigations.

Finally, using simulations, we assess how sensitive occupancy

models are to violations of the closure assumption and evalu-

ate the power of likelihood-ratio tests to identify these viola-

tions.

Materials and methods

SAMPLING AND MODELS FOR ESTIMATING CLOSURE

An intuitive and practical way to address the closure assumption is to

sample populations using the robust design, which was originally

developed for capture–recapture sampling. In the robust design, sam-

pling consists of secondary sampling periods nested within primary

sampling periods. Populations are assumed to be closed to demo-

graphic changes between secondary sampling periods and open to

demographic changes between primary sampling periods. We apply

principles of robust-design (RD) sampling in an occupancy context

by considering individual site-visits as primary sampling periods and

multiple surveys conducted during each site-visit as secondary sam-

pling periods. We define ‘site-visit’ as any single visit to a site during

which one or more surveys are conducted to assess detection ⁄ non-
detection. Thus, we assume that sites are open to changes in occu-

pancy between site-visits, but are closed to changes in occupancy dur-

ing site-visits. Conducting multiple surveys during each site-visit

minimizes the time over which closure is assumed while still providing

the detection and non-detection data necessary to estimate detection

probability (cf.MacKenzie et al. 2006).

Here, we define two RD sampling protocols. A fixed-replicate RD

protocol consists of conductingafixednumberof independent surveys

during each primary sampling period, regardless of detection history.

With a fixed-replicate RD protocol, single site-visit estimates of occu-

pancy can be computed using the approach of MacKenzie et al.

(2002). When conducting multiple surveys in rapid succession, assur-

ing independence between surveysmay prove problematic. For exam-

ple, a species detected during one surveymay be easier to detect during

subsequent surveys once its location is known. For that reason, Mac-

Kenzie et al. (2006) suggest adopting a ‘removal’ sampling protocol,

which consists of surveying for a species only until it is first detected,

up to a maximum of J surveys (Azuma, Baldwin & Noon 1990; Mac-

Kenzie & Royle 2005). As surveying stops once a species is first

detected, assuming independence between surveys is less problematic.

We refer to this approach as a removalRD protocol. With a removal

RDprotocol, single site-visit estimates of occupancy can be computed

usingMacKenzie et al.’s (2006, p. 102) single-season removalmodel.

Transitions in occupancy between primary sampling periods can

be estimated by fitting dynamic models to data collected using RD

protocols. These models include the probability of local colonization

(c) and extinction (e) as parameters; c is the probability that an unoc-

cupied site at time t will become occupied at time t + 1, and e is the
probability that an occupied site at time t will become unoccupied at

time t + 1. Data collected with a fixed-replicate RD protocol can be

fit toMacKenzie et al.’s (2003) dynamic occupancymodels. Data col-

lected with a removal RD protocol can be fit using a simple extension

of MacKenzie et al.’s (2006, p. 102) single-season removal model.

The likelihood function for a two-season, dynamic removal model is:

Lðwint; p1; p2; e; cjji1; ji2; yi1; yi2Þ

¼
YN

i¼1

fwintp
yi1
1 ð1� p1Þji1�yi1 ½ð1� eÞpyi22 ð1� p2Þji2�yi2 þ eIðyi2 ¼ 0Þ�

þ ð1� wintÞIðyi1 ¼ 0Þ½cpyi22 ð1� p2Þji2�yi2 þ ð1� cÞIðyi2 ¼ 0Þ�g;
eqn 1

where wint is the probability a site is occupied during time 1; p1
and p2 are the conditional probabilities of detecting a species,

given presence, during times 1 and 2 respectively; ji1 and ji2
denote the number of surveys until the first detection of a species

at site i during times 1 and 2 respectively (note that if a species
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remains undetected at site i during time t, then jit = J); yi1 and

yi2 are binary indicators of whether a species is detected (y = 1)

or not (y = 0) at site i during times 1 and 2 respectively; I is an

indicator function (I = 1 if yi1 or yi2 = 0, I = 0 otherwise); and

N is the number of sites surveyed. The framework for extending

this dynamic removal model to three or more seasons is identical

to MacKenzie et al.’s (2003) dynamic model, changing only the

observation component of the model to reflect a removal sam-

pling protocol.

A likelihood-ratio comparison of open (e and ⁄ or c > 0) and

closed (e = c = 0) models can be used to formally test for clo-

sure between primary sampling periods. This test is a ratio of the

likelihoods of two nested models (K) calculated using the maxi-

mum-likelihood estimate (MLE) of parameters under the null

hypothesis (e = c = 0) and the MLE of parameters under the

alternative hypothesis (e, c > 0). The likelihood-ratio test statistic

is calculated as )2 · log(K). Under the standard regularity condi-

tions, the limiting distribution the test statistic under the null

hypothesis is v2 with degrees of freedom equal to the difference in

dimensionality (parameters) between the two models (Royle &

Dorazio 2008, p. 65). However, in this situation, the null model

has parameters that are on the boundary of the parameter space

(e = c = 0), and the limiting distribution is a mixture of v2 and

zeros (Self & Liang 1987). The mixing proportion of this distribu-

tion depends on the Fisher information matrix and is difficult to

calculate; however, the distribution of the test statistic can be

approximated by simulating hypothetical data sets under the null

hypothesis (Appendix S1).

APPLICATION TO BREEDING BIRD DISTRIBUTIONS

As an application, we fit standard occupancy andRDmodels to avian

point-count data.We used two separate data sets that illustrate differ-

ent RD sampling designs. Our first data set was collected along the

Madison and Missouri Rivers, Montana, USA, during the 2004

breeding season (Fletcher &Hutto 2008; ‘riparian’ data set hereafter).

Each of 165 sites was visited twice, once between 25May and 15 June

and again between 15 June and 10 July, with an average of 3 weeks

between visits. A standard 10-min, 50-m radius point-count survey

was conducted during each site visit. Each 10-min survey was further

divided into four 2Æ5-min sampling intervals, which served as second-

ary sampling periods. This data set was collected using a removal RD

sampling protocol, so sampling stopped for a species during a site-

visit once it was detected.

Our second data set was collected at the Hubbard Brook Experi-

mental Forest, New Hampshire, USA, during the 2007 breeding sea-

son (Betts et al. 2008; ‘Hubbard Brook’ data set hereafter). Each

of 184 sites was visited three times between 2 June and 2 July, with

6–8 days between visits. A standard 10-min, 50-m radius point-count

was conducted during each site visit. Each 10-min survey was further

divided into three 3-min 20-s sampling intervals, which served as

secondary sampling periods. This data set was collected using a fixed-

replicate RD sampling protocol, so each species was re-sampled

during each sampling interval.

We fit open and closed RD models to both data sets. We trea-

ted closed RD models as a restricted version of open RD models,

such that e = c = 0. We also fit standard occupancy models to a

truncated version of each data set. We generated truncated data

sets by collapsing information from each primary sampling period

into either a 1 if a species was detected or a 0 if a species

remained undetected. This effectively treated each site visit as a

single survey.

Several considerations should be made when determining how to

model detection probability (p) within and between site visits. For

closed models, allowing estimates of p to vary between site visits has

the potential to ‘absorb’ violations of the closure assumption (Mac-

Kenzie et al. 2006). Open models allow transitions in occupancy

between site-visits and thus do not need to ‘absorb’ violations of

closure. Nonetheless, allowing p to vary between site visits in open

models may provide a means to distinguish changes in site occupancy

vs. changes in detectability. Differences in p could also be modelled

within site visits.

We fitmodels that assumed both constant p and which allowed p to

vary between site visits. We assumed constant p within site-visits

because each site-visit was only 10 min in duration. This resulted in

fitting fourRDmodels for each species: closedwith constant p, closed

with site-visit-specific p, open with constant p, and open with site-

visit-specific p. For both data sets, we fit models to species that were

detected on>10%of sites surveyed (riparian = 28 species,Hubbard

Brook = 18 species).

We used both likelihood-ratio comparisons and Bayesian informa-

tion criterion (BIC) to evaluate closure for both data sets. Likeli-

hood-ratio comparisons provide formal tests for closure and facilitate

the use of power analyses (see below), but comparisons can only be

made between nested models. BIC complements the likelihood-ratio

comparison because it allows comparison of non-nested models, but

provides no formal test for closure. Additionally, BIC provides a con-

servative measure of support for openmodels relative to the more fre-

quently used Akaike’s information criterion, which is known to

favour highly parameterized models in many cases (Link & Barker

2006). We tested for closure using likelihood-ratio comparisons of

nested open and closed RD models. We calculated the BIC for each

RD model as )2log(L) + K · log(N), where K denotes the number

of estimable parameters (Link & Barker 2006). We then computed a

set of BIC model weights for each model’s relative fit for each species

following Link&Barker (2006).

We define three different measures of the probability of occur-

rence to facilitate comparison between open and closed models.

First, we define w as the probability of occurrence from closed mod-

els. Second, we define wint as the probability of occurrence during

the first primary sampling period for open RD models. Finally, we

define wbreeding as the probability that a site is occupied at least once

during a time period of interest (e.g. the breeding season), which

may encompass more than one primary sampling period and

accounts for the potential for populations to be open during this

time period. We make this distinction because w, estimated from

closed models, and wint, estimated from open models, are on differ-

ent time-scales. For example, estimates of wint from open models

only applies to the first primary sampling period, while estimates of

w from closed models apply to all primary sampling periods. To

compare open and closed estimates of the probability of occurrence

over similar time-scales, we thus calculate wbreeding using parameters

estimated from open models. We calculated wbreeding for the riparian

data set as:

wbreeding ¼ wint þ ð1� wintÞ � c:

Similarly, we calculated wbreeding for the Hubbard Brook data set

as:

wbreeding¼ hþ ð1� hÞ � c2;

where h = wint + (1 ) wint) · c1. This approach can be extended

via recursion for any number of primary time periods. We used a

parametric bootstrap procedure to estimate 95% confidence inter-

vals for wbreeding.
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SIMULATION STUDY

To assess how violations of the closure assumption can more gener-

ally bias parameter estimates, and to interpret the statistical power of

detecting violations of closure, we conducted simulation studies with

sites open and closed to changes in occupancy between primary sam-

pling periods. We simulated high and low initial probability of site

occupancy (wint = {0Æ3, 0Æ7}) and single-site-visit detection probabil-

ity (p = {0Æ3, 0Æ7}), for a total of four combinations of occupancy

and detection probability. We chose to not focus on lower values of p

because MacKenzie et al. (2002) found that standard occupancy

models were biased when p < 0Æ3; however, we further explored

more extreme variation in p for a subset of parameter combinations

(see below). For each combination of wint and p, we simultaneously

varied both colonization and extinction between primary sampling

periods (c, e = {0Æ00–0Æ95}).
To guide our simulations, we adopted the removal and fixed-repli-

cate sampling protocols used by Fletcher & Hutto (2008) and Betts

et al. (2008) respectively. We based one set of simulations on Fletcher

& Hutto (2008) by simulating observations from two primary sam-

pling periods, each divided into four secondary sampling periods

(J = 4 surveys). We based a second set of simulations on Betts et al.

(2008) by simulating observations from three primary sampling peri-

ods, each divided into three secondary sampling periods (J = 3 sur-

veys).

For each replicate data set, we simulated observations on

N = 1000 and N = 150 sites. Each simulated site was initially

occupied with probability wint, and species were detected on occu-

pied sites with probability 1 ) (1 ) p)1 ⁄ J during each secondary

sampling period. During subsequent primary periods, species were

absent from sites occupied during the previous primary period with

probability 1 ) (1 ) e)1 ⁄ (s)1), where s is the number of primary

sampling periods, and present on sites that were unoccupied during

the previous primary period with probability 1 ) (1 ) c)1 ⁄ (s)1)

(note that total colonization and extinction rates were equal for

scenarios with two or three primary sampling periods). We ran-

domly generated 1000 replicate data sets for each combination of

wint, p, e, c and N. For a subset of parameter combinations

(removal sampling design and N = 1000), we also simulated

declining detection probabilities between primary sampling periods

(p declining from 0Æ7 to 0Æ3 or to 0Æ1) to interpret whether open

models could distinguish violation of closure from changes in

detection probability.

Using the data-generating process described above, we simulated

three different sampling protocols to address the closure assump-

tion. For a fixed-replicate RD protocol, each primary sampling per-

iod consisted of J secondary sampling periods. For a removal RD

protocol, we only surveyed during a primary sampling period until

a species was first detected, for a maximum of J surveys. For a

standard occupancy protocol, we truncated information from

primary sampling periods into a 0 for non-detection and 1 for

detection, effectively treating each primary sampling period as a

single survey.

We then fit open and closed RD models for both sampling pro-

tocols. Fixed-replicate RD models had J · s surveys. Removal

RD models had a maximum of J · s surveys, but surveys stopped

after the initial detection in any primary sampling period. For the

standard occupancy sampling protocol, we fit single-season occu-

pancy models (MacKenzie et al. 2002) to the truncated data, with

the number of surveys equal to the number of primary sampling

periods. We allowed detection probability to vary between pri-

mary sampling periods for all models, which MacKenzie et al.

(2006) suggested may ‘absorb’ some violations of the closure

assumption.

We concluded by calculating per cent relative bias of closed models

for each simulated scenario. We calculated per cent relative bias as

bias = (E(w) ) wbreeding) ⁄wbreeding, where E(w) is the average esti-

mated w for closed models from all simulations, and wbreeding is calcu-

lated as above using the ‘true’ values of wint and c. Consequently,
wbreeding is the true value of occupancy across the time period of

interest.

Results

BREEDING BIRD DISTRIBUTIONS

For 16 of the 28 species considered from the riparian data set,

open RDmodels received more than half of the model weight,

according to BIC weights (Fig. 1a). Likelihood-ratio tests pro-

vided similar results, rejecting the null hypothesis of closure

between primary sampling periods for 20 species (P < 0Æ05).
In general, apparent colonization or extinction events were

best explained by transitions in occupancy rather than changes

in detectability; i.e. seasonal changes in detection probability

were insufficient for explaining apparent transitions. In only

two clear cases (house finch Carpodacus mexicanus and Euro-

pean starling Sturnus vulgaris) did closedmodels with site-visit-

specific detection probability best explain apparent changes in

site occupancy (Fig. 1a). In all cases, estimates of wbreeding cal-

culated from open RD models were lower than estimates of w
from standard occupancy models (Fig. 2a; mean differ-

ence = 0Æ15).
The null hypothesis of closure tended to be supported in

situations where estimated detection probability from open

models was low. For example, black-headed grosbeak Phe-

ucticus melanocephalus, downy woodpecker Picoides pubes-

cens and American goldfinch Carduelis tristis, which all

received substantial support from closed models (Fig. 1), also

had the lowest estimated detection probabilities from open

models. This highlights the difficulty associated with distin-

guishing between non-detection and changes in site occu-

pancy when p is low. This result also demonstrates that tests

for closure are conservative when p is low. Conversely, species

with low estimates of e or c (see Appendix S2 for estimates of

c and e) for which the null hypothesis of closure was rejected,

such as common yellowthroat Geothlylpis trichas or house

wren Troglodytes aedon, tended to have high estimated detec-

tion probabilities from open models.

For 17 of 18 species considered from the Hubbard Brook

data set, open RD models received more than half of the

model weight, according to BIC weights (Fig. 1b). Likeli-

hood-ratio tests provided similar results, rejecting the null

hypothesis of closure between site visits for all 18 species

(P < 0Æ01). Apparent colonization and extinction events with

the Hubbard Brook data set were always better explained

by transitions in occupancy rather than changes in detec-

tion probability (Fig. 1b). In all cases, estimates of wbreeding

calculated from open RDmodels were lower than estimates of

w from standard occupancy models (Fig 2b; mean differ-

ence = 0Æ37).
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SIMULATION STUDY

Closed model estimates of w are sensitive to changes in occu-

pancy between primary sampling periods. For example, aver-

age bias of w with two primary periods and parameter

combinations shown in Fig. 3 is 0Æ19 (SD = 0Æ25). With two

primary sampling periods, closed model estimates of w were

unbiased if extinction or colonization-only events occurred.

With three primary sampling periods, closed model estimates

of w were slightly negatively biased if extinction or coloniza-

tion-only events occurred.

Open models generally provided unbiased estimates of wint

andwbreeding. For example, average bias ofwbreeding with two pri-

mary periods and parameter combinations shown in Fig. 3 was

0Æ004 (SD = 0Æ009). Additionally, open models were generally

able to distinguish between changes in occupancy and changes in

detection probability between primary sampling periods: when

c = e = 0, but p declined from 0Æ7 to 0Æ3, average bias in esti-

mates of wbreeding was 0Æ01 for open models (0Æ003 for closed

** House wren
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** Gray catbird

** Warbling vireo
** Willow flycatcher

** American robin
** Song sparrow
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** Yellow warbler
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** Black-capped Chickadee
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European starling
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* Tree swallow
Black-billed magpie
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American goldfinch
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Black-headed grosbeak

BIC model weight
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** Black-capped chickadee

** Brown creeper
** Hermit thrush

** Red-eyed vireo
** Yellow-bellied sapsucker

** Ovenbird
** Winter wren

** Black-throated blue warbler
** Magnolia warbler
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** Blackburnian warbler
** Black-throated green warbler

** Yellow-bellied flycatcher
** Golden-crowned kinglet

** Dark-eyed junco
** White-breasted nuthatch

(b)

(a)

Fig. 1. Relative weights of open and closed occupancy models for

breeding birds in two areas. (a) Bayesian information criteria (BIC)

model weight for all species detected on >10% of riparian point-

counts (N = 165), Montana, USA, using a removal RD sampling

protocol. (b) BIC model weight for all species detected on >10% of

Hubbard Brook point-counts (N = 184), New Hampshire, USA,

using a fixed-replicate sampling protocol. Grey bars indicate BIC

weights for open models and white bars indicate BIC weights for

closed models. Hatched bars indicate BIC weights for models with

site-visit-specific detection probability and bars without hatching

indicate BIC weights for models with constant detection probability.

Significant likelihood-ratio tests for closure are marked with asterisks

(*P < 0Æ05, **P < 0Æ01). We report likelihood-ratio tests for nested

RD models calculated with either constant detection probability or

site-visit-specific detection probability, whichever has the greatest

support according to BIC weights. For a list of scientific names, see

Appendix S2.

S
ta

nd
ar

d 
oc

cu
pa

nc
y 

ψ

0·0

0·2

0·4

0·6

0·8

1·0

Robust design occupancy ψbreeding

0·0 0·2 0·4 0·6 0·8 1·0

0·0 0·2 0·4 0·6 0·8 1·0

0·0

0·2

0·4

0·6

0·8

1·0

(a)

(b)

Fig. 2. (a) Estimated probability of site occupancy, wbreeding (±95%

CI), from open removal RD models relative to standard occupancy

models for all species detected on >10% of riparian data set point-

counts. Open circles indicate species for which the closure hypothesis

was supported. (b) Estimated wbreeding (±95% CI), from open fixed-

replicate RD models relative to standard occupancy models for all

species detected on >10% of Hubbard Brook data set point-counts.

The dotted line indicates no difference in estimates, and points above

that line indicate a higher estimate of w for standard occupancy mod-

els. We report point-estimates from models calculated with either

constant detection probability or site-visit-specific detection probabil-

ity, whichever had the greatest support according to Bayesian infor-

mation criteria weights.
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models). Open models tend to overestimate wbreeding when both

wint is low and e is high. This bias is minimal at high values of p

andN, and increases as both p andN decrease.

When colonization and extinction vary simultaneously,

closed models are usually biased high. This bias is most pro-

nounced at intermediate values of c, and increases with

increasing e (Fig. 3). Additionally, closed model bias is nega-

tively correlated with wint. Estimates of w from closed models

were less biased with three primary sampling periods than with

two primary sampling periods (Fig. 3).

Although closed model estimates of w varied depending on

the exact combination of N, p, wint, c, e, or sampling protocol,

the same general pattern described above held for all scenarios

(C.T. Rota, unpublished results). Closed model estimates of w
were, on average, similar with N = 1000 and N = 150. Addi-

tionally, closed model estimates of w were, on average, similar

with p = 0Æ7 and p = 0Æ3. Exploration of more extreme detec-

tion probabilities (p = 0Æ1 and p = 0Æ9) on a subset of parame-

ter combinations revealed a similar pattern of biases. Both low

sample size and low detection probability increased the uncer-

tainty of the estimate, primarily leading to a response surface

that was less smooth than shown in Fig. 3. Estimates of w from

closed standard occupancymodelsweremore biased than closed

RDmodels, with removalmodels demonstratingmore bias than

fixed-replicatemodels (C.T.Rota, unpublished results).

Importantly, the power of a likelihood-ratio test to detect

violations of the closure assumption increases with increasing

extinction and colonization (Fig. 4, see Appendix S1 for

power calculations). Several factors affect the power to detect a

violation of closure. Power is slightly greater for a fixed-repli-

cate RD sampling protocol than for a removal RD sampling

protocol (not shown), and power is greater with three sampling

periods than with two sampling periods (Fig. 4). Interestingly,

power decreases at very high levels of extinction (Fig. 4), pre-

sumably because of an inability to distinguish between extinc-

tion and a decrease in detection probability.

Discussion

Occupancy estimation is valuable for many applications in

ecology and conservation. Yet our results suggest that applica-

tion of sampling designs and models aimed at estimating
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occupancy should be done with explicit emphasis on the prob-

lem of closure. Populations may often be open during time

periods typically considered closed by investigators, which can

result in biased estimates of occupancy. Consistently high sup-

port for open RDmodels with both the riparian and Hubbard

Brookdata sets highlights that habitatsmay frequently be open

to changes in site occupancy over the breeding seasons of birds,

a time period often considered closed (MacKenzie et al. 2003).

A lack of closure may occur for several reasons. For exam-

ple, Betts et al. (2008) demonstrated apparent within-breed-

ing-season movement of black-throated blue warblers

Dendrioca caerulescens along a habitat gradient, where war-

blers presumably shifted territories as more reliable informa-

tion about habitat quality became available. Studies using

radio-telemetry and ⁄or colour banding have also demon-

strated that individuals may shift territories large distances

(e.g. >5 km) after failed breeding attempts (Walk et al. 2004;

Fletcher, Koford & Seaman 2006) or in response to seasonal

fluctuations in food availability (Klemp 2003).

Our simulation study further demonstrates that estimates

of occupancy are sensitive to violations of the closure

assumption. Our results are consistent with the predictions

of MacKenzie et al. (2006), who drew analogy with Ken-

dall’s (1999) evaluation of how violations of the closure

assumption bias mark–recapture models. MacKenzie et al.

(2006) predicted how immigration and emigration-only

movement was likely to bias estimates of w. Our simulations

confirmed these predictions and went one step further by

additionally evaluating how simultaneous colonization and

extinction events bias estimates of w, demonstrating that

even small amounts of simultaneous colonization and extinc-

tion will lead to overestimates of w. In practice, movements

are likely to be both into and out of sampling units, which

was highlighted with both the riparian and Hubbard Brook

data sets (Appendix S1).

The strength and direction of bias resulting from violations

of closure is likely to be especially problematic when monitor-

ing rare or declining species in a conservation or management

context (e.g. Stauffer, Ralph&Miller 2004). For example, sim-

ulations demonstrate that bias in w from closed models

becomes greater as wint becomes smaller. Furthermore,

because such biases are typically positive, assuming closure

when in fact populations are open will result in overestimates

ofw.
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The sensitivity of model performance to changes in site

occupancy and the likelihood that sites may be open to

changes in site occupancy during time-scales typical of many

occupancy studies underscore the importance of addressing

the closure assumption.We reiterateMacKenzie et al.’s (2006)

suggestion of conducting replicate surveys as close in time as

possible as a means to minimize violations of the closure

assumption.We note, however, that while conducting replicate

surveys close in time has been proposed as a way to maximize

the likelihood of closure, until now the importance of address-

ing this assumption has not been explicitly addressed.

An advantage of the sampling approach we highlight is the

ability to conduct a formal test for closure, complementing the

goodness-of-fit test for single-season occupancy models devel-

oped by MacKenzie & Bailey (2004). Both approaches enable

an assessment of the adequacy of single-season models to

describe the population of interest. Additionally, the test for

closure we describe enables prospective power analyses. This,

in conjunction with MacKenzie & Royle’s (2005) recommen-

dations formaximizing precision of parameter estimates with a

limited budget, should prove useful in designing occupancy

studies.

A potential source of bias in open models could arise if p

was to decline between primary sampling periods. Our simula-

tions suggest, however, that open models can generally distin-

guish between changes in occupancy and detectability, except

when wint is low and e is high. If p declines to values approach-

ing zero, neither open nor closed models will provide unbiased

estimates of occupancy. In both the riparian and Hubbard

Brook data sets, there was no strong evidence that declining p

was a source of bias in open models, as BIC weights favoured

models with constant p formost species considered.

One potential problem with our approach of treating indi-

vidual site visits as primary sampling periods is that temporary

emigration may be confounded with local extinction or coloni-

zation. For example, if a territory were to overlap a survey site,

but not be completely contained within that site, what might

be inferred as apparent extinction or colonization could simply

be an animal still present in its territory, but absent from the

survey site. This situation may have occurred for some species

considered, especially wide-ranging species. Nichols et al.’s

(2008) multi-scale occupancy model, which estimates a param-

eter reflecting the probability a species is available for sam-

pling, conditional on the species occupying the sampling unit,

is one potential approach for dealing with temporary emigra-

tion. Other specifications for addressing temporary emigration

have also been developed and can be applied to occupancy

modelling (Kendall, Nichols & Hines 1997; Kery et al. 2009).

For example, a restricted form of random temporary emigra-

tion, assuming ct = 1 ) et (MacKenzie et al. 2006, p. 206),

could be easily included into our modelling framework as a

model of intermediate complexity between closed and

Markovian models, where the likelihood function would be a

simplified version of eqn 1.

The problem of temporary emigration could also be

addressedmore directly in the study design phase by increasing

the area sampled and ⁄or potentially sampling at a finer resolu-

tion within the area sampled (e.g. using a tighter sampling

grid). If temporary emigration from the sampling unit is driv-

ing apparent extinction, expanding the area sampled should

provide more support for closed models than at smaller spatial

scales. This is less of a problem for the riparian data set because

most forest patches sampled were small, such that increasing

the point-count radius would have resulted in sampling non-

forest habitat. Hubbard Brook, however, is characterized by

relatively contiguous habitat, which makes the issue of tempo-

rary emigration more relevant for this data set. We further

analysed the Hubbard Brook data at a 100-m point-count

radius to determine if inferences on violations of closure were

sensitive to sampling area. Tests for closure at this radius still

resulted in rejecting the null hypothesis of closure between pri-

mary sampling periods for all 18 species (P < 0Æ01), although
BICweight of closedmodels increased substantially for the yel-

low-bellied sapsucker Sphyrapicus varius and decreased for

white-breasted nuthatch Sitta carolinensis. This suggests that,

at least for the yellow-bellied sapsucker, a wide-ranging spe-

cies, temporary emigrationmay be occurring occasionally.

If temporary emigration was driving apparent colonization

and extinction, we should further expect to consistently reject

the closure hypothesis for wide-ranging species. However,

many species for which the closure hypothesis was supported

are wide-ranging, such as the black-headed grosbeak and

downy woodpecker. Further, species body mass (a surrogate

of territory size, see Bowman (2003) and Appendix S2) was

not a significant predictor of BIC model weight for either the

riparian or Hubbard Brook data (C.T. Rota, unpublished

results). Thus, despite the potential to confound temporary

emigration with local extinction-colonization dynamics, our

analyses strongly suggest that sites were open to changes in

occupancy over the duration of these two studies.

Adequately addressing the closure assumption is critical to

drawing valid inference for both ecological questions and con-

servation problems. Our simulations demonstrate that occu-

pancy models are sensitive to violations of the closure

assumption andwill tend to overestimate the probability of site

occupancy when closure is violated. Further, this bias is depen-

dent on the amount of local colonization and extinction. These

parameters are unlikely to remain constant within or among

seasons, making inference even on relative occupancy from

closed models problematic. We recommend explicitly address-

ing the assumption of closure whenever possible, both in sam-

pling designs that include repeated sampling over a time-scale

(hours to days) that will maximize the likelihood of closure,

and by adopting designs which will allow formal testing for

closure. Adequately addressing assumptions is an essential

part of any modelling process, and an improved focus on the

closure assumption will play a crucial role for managers and

scientists alike in providing meaningful estimates of occu-

pancy.
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