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Abstract—Robust optimization recently becomes a state-of-
the-art approach to solve decision-making under uncertainty
problems in the power system operations. To better quantify and
highlight the significance of the robust optimization for reliable
unit commitment runs, PJM and Alstom Grid have collaborated
to develop a two-stage robust optimization (TSRO) prototype
since 2012. In this paper, we present a computational tractable
TSRO framework for the PJM Look-Ahead Unit Commitment
(LAUC) with the consideration of load uncertainty. Instead of
only covering limited number of scenarios in the uncertainty
set, TSRO provides a robust solution that immunizes all possible
scenario realizations. Linear decision rule (LDR) and two-stage
decomposition approaches are considered respectively to solve
TSRO in this research. We test the scalability and sensitivity
of the proposed models and algorithms with the PJM market
data. Finally, the computational results indicate that the proposed
TSRO framework provides sufficient ramping capability and
improves the security of the large-scale power grid system.

Index Terms—Decomposition Algorithm, Look-Ahead Unit
Commitment, Mixed-Integer Programming, Load Uncertainty,
Two-Stage Robust Optimization.

I. INTRODUCTION

Look-Ahead Unit Commitment (LAUC) has been carried
out widely in several large wholesale electricity markets in
the United States recently. On June 9th 2010, PJM Look-
Ahead Security Constrained Economic Dispatch (LA-SCED)
went live. In PJM LA-SCED, the LA commitment employs
a two hours look-ahead fast-start unit commitment; the LA
dispatch couples multi-interval SCED. Similar proposals and
promotions of LAUC can be found in Midwest ISO [1],
ISO-New England [2], and Southwest Power Pool [3] market
systems. One of the most primary operational challenges for
LAUC is the uncertainty management. The current industry
practice is to solve LAUC with the consideration of several
uncertain scenarios specifically. The operator picks commit-
ment recommendations from one or more scenarios. The
major drawback of this process is that the solution quality
of LAUC largely depends on the operator’s preference of
the scenarios. Thus, it is necessary and favorable to consider
robust optimization for LAUC to achieve cost effectiveness
while ensuring system reliability.
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Robust optimization has been recently studied to tackle the
uncertainty in power system operations. For example, Street
et al. [4] propose a robust optimization framework for the
contingency-constrained unit commitment. Baringo et al. [5]
study a bidding strategy for a price-taking producer via the
robust mixed-integer linear programming approach. In [6], a
robust optimization approach is presented to handle parameter
uncertainties such as price, growth rate of light-duty vehicle,
etc., for the sustainable integration of PHEVs into an electric
grid. A close related work of this paper is the two-stage robust
optimization (TSRO) framework proposed in [7], [8] and [9] to
obtain an “immunized against uncertainty” unit commitment
solution to accommodate uncertain load or renewable power
generation. More recently, TSRO is proposed in [10] to study
the contingency-constrained unit commitment incorporating
transmission network constraints. The computational results
decomstrate the efficiency of the two-stage decomposition
algorithm for the TSRO framework. To better quantify and
highlight the significance of robust optimization in uncertainty
management, PJM and Alstom Grid have collaborated to
develop a TSRO prototype to study LAUC for PJM since 2012.
Linear decision rule (LDR) [11] and two-stage decomposition
approaches [7], [8], [9], [10] are studied respectively to solve
TSRO.

The contributions of this paper are highlighted as follows:

1) We propose a two-stage robust optimization prototype
for LAUC for PJM. The significance of robust optimiza-
tion is investigated for a real-world large-scale power
grid system with computational experiments.

2) Compared with the literature in robust unit commitment,
both LDR and two-stage decomposition are studied in
this paper to solve TSRO. We also provide a comparison
of these two approaches.

3) Compared with the decomposition framework in [7] and
[9], we consider an improved bilinear heuristic algorithm
as shown in [8] to solve the sub-problem effectively.
And we use a primal decomposition instead of the
traditional Bender’s dual decomposition to achieve better
performance.

The remainder of this paper is organized as follows: Section
II describes a TSRO framework; Section III proposes two
approaches to solve TSRO; Section IV provides and analyzes
case studies for the PJM LAUC problem; finally, Section V
makes concluding remarks on this research.
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II. MATHEMATICAL FORMULATION

In our LAUC TSRO formulation, the unit commitment
decisions are the first stage decision variable; the economic
dispatch decisions are the second stage variable so that it
is a function of the uncertain load. In the first stage, we
impose the unit physical constraints (e.g., start-up/shut-down,
min up/down-time constraints). In the second stage, dispatch
constraints (e.g., load balance, reserve limits, transmission
line flow limits) and coupling constraints for commitment
and dispatch decisions (e.g., generation upper/lower limits,
ramping-up/down limits) are enforced.

There are different techniques to model the robust unit
commitment problem. To simplify our discussions, we use
the following compact formulation from [7] throughout this
paper.

min
x,y

(cTx+ max
d∈D

bT y(d)) (1)

s.t. Fx ≤ f, (2)
Hy(d) ≤ h(d),∀d ∈ D, (3)
Ax+By(d) ≤ g,∀d ∈ D, (4)
Iy(d) = d,∀d ∈ D, (5)

where D represents the deterministic uncertainty set, x and
y are unit commitment decisions and economic dispatch
decisions, respectively.

In this paper, uncertain loads are considered to be within
certain ranges. Accordingly, a basic uncertainty set can be
described as follows:

D0 = {dit : D`
it ≤ dit ≤ Du

it,∀t,∀i ∈ N}, (6)

where dit are the uncertain loads and D`
it and Du

it are the
corresponding lower/upper bounds. Besides constructing the
regular deterministic uncertainty set, it is a common practice to
add uncertainty budget constraint into the robust optimization
problem to control conservativeness of the model. Polyhedra
and cardinality budget constraints are two typical constraints
widely applied in the literature [8]. In order to control the
conservativeness of the problem, we propose a cardinality
budge constraint as shown below in this research.

N∑
i=1

T∑
t=1

⌈∣∣∣∣dit − d̄itd̂it

∣∣∣∣⌉ ≤ Γ, (7)

where d̄it are the forecasted mean loads and d̂it are the load
deviations.

After introducing a set of binary variables z, we can refor-
mulate (7) with the following mixed-integer programming:

N∑
i=1

T∑
t=1

zit ≤ Γ, (8)

zit ≥
dit − d̄it
d̂it

, (9)

zit ≥
d̄it − dit
d̂it

, (10)

zit ∈ {0, 1}. (11)

III. SOLUTION METHODOLOGY FOR TSRO
In this section, we provide two solution methods to solve

the TSRO formulation: LDR and two-stage decomposition
algorithms. Note here that LDR is embedded in the current
AIMMS software. Therefore, it is very easy to test its perfor-
mance. That is also the reason we report its performance in
this paper.

A. LDR Approach
In LDR, the adjustable variables (i.e., dispatch decision

variables) are assumed to be an affine function of the uncertain
loads [11]. Therefore, TSRO can be reformulated into a single
stage optimization problem. In the remaining part of this
subsection, we describe the LDR approach as shown in the
Theorem 3.2 in [11]. To apply LDR, we first recast TSRO as
follows:

min
x,y

(cTx+Q) (12)

s.t. Q− bT y(d) ≥ 0,∀d ∈ D, (13)
(2)− (5).

Note that Iy = d can be substituted by the pair Iy ≥ d
and −Iy ≥ −d. And Q can be considered as a first-stage
decision variable into the collection x. Therefore, a more
general formulation can be achieved as follows:

min
x,y

cTx (14)

s.t. Ax+ Uy(d) ≥ u(d),∀d ∈ D. (15)

After applying LDR, y(d) can be expressed as an affine
function of the uncertain loads d. Thus, we reach the following
equivalent reformulation.

min
x
cTx (16)

s.t. Ax+ V d ≥ v,∀d ∈ D. (17)

Here, we assume D is a box (i.e. D = D0 = {D` ≤ d ≤ Du})
to simplify the discussion. To guarantee the feasibility of (17),
we want to assure that Opti ≥ 0,∀i, where Opti is defined as:

Opti = min
d

(Ax− v)i + V id (18)

s.t. D` ≤ d ≤ Du. (19)

Let Dopti denote the optimal objective function in the dual
problem of the above optimization. By the strong duality
theorem, Opti ≥ 0 if and only if Dopti ≥ 0, where Dopti
is defined as:

Dopti = max
λi
1,λ

i
2

(Ax− v)i + λi1D
` − λi1Du (20)

s.t. λi1 − λi2 = V i. (21)

Note that Dopti ≥ 0 if and only if

∃(λi1, λi2) : λi1 − λi2 = V i, (Ax− v)i + λi1D
` − λi2Du ≥ 0.

Now we conclude that the adjustable robust optimization
counterpart can be reformulated as follows:

min
x
cTx (22)

λi1 − λi2 = V i,∀i (23)
(Ax− v)i + λi1D

` − λi2Du ≥ 0,∀i. (24)
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Finally, it is worth noting that when the polyhedra budget
constraints are imposed, the above steps hold without loss of
generality by changing the dual problem formulation.

B. Two-Stage Decomposition Approach

Alternatively, we propose a two-stage decomposition ap-
proach which solves the original TSRO iteratively.

1) Master problem: unit commitment is considered to be
the master problem in our decomposition framework. In the
first iteration, we set the load at the nominal level and solve a
deterministic unit commitment to obtain the starting point for
the whole algorithm. The solution from the master problem is
used for the sub-problem in the second stage. At the beginning
of each iteration, the master problem is solved again with an
additional set of cuts.

2) Sub-problem: the sub-problem aims to solve the eco-
nomic dispatch problem under the worst-case load scenario
with the fixed unit commitment decisions. The solution of the
sub-problem discovers the worst-case scenarios which are used
to generate the cuts.

According to linear programming and duality theory, we can
transform the sub-problem from a max-min programming into
a single maximization problem. Readers are referred to (7)−
(9) in [7] for this reformulation process. This maximization
problem is a nonlinear programming problem composed of
a bilinear objective function and linear constraints. To solve
such a bilinear programming problem effectively for large-
scale problems, we propose a bilinear heuristic algorithm as
described in [8]. By fixing different sets of decision variables
in the bilinear programming approach, we obtain the following
two sub-problems based on equation (9) in [7].

SUB1 : max
ϕ,λ,η

λT (Ax− g)− ϕTh+ ηT d∗ (25)

s.t. −λTB − ϕTH + ηT I = bT , (26)
ϕ ≥ 0, λ ≥ 0, η free. (27)

SUB2 : max
d

λ∗T (Ax− g)− ϕ∗Th+ η∗T d (28)

s.t. −λ∗TB − ϕ∗TH + η∗T I = bT , (29)
d ∈ D. (30)

The heuristic algorithm for the bilinear programming approach
is described as follows.

1) Pick an extreme point d∗ ∈ D.
2) Solve SUB1 with d∗ and store the objective value as

ω1(y, d).
3) Solve SUB2 with the dual variable value obtained from

step 2, store the objective value as ω2(ϕ, λ, η).
4) If ω2(ϕ, λ, η) > ω1(y, d), go to step 2, otherwise stop.
When applying this algorithm to the real-world large-scale

market software system, a significant bottleneck is to build the
dual model SUB1. And such a dual model is very vulnerable
with any changes of the primal model with thousands of
constraints and variables. To improve this bilinear heuristic
algorithm, we design a modified algorithm to avoid formu-
lating the dual model. Instead of solving SUB1, we consider

the dual of SUB1, which turns out to be the original primal
sub-problem with fixed load and first-stage decision variables:

DSUB1 : min
y∈Ω(x,d∗)

bT y (31)

where Ω(x, d∗) = {y : Hy ≤ h,Ax + By ≤ g, Iy = d∗}.
Now, we can solve the DSUB1 instead of SUB1 in the second
step of the algorithm. According to strong duality theorem,
optimal objective values of DSUB1 and SUB1 should be equal.
And it is easy to acquire the dual solutions (i.e., shadow prices
of the constraints) from the optimization solver as the input
for the third step. With this method, we avoid formulating the
dual model which is risky in a large-scale software system.

Finally, there is no guarantee that such a heuristic algo-
rithm can obtain the optimal solution of the original bilinear
programming. However, this algorithm avoids solving the
nonlinear programming and provides a near-optimal solution
for large-scale problems.

3) Primal decomposition: We use the primal decomposition
approach similar to the ones described in [12] and [10] to
generate a group of cuts based on the solution obtained from
the sub-problem. Compared with the traditional bender’s dual
decomposition approach, the primal decomposition approach
generates more constraints in each iteration and might achieve
better performance for some problems.

4) Algorithm framework: The complete two-stage decom-
position algorithm is summarized in this subsection. After
solving the master problem, we fix the solutions of the first-
stage decision variables in the coupling constraint. The sub-
problem is then solved to discover the worst-case load sce-
nario. After generating the cuts according to the sub-problem
solution, we add them back into the master problem for the
next iteration. The stopping criterion is met when the objective
values obtained from the master and sub-problems are equal. .
Fig. 1 provides the flowchart of the algorithm for the two-stage
decomposition approach.

IV. CASE STUDIES WITH PJM MARKET DATA

In this section, we run the computational experiments for
the proposed robust LAUC. All the models and algorithms are
implemented in AIMMS 3.11. The mixed-integer programs
are solved by CPLEX 12.2. We first compare TSRO approach
with the deterministic strategy to address load uncertainty.
We investigate the performances of the AIMMS’ embedded
LDR and our developed two-stage decomposition approaches
through testing different deviations and uncertainty parame-
ters. Finally, we conduct experiments to study the cost of
robustness via the cardinality budget constraint within the two-
stage decomposition framework.

There are totally around 2000 generation resources available
in our case studies for PJM market. 200 of them are fast-start
units which can be committed/decommitted by LAUC. 4 look-
ahead intervals and 8 zones are considered.

A. LDR Approach

1) Uncertainty Set Description: We first consider a simple
D0 for the case study with LDR. The load uncertainty of



4

Solve the Master problem

Timeout?

Converge?

Add

Solve the sub-problem

Generate the cuts

Obtain the optimality gap no

yes

yes

no

Fig. 1. Proposed Two-Stage Decomposition Algorithm

each PJM zone is under consideration so that we have 4
uncertain loads and each of them is associated with an
uncertainty set. It follows the common sense that the forecast
becomes more accurate (i.e., deviation becomes smaller) with
a closer interval. Thus, we assume that the positive/negative
deviations of the nominal loads for 4 look-ahead intervals are
1%, 5%, 10%, and 15% respectively. Fig. 2 describes the load
forecast and how uncertainties vary in four time intervals.
“Norm” means the nominal loads; “High” and “Low” are
nominal loads with positive and negative deviations through
all the intervals, respectively.

Robust Solution v.s. Deterministic Solutions 
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Fig. 2. Uncertain Loads Profile at PJM Zone

2) Deterministic vs. TSRO: One deterministic strategy for
the system operator to handle load uncertainty is to run
deterministic LAUC with different scenarios and pick the
commitment recommendations. Based on the uncertain load
profile, the system operator usually prefers to look into “High”
and “Low” cases with the reliability concern. Because the
“High” and “Low” scenarios are probably the worst-case or
at least near-worst-case scenarios. Then an investigation of
Norm case is necessary to consider system economics. We

follow this deterministic process to run three scenarios (i.e.,
“Norm”, “Low”, and “High”) and compare them with TSRO
in Table I.

TABLE I
OPTIMAL OBJECTIVE VALUES OF THREE DETERMINISTIC SCENARIOS

AND TSRO

Model Type Optimal Obj. ($)

Deterministic Model (Norm) 7,110,998.91

Deterministic Model (High) 8,115,738.09

Deterministic Model (Low) 6,363,717.40

Robust Model 8,311,788.86

It can be observed that neither “High” nor “Low” is the
worst-case scenario with this load profile. The robust optimiza-
tion approach identifies the worst-case and provides a more
reliable solution to immunize uncertainties. To better illustrate
it, we compare the unit commitment solution of the robust
optimization approach with those of “High” and “Low” in Fig.
3. In this figure, “RO” means the robust optimization; “HL”
and “LL” mean high load and low load scenarios respectively.
We find that most units are shut down in the third period
and plenties of units are started up in the fourth period
for the robust optimization approach. The reason behind this
observation is that the worst-case scenario of this load profile
happens when the load drops to valley in the third period
and rise to peak in the fourth period. Such a dramatic load
increment calls for more start-up/shut-down operations and
thus incurs the highest cost among others.

Robust Solution v.s. Deterministic Solutions 
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Fig. 3. Unit commitment solution comparisons

B. Two-Stage Decomposition
We solve TSRO with the two-stage decomposition approach

described in Section III and compare its performance with the
LDR approach. The nominal load pattern in Fig. 2 is again
under consideration. Different groups of deviations are tested
to compare the performances of these two approaches. The
results are summarized in Table II.

In the above computational experiments, LDR and two-
stage decomposition approaches provide the exact same unit
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TABLE II
SENSITIVITY ON LOAD DEVIATION : LDR VS. TWO-STAGE

Uncertainty Dev. Time (LDR) Time (Decomposition)

1%, 2%, 3%, 5% 160.35s 2.14s

1%, 5%, 8%, 10% 386.01s 2.34s

1%, 5%, 10%, 15% 323.80s 2.17s

commitment solution. It can be observed that LDR takes
more time as the uncertainty deviation increases. Two-stage
decomposition has a better performance and the computational
time is not significantly affected by uncertainty deviations.
We provide another comparison from the perspective of un-
certainty numbers (or budget). In Table III, we observe a
similar phenomenon. Increasing the conservativeness of the
uncertainty set does not lead to an obvious performance
difficulty. There are two reasons for the promising results of
the two-stage decomposition approach performance. First, both
deviations and budget numbers only affect the sub-problem
computational complexity in the decomposition framework.
More precisely, they only affect solving SUB2, which is a
simple linear program, in our heuristic algorithm. Different
deviations make slight difference on the feasible regions of
SUB2. And different uncertainty numbers impose different
variable numbers of SUB2. But none of them makes SUB2

significantly more complicated to solve. Second, the perfor-
mance of the two-stage decomposition approach largely relies
on the number of iterations (i.e., convergence rate). In these
experiments, all decomposition algorithms converge in three
iterations.

TABLE III
SENSITIVITY ON UNCERTAINTY NUMBER : LDR VS. TWO-STAGE

Uncertainty No. Time (LDR) Time (Decomposition)

4 323.80s 2.17s

6 1400s 2.23s

8 ≥ 3600s 2.33s

C. Cost of Robustness

We report the cost of robustness by controlling the conserva-
tiveness in the cardinality budget constraint for the proposed
TSRO model. The worst-case scenario objective values are
reported in Table IV. Two-stage decomposition approach is
applied to solve all the cases here and terminates within four
iterations. We observe that the operations cost increases as the
number of possible load uncertainties increases. The system
operators can adjust the number of uncertainty with their
preferences to find tradeoff between system economics and
robustness.

V. CONCLUSION AND DISCUSSIONS

In this paper, a TSRO model is proposed to study LAUC
for the PJM market. The LDR and two-stage decomposition
approaches are studied respectively to analyze the computa-
tional complexity of TSRO. By substituting the second-stage

TABLE IV
COST OF ROBUSTNESS

Uncertainty No. Obj. Time
0 7110998 0.31s
4 7408009 2.19s
8 7657384 3.28s
12 8000696 3.46s
20 9310763 4.49s

(adjustable) variables into affine function of uncertain param-
eters, LDR reformulates TSRO into a deterministic equivalent
optimization problem. Two-stage decomposition approach is
developed to solve the original TSRO directly. The master
problem is the unit commitment. The sub-problem solves
economic dispatch under the worst-case scenario. We use the
primal decomposition approach after the sub-problem screens
the worst-case scenario. However, the bilinear sub-problem is
difficult to solve to optimum for large-scale problems. The
bilinear heuristic we applied can solve the problem efficiently
and near to optimal. Our case study results demonstrate the
impact and significance of the robust optimization approach
for reliability concerns in real-world power system operations.
The efficiency of the proposed algorithms is verified by our
case study results.

Note here that in our experiment, we used the default
AIMMS setting for the LDR approach (without any decom-
position algorithm involved), as a benchmark for our TSRO
approach. It is worth mentioning here that the LDR refor-
mulation has a similar problem structure as the deterministic
unit commitment problem. There is great potential to develop
and implement efficient decomposition and/or heuristic ap-
proaches, so as to significantly improve the LDR performance
to achieve a similar or even better computational performance,
as compared to the TSRO approach does. In future research,
we will explore along this direction.
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