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Two-Stage Robust Optimization for N -k
Contingency-Constrained Unit Commitment
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Abstract—This paper proposes a two-stage robust optimiza-
tion approach to solve the N -k contingency-constrained unit
commitment (CCUC) problem. In our approach, both generator
and transmission line contingencies are considered. Compared
to the traditional approach using a given set of components
as candidates for possible failures, our approach considers all
possible component failure scenarios. We consider the objectives
of minimizing the total generation cost under the worst-case
contingency scenario and/or the total pre-contingency cost. We
formulate CCUC as a two-stage robust optimization problem
and develop a decomposition framework to enable tractable
computation. In our framework, the master problem makes unit
commitment decisions and the subproblem discovers the worst-
case contingency scenarios. By using linearization techniques
and duality theory, we transform the subproblem into a mixed-
integer linear program (MILP). The most violated inequalities
generated from the subproblem are fed back into the master
problem during each iteration. Our approach guarantees a
globally optimal solution in a finite number of iterations. In
reported computational experiments, we test both primal and
dual decomposition approaches. Our computational results verify
the effectiveness of our proposed approach.

Index Terms—Contingency Analysis, N -k Security Criterion,
Unit Commitment, Robust Optimization

NOMENCLATURE

Sets and Parameters
I Index set of buses
E Index set of transmission lines
T Index set of time (e.g., 24 hours)
Λ Set of all generators
Λi Set of generators at bus i
Ẑ Set of all possible contingencies
N Number of components (e.g., generators and trans-

mission lines) in the power system
R Number of points selected in a power generation

cost curve for piecewise linear approximation
M Big M: a very large number
P Unit power balance penalty cost
F ′′g Start-up cost of generator g
F ′g Shut-down cost of generator g
H ′′g Minimum up time for generator g
H ′g Minimum down time for generator g
R′′g Ramp-up rate limit for generator g
R′g Ramp-down rate limit for generator g
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Lg Lower limit of generator g’s power output
Ug Upper limit of generator g’s power output
θ′′i Maximum value of the phase angle at bus i
θ′i Minimum value of the phase angle at bus i
f ′′ij Maximum power flow on transmission line (i, j)
f ′ij Minimum power flow on transmission line (i, j)
xij Reactance of transmission line (i, j)
Gg(q) Fuel cost for generator g when its power output is

q
Dit Load at bus i at time t
qrg The rth point in the piecewise linear approxima-

tion of power output by generator g
Ot Spinning reserve requirement for the power

system at time t

Decision Variables
qgt Power output by generator g at time t
ygt Binary decision variable: “1” if generator g is on

at time t; “0” otherwise
ugt Binary decision variable: “1” if generator g is

started up at time t; “0” otherwise
vgt Binary decision variable: “1” if generator g is shut

down at time t; “0” otherwise
zg Binary decision variable: “0” if generator g is

under contingency; “1” otherwise
zij Binary decision variable: “0” if transmission line

(i, j) is under contingency; “1” otherwise
θit Phase angle at bus i at time t
f tij Power flow on transmission line (i, j) at time t
λrgt Weight associated with the rth point qrg in the

piecewise linear approximation of power output by
generator g at time t

dit Power imbalance amount for bus i at time t
Q̂ Auxiliary variable to represent the optimal objec-

tive value for the subproblem

I. INTRODUCTION

R eliability is a primary concern in power grid operations.
Unexpected outages of power grid elements, such as

transmission lines and generators, can result in dramatic
electricity shortages or even large scale blackouts (cf. [1],
[2], [3], and [4]). The well-known N -1 and N -2 security
criteria are implemented in industry practice (cf. [5] and
[6]). These criteria have also been generalized to consider
multiple contingency cases (e.g., N -k criterion [7]). With the
N -k rule, a power grid with N components will continue
to meet load whenever any k or fewer components suffer



ACCEPTED MANUSCRIPT, IEEE TRANSACTIONS ON POWER SYSTEMS, 2013 2

a contingency. If unit commitment decisions are involved,
the corresponding problem is defined as the contingency-
constrained unit commitment (CCUC) problem in the literature
(see, e.g., [8], [9], and [10]). For CCUC, some papers con-
sider only generation unit contingencies, such as [8] and [9],
while others consider generation unit and transmission line
contingencies, such as [10]. The latter case further enhances
the reliability of the power grid system as a whole. In prin-
ciple, CCUC ensures post-contingency energy balance under
different contingency scenarios while providing economic UC
scheduling and generation dispatch. Due to the computational
challenges involved in considering all possible contingency
scenarios, the traditional approach relies on identification of
a credible contingency set of generators and transmission
lines, selected according to power engineering expertise and
industry practices. Under a given credible contingency set
scheme, different solution approaches and objectives have
been proposed. For the solution approach described in [9],
all possible contingency scenarios for the components in the
credible contingency set are considered. For the security-
constrained unit commitment model with joint energy and
ancillary services auction described in [10], instead of check-
ing all possible contingency scenarios, a Benders’ decom-
position approach is proposed. Contingencies are simulated
and checked in the Benders’ decomposition framework. The
proposed algorithm generates Benders’ cuts when the network
security constraints are violated due to a contingency. Different
optimization objectives have also been studied. In [9], the
optimization objective is to minimize the total expected cost
with each contingency scenario assigned with a predefined
probability. In [8] and [10], the optimization objectives are
to minimize the sum of pre-contingency dispatch cost and the
cost of spinning and non-spinning operating reserve (note here
that pre-contingency dispatch cost indicates the cost under the
zero-contingency scenario).

In this paper, we consider the N -k contingency-constrained
unit commitment problem in which both generator and trans-
mission line contingencies are considered. Our main contribu-
tion is to apply robust optimization to detect a set of k critical
components that will generate the worst-case contingency
scenario, as opposed to using enumeration or a given credible
contingency set.

One related work is described in [11]. In this paper, con-
tingencies for both generators and transmission lines are con-
sidered. Although the study is focused on the co-optimization
of multi-period unit commitment and transmission switching
problem, the paper makes a great effort to describe how to
incorporate the N -1 security criterion into their formulation.
In the approach proposed in [11], a full credible contingency
set for the N -1 security criterion is provided for contingency
analysis. Meanwhile, due to incorporating the transmission
switching options, additional binary switching decisions are
introduced. In our approach, we extend this study (without
considering transmission switching) to consider the N -k se-
curity criterion, and apply decomposition approaches with a
separation algorithm embedded to detect the most critical k
components, within a two-stage robust optimization frame-
work. This allows for smaller subproblems, allowing us to

obtain optimal solutions to larger problems.
The other related work is described in [12], in which

the first robust optimization approach is introduced to solve
CCUC with the N -k security criterion. Bilevel programming
is applied to address the problems of unit commitment and
robust contingency analysis. This approach allows a system
operator to consider all possible contingency combinations
of k out of N generators (transmission line contingencies
are not considered); the reported simulation results are very
promising. In this paper, we generalize the work in [12] in the
following two directions:

1) We extend the study in [12] to include transmission
capacity constraints and to consider transmission line
contingencies. That is, we include transmission capacity
physical constraints in the model, and consider both
generator and transmission contingencies.

2) In [12], spinning and nonspinning reserves are adjusted
to ensure system reliability under contingency for a
single-bus case. In this paper, due to inclusion of
transmission capacity constraints for a multi-bus sys-
tem, we consider economic redispatch to satisfy post-
contingency physical constraints.

We provide a two-stage robust optimization formulation for
the problem. The mathematical formulation is a min-max-
min optimization through two stages. Under the N -k secu-
rity criterion, for N elements, there are

∑k
i=1

(
N
i

)
possible

contingencies. Our method can provide a robust optimal unit
commitment schedule for system operators for a multi-bus
power grid under the N -k security criterion. Note that similar
robust optimization concepts have been applied successfully
to solve other power system operation problems. For instance,
in [13], [14], [15], and [16], robust unit commitment models
are studied to ensure system robustness under load and wind
power output uncertainties, among which [13], [15], and [16]
provide Benders’ dual cut approaches, and [14] introduces a
primal cut approach. In [17], a price-taking producer offering
strategy in a pool-based market is studied by introducing
a robust mixed-integer linear programming approach, and
confidence intervals are used to describe the uncertain price. In
[18], robust optimization is applied to the problem integrating
PHEVs into the electric grid to accommodate the most relevant
planning uncertainties.

To solve our proposed robust optimization problem, we
first reformulate the proposed two-stage robust optimization
problem into a deterministic equivalent formulation. This
reformulation yields a large scale MILP. To achieve computa-
tional tractability, we develop a decomposition framework to
solve the MILP iteratively. In our decomposition framework,
to solve each subproblem (which is a max-min programming
problem), we apply linearization techniques and use duality
theory to reformulate the subproblem as a single MILP.
In addition, we apply both primal and dual decomposition
approaches and compare performances. For the dual approach,
we solve the subproblem and obtain a valid Benders’ cut that
can be added to the master problem. For the primal approach
(or scenario-based robust optimization approach), we follow
an approach similar to the ones described in [14] and [19].
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After solving the subproblem, we identify the most violated
contingency scenario and add the corresponding constraints to
the master problem. Accordingly, the master CCUC problems
proceed in each iteration with the violated Benders’ cut (or
dual inequality) added for the dual approach or a group of
inequalities corresponding to a specific contingency scenario
(or primal inequalities) added for the primal approach until the
stopping criterion is satisfied. Our decomposition framework
provides solutions that converge to the optimal one of the
original two-stage robust optimization formulation.

The remainder of this paper is organized as follows. Section
II describes our two-stage robust optimization formulation
for the N -k CCUC problem, with different objectives: 1)
to minimize the total cost under the worst-case contingency
scenario, 2) to minimize the total pre-contingency cost, and 3)
to minimize the total weighted cost by putting weights for the
pre-contingency cost and the worst-case cost. In Section III,
we introduce an extended formulation that captures all possible
contingencies. We also develop a decomposition framework
to solve the problem. In the decomposition framework, we
apply primal and dual approaches to generate inequalities
for the master problem. Section IV provides and analyzes
the computational experiments through several case studies.
Finally, Section V summarizes the research contribution.

II. MATHEMATICAL FORMULATION

In our formulation, unit commitment decisions are made
in the first stage and economic dispatch is considered in the
second stage under the condition of the worst-case contingency
scenario. A mathematical formulation of this problem is given
as follows:

min
{u,v,y}

∑
t∈T

∑
g∈Λ

(F ′′g ugt + F ′gvgt) + max
z∈Ẑ

Q(z, u, v, y) (1)

s.t.

−yg(t−1) + ygt − ygk ≤ 0, (2)
∀g ∈ Λ,∀t ∈ T, ∀k : 1 ≤ k − (t− 1) ≤ H ′′g

yg(t−1) − ygt + ygk ≤ 1, (3)
∀g ∈ Λ,∀t ∈ T, ∀k : 1 ≤ k − (t− 1) ≤ H ′g

−yg(t−1) + ygt − ugt ≤ 0, ∀g ∈ Λ,∀t ∈ T (4)
yg(t−1) − ygt − vgt ≤ 0, ∀g ∈ Λ,∀t ∈ T (5)∑
g∈Λ

Ugygt ≥ Ot +
∑
i∈I

Dit, ∀t ∈ T (6)

ygt, ugt, vgt ∈ {0, 1}, ∀g ∈ Λ,∀t ∈ T, (7)

where

Ẑ =

(zg, zij) ∈ {0, 1} :
∑
g∈Λ

zg +
∑

(i,j)∈E

zij ≥ N − k

 ,

(8)
and Q(z, u, v, y) in the objective function is defined to be the
minimum redispatch cost during the second stage after the
worst-case contingency happens (i.e., (zg, zij) are given). It

can be observed that Q(z, u, v, y) is equal to

min
∑
t∈T

∑
g∈Λ

R∑
r=1

λrgtGg(qrg) +
∑
t∈T

∑
i∈I

Pdit (9)

s.t. zgygtLg ≤ qgt ≤ zgygtUg, ∀g ∈ Λ,∀t ∈ T (10)
zijf

′
ij ≤ f tij ≤ zijf ′′ij , ∀(i, j) ∈ E,∀t ∈ T (11)

θ′i ≤ θit ≤ θ′′i , ∀i ∈ I, ∀t ∈ T (12)
(θit − θjt)/xij − f tij + (1− zij)M ≥ 0,

∀(i, j) ∈ E,∀t ∈ T (13)
(θit − θjt)/xij − f tij − (1− zij)M ≤ 0,

∀(i, j) ∈ E,∀t ∈ T (14)
qgt − qg(t−1) ≤ (2− yg(t−1) − ygt)Lg +

(1 + yg(t−1) − ygt)R′′g , ∀g ∈ Λ,∀t ∈ T (15)
qg(t−1) − qgt ≤ (2− yg(t−1) − ygt)Lg +

(1− yg(t−1) + ygt)R
′
g, ∀g ∈ Λ,∀t ∈ T (16)

−dit ≤
∑

∀j∈E(·,i)

f tji −
∑

∀j∈E(i,·)

f tij

+
∑
g∈Λi

qgt −Dit ≤ dit, ∀i ∈ I,∀t ∈ T (17)

R∑
r=1

λrgt = ygt, ∀g ∈ Λ,∀t ∈ T (18)

R∑
r=1

λrgtq
r
g = qgt, ∀g ∈ Λ,∀t ∈ T (19)

qgt, λ
r
gt, dit ≥ 0, zg, zij ∈ {0, 1},
∀i ∈ I, ∀(i, j) ∈ E,∀g ∈ Λ,∀t ∈ T. (20)

In the above formulation, the objective function (1) is to
minimize the total cost including unit commitment, economic
dispatch, and power balance penalty costs under the worst-
case contingency scenario. The unit commitment constraints
include minimum up/down time and start-up/shut-down con-
straints through (2–5). In addition, we consider system reserve
requirement constraints (6) (note here that we do not consider
other operating reserve constraints, following the approach
shown in [11], because we explicitly enforce the N -k security
criterion and the primary purpose of reserve is to ensure
enough generation capacity online to survive contingencies),
unit generation upper and lower limit constraints (10), trans-
mission capacity constraints (11), phase angle upper and lower
limit constraints (12), power flow constraints (13) and (14)
(e.g., if a contingency occurs, these big-M constraints are
redundant; otherwise both are activated and identical to the line
flow constraint), ramping constraints (15) and (16), and power
balance constraints (17). Finally, constraints (18) and (19)
implement piecewise linear representations of the generation
cost curve using the interpolation method described in [20].
Accordingly, in (9), the second-stage objective function can
be written as the sum of the redispatch cost (in the form of a
piecewise linear function) and the power balance penalty cost.

Our robust optimization framework can also represent the
alternative case of minimizing the total pre-contingency cost.
We first describe the pre-contingency feasibility set X0 as
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follows:

X0 = {(q0, f0, θ0, λ0) :

ygtLg ≤ q0
gt ≤ ygtUg, ∀g ∈ Λ,∀t ∈ T (21)

f ′ij ≤ f t0ij ≤ f ′′ij , ∀(i, j) ∈ E,∀t ∈ T (22)

θ′i ≤ θ0
it ≤ θ′′i , ∀i ∈ I, ∀t ∈ T (23)

(θ0
it − θ0

jt)/xij = f t0ij , ∀(i, j) ∈ E,∀t ∈ T (24)

q0
gt − q0

g(t−1) ≤ (2− yg(t−1) − ygt)Lg +

(1 + yg(t−1) − ygt)R′′g , ∀g ∈ Λ,∀t ∈ T (25)

q0
g(t−1) − q

0
gt ≤ (2− yg(t−1) − ygt)Lg +

(1− yg(t−1) + ygt)R
′
g, ∀g ∈ Λ,∀t ∈ T (26)∑

∀j∈E(·,i)

f t0ji −
∑

∀j∈E(i,·)

f t0ij

+
∑
g∈Λi

q0
gt = Dit, ∀i ∈ I, ∀t ∈ T (27)

R∑
r=1

λr0
gt = ygt, ∀g ∈ Λ,∀t ∈ T (28)

R∑
r=1

λr0
gtq

r
g = q0

gt, ∀g ∈ Λ,∀t ∈ T (29)

q0
gt, λ

r0
gt ≥ 0, ∀i ∈ I, ∀g ∈ Λ,

∀(i, j) ∈ E,∀t ∈ T (30)
},

where (q0
gt, f

t0
ij , θ

0
it, λ

r0
gt ) represent the values of

(qgt, f
t
ij , θit, λ

r
gt) for the case without contingency.

With the objective of minimizing the total pre-contingency
cost, the corresponding model can be updated as follows:

min
{u,v,y}

∑
t∈T

∑
g∈Λ

(
F ′′g ugt + F ′gvgt +

R∑
r=1

λr0
gtGg(qrg)

)
+ max

z∈Ẑ
Q(z, u, v, y)

s.t. constraints (2)− (8)

(q0
gt, f

t0
ij , θ

0
it, λ

r0
gt ) ∈ X0

Q(z, u, v, y) = min
∑
t∈T

∑
i∈I

Pdit

constraints (10)− (20).

Furthermore, the above two formulations can be unified by
introducing a weight parameter α, 0 ≤ α ≤ 1, to indicate the
portion for the pre-contingency dispatch cost in the objective
function, as follows:

min
{u,v,y}

∑
t∈T

∑
g∈Λ

(
F ′′g ugt + F ′gvgt + α

R∑
r=1

λr0
gtGg(qrg)

)
+ max

z∈Ẑ
Q(z, u, v, y)

s.t. constraints (2)− (8)

(q0
gt, f

t0
ij , θ

0
it, λ

r0
gt ) ∈ X0

Q(z, u, v, y) = min (1− α)
∑
t∈T

∑
g∈Λ

R∑
r=1

λrgtGg(qrg)

+
∑
t∈T

∑
i∈I

Pdit

constraints (10)− (20).

In the later case study section (i.e., Section IV), we will com-
pare the performances of different objectives: minimizing the
worst-case cost (i.e., α = 0), minimizing the pre-contingency
cost (i.e., α = 1), and minimizing the total weighted cost,
including the sensitivity analysis for different α values.

III. PRIMAL AND DUAL DECOMPOSITION APPROACHES

In this section, we describe primal and dual decomposition
approaches to solve the general unified model. We first present
an extended formulation for the problem.

A. An Extended Formulation

As described in (8), there are
∑k

i=1

(
N
i

)
contingency sce-

narios in total with the consideration of the N -k security
criterion. However, since we consider the worst-case con-
tingency scenario, any worst k outage case brings the loss
no smaller than any worst `, ` < k, outage case. Thus,
considering exact k outages is sufficient for N -k in our case.
Mathematically, we add K ≡

(
N
k

)
groups of constraints

into the original formulation. For each contingency scenario
m, 1 ≤ m ≤ K, we let zg(m) and zij(m), in which∑

g∈Λ zg(m) +
∑

(i,j)∈E zij(m) = N − k, represent the
contingency statuses for generator g and transmission line
(i, j), respectively. The corresponding extended formulation
can be described as follows:

min
{u,v,y}

∑
t∈T

∑
g∈Λ

(F ′′g ugt + F ′gvgt + α

R∑
r=1

λr0
gtGg(qrg)) + Q̂ (31)

s.t.

constraints (2)− (7)

(q0
gt, f

t0
ij , θ

0
it, λ

r0
gt ) ∈ X0

Q̂ ≥
∑
t∈T

∑
i∈I

(1− α)
∑
g∈Λi

R∑
r=1

λrmgt Gg(qrg) + Pdmit

 ,

1 ≤ m ≤ K
(qm, fm, θm, λm, dm) ∈ Xm, 1 ≤ m ≤ K,

where

Xm ={(qm, fm, θm, λm, dm) :

zg(m)ygtLg ≤ qmgt ≤ zg(m)ygtUg,

∀g ∈ Λ,∀t ∈ T (32)
zij(m)f ′ij ≤ f tmij ≤ zij(m)f ′′ij ,

∀(i, j) ∈ E,∀t ∈ T
θ′i ≤ θmit ≤ θ′′i ,∀i ∈ I, ∀t ∈ T (33)
(θmit − θmjt)zij(m)/xij = f tmij ,

∀(i, j) ∈ E,∀t ∈ T (34)
qmgt − qmg(t−1) ≤ (2− yg(t−1) − ygt)Lg +

(1 + yg(t−1) − ygt)R′′g , ∀g ∈ Λ,∀t ∈ T (35)
qmg(t−1) − q

m
gt ≤ (2− yg(t−1) − ygt)Lg +
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(1− yg(t−1) + ygt)R
′
g, ∀g ∈ Λ,∀t ∈ T (36)

−dmit ≤
∑

∀j∈E(·,i)

f tmji −
∑

∀j∈E(i,·)

f tmij

+
∑
g∈Λi

qmgt −Dit ≤ dmit , ∀i ∈ I, ∀t ∈ T (37)

R∑
r=1

λrmgt = ygt, ∀g ∈ Λ,∀t ∈ T (38)

R∑
r=1

λrmgt q
r
g = qmgt, ∀g ∈ Λ,∀t ∈ T (39)

qmgt, λ
rm
gt , d

m
it ≥ 0,

∀i ∈ I, ∀g ∈ Λ,∀(i, j) ∈ E,∀t ∈ T (40)
}.

This above developed extended formulation shares the same
concept as the one described in [21], in which an extended
formulation is developed for a more generalized multistage
robust lot-sizing problem with disruptions.

B. Decomposition Framework

The extended formulation above is a large scale MILP,
with size a function of N and k. Even the state-of-the-
art optimization solvers cannot locate optimal solutions in
tractable run-times. In this section, we develop both primal and
dual decomposition approaches to solve this MILP efficiently.

1) Master problem: For the master problem, we consider
the pre-contingency case as the start point. For instance, the
initial master problem can be described as follows:

min
{u,v,y}

∑
t∈T

∑
i∈I

∑
g∈Λi

(F ′′g ugt + F ′gvgt +

R∑
r=1

λr0
gtGg(qrg))

s.t. constraints (2)− (7)

(q0, f0, θ0, λ0) ∈ X0.

2) Subproblem: After solving each master problem,
we can obtain a solution (ū, v̄, ȳ). The subproblem is
maxz Q(z, u, v, y), as described in Section II. We expect to
solve this problem with (u, v, y) = (ū, v̄, ȳ) to identify the
worst-case contingency scenario. The detailed subproblem can
be described as follows:

max
z
Q(z, u, v, y) =

max
z

min
∑
t∈T

∑
i∈I

∑
g∈Λi

R∑
r=1

(1− α)λrgtGg(qrg) + Pdit


s.t. constraints (8), (10)− (20).

Note here that once the unit commitment and contingency
scenario are determined, the remaining economic dispatch
problem is a linear program. Therefore, we can transfer this
max-min problem into a MILP by constructing the dual

formulation of the inner minimization problem as follows:

maxG(γ, δ, η, κ, ς, π, ϕ, τ, z)

s.t. constraint (8)

γ+
gt − γ−gt − ς+gt + ς+g(t+1) + ς−gt − ς−g(t+1) +

π+
it−π

−
it − τgt ≤ 0, (41)
∀i ∈ I, ∀g ∈ Λi,∀t ∈ T

δ+
ij,t − δ

−
ij,t − κ

+
ij,t + κ−ij,t − π

+
it + π+

jt

+π−it − π
−
jt ≤ 0, (42)

∀(i, j) ∈ E,∀t ∈ T

η+
it − η

−
it +

∑
j∈E(i,·)

1

xij
κ+
ij,t −

∑
j∈E(·,i)

1

xji
κ+
ji,t

−
∑

j∈E(i,·)

1

xij
κ−ij,t +

∑
j∈E(·,i)

1

xji
κ−ji,t = 0, (43)

∀i ∈ I, ∀t ∈ T
−(1− α)Gg(qrg) + ϕgt + qrgτgt ≤ 0, (44)

∀g ∈ Λ,∀t ∈ T, ∀r : 1 ≤ r ≤ R
π+
it + π−it − P ≤ 0, (45)
∀i ∈ I, ∀t ∈ T

γ, δ, η, κ, ς, π ≥ 0, ϕ, τ, unrestricted, (46)

where γ, δ, η, κ, ς, π, ϕ, and τ are dual variables for con-
straints (10), (11), (12), (13)–(14), (15)–(16), (17), (18),
and (19), respectively, and

G(γ, δ, η, κ, ς, π, ϕ, τ, z)

=
∑
t∈T

∑
g∈Λ

(γ+
gtzgygtLg)−

∑
t∈T

∑
g∈Λ

(γ−gtzgygtUg)

+
∑
t∈T

∑
(i,j)∈E

(δ+
ij,tzijf

′
ij)−

∑
t∈T

∑
(i,j)∈E

(δ−ij,tzijf
′′
ij)

+
∑
t∈T

∑
i∈I

(η+
itθ
′
i)−

∑
t∈T

∑
i∈I

(η−itθ
′′
i )

−
∑
t∈T

∑
(i,j)∈E

κ+
ij,t(1− zij)M

−
∑
t∈T

∑
(i,j)∈E

κ−ij,t(1− zij)M

−
∑
t∈T

∑
g∈Λ

ς+gt((2− yg(t−1) − ygt)Lg

+(1 + yg(t−1) − ygt)R′′g )

−
∑
t∈T

∑
g∈Λ

ς−it ((2− yg(t−1) − ygt)Lg

+(1− yg(t−1) + ygt)R
′
g)

+
∑
t∈T

∑
i∈I

(π+
itDit)−

∑
t∈T

∑
i∈I

(π−itDit)

+
∑
t∈T

∑
g∈Λ

ϕgtygt.

It is worth noting that we have nonlinear terms in the above
objective function with the following format:

max zµ, subject to z ∈ {0, 1} and µ ∈ R+,
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which increases the complexity to solve the subproblem.
Fortunately, such a bilinear term can be reformulated as

maxµz

s.t. µz ≤ (1− z)M + µ, µz ≤ zM
µ, µz ∈ R+

to finally make the subproblem a MILP. The overall approach
to solve the subproblem is similar to the one described
in [15]. This approach is also called “separation” procedure
in optimization, which shows the main difference between our
approach and the traditional credible contingency set approach.

3) Primal approach: After solving the subproblem (or
separation problem) maxG, we obtain the optimal solution
z(m∗), which indicates the worst-case contingency scenario.
If Q̂ < maxG, the corresponding most violated primal
inequalities

Q̂ ≥
∑
t∈T

∑
i∈I

∑
g∈Λi

R∑
r=1

(1− α)λrm
∗

gt Gg(qrg) + Pdm
∗

it


(qm

∗
, fm

∗
, θm

∗
, λm

∗
, dm

∗
) ∈ Xm∗

will be added into the master problem. This (scenario based
robust optimization) approach is similar to the ones described
in [14] and [19]. In this approach, we try to solve the problem
optimally with fewer contingency scenarios considered, as
compared to the extended formulation. Not all scenarios must
be considered in order to obtain an optimal solution, only
some extreme cases. It is easy to observe that this primal
approach converges and obtains an optimal solution of the
original problem.

4) Dual approach: In the traditional Benders’ decom-
position approach, both feasibility and optimality cuts are
considered. In this research, feasibility is guaranteed after
we consider the power balance penalty cost. After solving
the subproblem maxG, if Q̂ < maxG, the following dual
inequality

Q̂ ≥ G(γ∗, δ∗, η∗, κ∗, ς∗, π∗, ϕ∗, τ∗, z∗), (47)

where (γ∗, δ∗, η∗, κ∗, ς∗, π∗, ϕ∗, τ∗, z∗) is the optimal solution
for the subproblem, will be added to the master problem.

5) Algorithm framework: For the entire algorithm, after
obtaining a solution of the master problem, we solve the
subproblem to detect the worst-case contingency scenario and
add the most violated primal or dual inequalities into the
master problem to conduct the next iteration. The algorithm
terminates when the time limit is reached or an optimal solu-
tion is found (e.g., Q̂ = maxG). The proposed decomposition
framework is summarized in Fig. 1.

IV. COMPUTATIONAL RESULTS

In this section, we first report the performance of our pro-
posed approach for a six-bus system for illustrative purposes.
Then we investigate performance on modified IEEE 118-bus
systems, including 33 thermal generators and 186 transmission
lines (available from http://motor.ece.iit.edu/data), to show the
computational advantage of our robust optimization approach.
We compare the computational times between the primal and

Solve the master problem

Timeout?

Solve the subproblem

Q̂ < maxG?

Add

Generate the most violated
primal or dual inequalities

Terminate and report
the UC solution

Terminate and report
the optimal UC solution

no

yes

no

yes

Fig. 1. Proposed Decomposition Framework

dual decomposition approaches and describe the differences
obtained by using different objective functions. Note here
that it is not hard to imagine that our approach performs
much better than the current practice using the enumeration
approach. If we use the extended formulation, the size of the
problem will be huge. For instance, for the k = 2 case, the
size of contingency scenarios is up to O(104) (i.e., in the size
of
(

219
2

)
, where 219 is the sum of the number of generators

and the number of transmission lines), and the corresponding
sizes of decision variables and constraints are up to O(108)
(i.e., in the size of

(
219
2

)
· 186 · 24). For the k = 4 case,

the size of contingency scenarios is up to O(108) (i.e., in
the size of

(
219
4

)
), and the corresponding sizes of decision

variables and constraints are up to O(1011) (i.e., in the size of(
219
4

)
·186 ·24). In our experiment, a piecewise linear function

with three linear pieces, based on the interpolation method
[20], is utilized to approximate the fuel cost function. The
power balance penalty cost is set to be $1500 per MWh. All
algorithms are implemented in C++ using the CPLEX 12.1
callable library, and all experiments are performed on a quad-
core Intel workstation with 8GB RAM.

A. Six-Bus System

We now report results for a six-bus system which is com-
posed of three generators, six loads, and eight transmission
lines, with the N -2 security criterion. The system layout is
shown in Fig. 2. Note here that this system meets the N -
2 security criterion: for each bus with no more than two
transmission lines adjacent to it, there is a thermal generator
with sufficient generation capacity to cover the load at the
bus. In Tables I–IV, we summarize the characteristics of all
the buses, thermal units, and transmission lines. The objective
is to minimize the total cost under the worst-case contingency
scenario (i.e., α = 0).
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B1 B2 B3

B6 B5 B4

G3

G1 G2

Fig. 2. Six-Bus System

TABLE I
BUS PROFILES

Bus ID Type Unit Hourly Load (MW)
B1 Thermal/Load G1 20
B2 Load - 20
B3 Thermal/Load G2 20
B4 Load - 20
B5 Thermal/Load G3 20
B6 Load - 20

TABLE II
GENERATOR PARAMETERS

Unit Lower Upper Min-Down Min-Up Ramp
(MW) (MW) (h) (h) (MW/h)

G1 20 150 2 4 50
G2 50 200 3 3 40
G3 100 300 3 2 15

TABLE III
FUEL COST DATA

Unit a b (MBtu/ c (MBtu/ Start-Up Fuel Fuel Price
(MBtu) MWh) MW2h) (MBtu)∗ ($/MBtu)

G1 50 6 0.0004 100 1.2300
G2 40 5.5 0.0001 300 1.2461
G3 60 4.5 0.005 0 1.2462
∗ : The shut-down fuel is assumed to be the same as the start-up fuel

TABLE IV
TRANSMISSION LINE PARAMETERS

Line ID From To X Flow Limit (MW)
L1 B1 B2 0.170 100
L2 B1 B4 0.150 100
L3 B2 B3 0.258 100
L4 B2 B4 0.197 100
L5 B2 B6 0.197 100
L6 B3 B6 0.140 100
L7 B4 B5 0.150 100
L8 B5 B6 0.160 100

The primal approach is performed in the decomposition
framework for the six-bus system. The algorithm terminates

in seven iterations. In the first iteration, only G1 is committed
over all periods in the operational time interval when no
contingency occurs, because it has the lowest generation
cost. The worst-case contingency scenario detected by the
separation problem at iteration 1 involves contingencies on
G1 and L1. In the second iteration, we add the corresponding
contingency scenario into the master problem; the resulting
solution indicates that G2 (instead of G1) is now committed
over all periods. Our separation problem then returns the
worst-case contingency scenario, which involves contingencies
on G2 and L3. Similarly, G3 (instead of G1 or G2) is
committed over all periods at the third iteration. In the fourth
iteration, the master problem yields a solution in which both
G1 and G2 are committed over all periods. Then, accord-
ingly, the separation problem indicates that the worst-case
contingency scenario involves contingencies on G1 and G2.
In the following two iterations, different combinations of two
generators are committed. Finally, in the seventh iteration, the
master problem yields a solution with all of G1, G2, and G3

committed over all periods. At this moment, our separation
problem returns maxG = Q̂. Based on the stopping criterion,
the algorithm terminates, providing an optimal solution for the
original problem.

B. IEEE 118-Bus System

In this section, we study modified IEEE 118-bus systems
to show the computational effectiveness of our proposed
approach. All of the thermal generators in the original IEEE
118-bus system are retained.

1) Experiments with the N -1 security criterion:
We make the system meet the N -1 security
criterion by adding five additional transmission lines
{l(10,73), l(70,73), l(89,112), l(111,115), l(111,116)}, and test our
approach using the N -1 security criterion.

Comparison of primal and dual approaches: We test the
performances of both the primal and dual approaches. We
first consider the objective of minimizing the total cost under
the worst-case contingency scenario. Table V summarizes the
solution procedure of the primal approach. The algorithm
converges in only four iterations. We also notice that the
subproblems are significantly more difficult to solve than the
master problems.

TABLE V
COMPUTATIONAL RESULTS FOR THE 118-BUS SYSTEM: PRIMAL

APPROACH

Iteration Type Obj. ($) CPU Time (sec)

1
master 754,507 2.27

subproblem 1,309,680 328.5

2
master 764,379 6.45

subproblem 762,264 724.9

3
master 782,815 19.2

subproblem 785,137 697.5

4
master 783,606 39.06

subproblem 762,264 724.6

As described in Section III, the traditional Benders’ de-
composition approach adds the corresponding dual inequality
(after solving the subproblem) into the master problem. In this
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study, we also report the result of this dual approach in Table
VI for comparison. The dual approach terminates due to the
predefined one-hour time limit. From the table, we observe
that the dual approach does not converge as fast as the primal
approach, and that the objective value for the master problem
increases very slowly. After five iterations, the objective value
for the dual approach ($755, 134) is much smaller than the
optimal objective value for the original problem ($783, 606).

TABLE VI
COMPUTATIONAL RESULTS FOR THE 118-BUS SYSTEM: DUAL APPROACH

Iteration Type Obj. ($) CPU Time (sec)

1
master 754,507 3.12

subproblem 1,309,680 464.4

2
master 754,830 7.01

subproblem 1,218,430 597.2

3
master 754,948 10.16

subproblem 1,218,370 708.07

4
master 755,047 15.6

subproblem 1,218,450 687.2

5
master 755,134 12.3

subproblem 1,218,430 700.5

Comparison of robust optimization and credible contingency
set approaches: For the credible contingency set approach,
one common practice is to use the spinning reserve require-
ments to cover the generator outage and the credible contin-
gency set with a simultaneous feasibility test (SFT) approach
to cover the transmission network contingencies [22]. This
approach can be summarized as follows:

1. Run the security-constrained unit commitment (SCUC)
problem and identify the credible contingency set, which
usually corresponds to the binding transmission capacity
constraints in SCUC.

2. Run SFT for contingency transmission security testing.
SFT is a contingency analysis tool that checks the
feasibility of the transmission network before and after
contingencies by calculating the power flow for each. For
any branch or interface that violates its limit, SFT will
compute bus sensitivities to those violation elements and
return the corresponding linear constraints to SCUC.

3 Go to step one and continue the iteration between SCUC
and SFT until the process converges (no new constraints
found) or reaches the maximum number of iterations
(e.g., three to four iterations in practice due to time
restrictions).

This is a preventive action and there is no post-contingency
corrective action involved. The performance of this approach is
highly dependent on the selection of the credible contingency
set. In our experimental testing of the SFT approach, the same
steps described above are taken and a credible contingency
set with elements in which the flows reach their capacities
is selected. The experimental results indicate that the original
unit commitment solution survives SFT. However, the worst-
case cost for this approach reaches $1,309,680, which is much
larger than the value (i.e., $783,606) obtained from the robust
optimization approach.

Comparison of different objectives and sensitivity analysis
on α: We now apply our two-stage robust optimization
approach to test the case with the objective of minimizing
the total pre-contingency cost. The ultimate objective value
is $764, 379, which is smaller than the minimum worst-
case objective value of $783, 606. We also observe that, for
this instance, both approaches provide the same robust unit
commitment decision, even though the conclusion is not in
general true. Finally, we apply the two-stage robust optimiza-
tion approach to conduct sensitivity analysis on different α
values and report the results in Table VII. From the table,
we observe that the cost decreases as the α value increases,
because the dispatch cost under the pre-contingency scenario
is smaller than that under the worst-cast contingency scenario.

TABLE VII
COMPUTATIONAL RESULTS ON DIFFERENT α VALUES

α Obj. ($) CPU Time (sec)
0 783,606 2541.1

50% 773,923 2089.4
80% 768,180 2022.5
100% 764,379 2018.3

2) Experiments with the N -2 security criterion: To test the
case with the N -2 security criterion, we add 31 transmission
lines and two thermal generators into the original system. This
approach can provide a solution with zero power imbalance
for the system under the N -2 security criterion (parameters
for each transmission line and generator are described in
Appendix A). The objective is to minimize the total cost under
the worst-case contingency scenario. Under this setting, the
robust optimization approach can obtain an optimal solution
(with the objective value $774, 488) in three iterations with
the N -1 security criterion.

As indicated in the previous subsection, the subproblem
takes a much longer time as compared to the master problem
for the k = 1 case. As k increases, the subproblem takes
an even longer time to obtain an optimal solution. In this
subsection, we propose a heuristic approach to ensure that
the proposed decomposition approach obtains a reasonable
good solution (and accordingly obtains a lower bound of the
optimal objective value for the original problem). To solve
the separation problem, we set the time limit to be one hour,
obtain the two worst contingencies within this time limit, and
report the objective value for the subproblem G′. If Q̂ < G′,
then the constraints for the corresponding scenario can be
added into the mater problem and the algorithm can continue.
That is, we can use a feasible solution of the subproblem to
continue the primal approach. The algorithm terminates in five
iterations since we set the total time limit to be five hours (see,
e.g., Table VIII). This heuristic approach can detect severe
contingencies even though they might not be the worst-case
contingency scenarios. In addition, this heuristic approach can
detect more critical components as the time limit increases.

As compared to the solution for the N -1 security criterion
case, one more expensive generator is turned on in the final
unit commitment solution. With the pre-contingency cost as
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TABLE VIII
COMPUTATIONAL RESULTS FOR THE 118-BUS SYSTEM: THE N -2 CASE

Iteration Type Obj. ($) CPU Time (sec)

1
master 749,727 3.74

subproblem 1,700,200 2378.29

2
master 766,615 13.02

subproblem 1,018,590 3600.09

3
master 775,288 33.05

subproblem 1,214,330 3600.06

4
master 784,406 273.18

subproblem 801,187 3600.02

5
master 805,186 265.30

subproblem - Timeout

the objective, the cost for the N -2 case ($760, 179) is $10, 452
larger than that for the N -1 case ($749, 727).

3) Cost of robustness: Finally, we test the scalability of the
proposed approach and evaluate the objectives (e.g., minimiz-
ing the total cost under the worst-case contingency scenario,
without loss of generality) of the CCUC problem at different
k values. That is, we compare solutions with different N -k
rules (e.g., k = 1, 2, 3, and 4). The same heuristic method
and power grid setting as those for the N -2 case are applied
to study the N -k, k ≥ 3 security criterion cases. All cases
(including k = 3 and k = 4) are terminated in four to
five iterations. The results are summarized in Table IX and
shown in Fig. 3. It can be observed that the objective value
obtained from our proposed heuristic approach goes higher
as the k value increases. On the other hand, more units are
turned on as the k value increases. We can consider this as the
cost estimation of robustness, which is due to obtaining more
conservative but reliable solutions for the CCUC problem.

TABLE IX
COMPUTATIONAL RESULTS FOR THE 118-BUS SYSTEM: THE N -k CASE

k Obj. ($) Number of On-line Units Cost Increment
0 749,727 17 0
1 774,488 17 3.3%
2 805,186 18 7.4%
3 830,196 20 10.7%
4 844,489 20 12.6%

V. CONCLUSION AND DISCUSSION

In this paper, we propose a two-stage robust optimization
model to solve the CCUC problem with the N -k security
criterion. Our approach can help identify the most critical
components in a power system, as compared to the traditional
credible contingency set approach. A decomposition frame-
work with both primal and dual approaches is studied to solve
the problem. Our case study indicates that the primal approach
significantly outperforms the dual approach. We also observed
that our approach can accommodate other objective functions.
Finally, we observe that for the N -k security criterion, as k
increases, the problem is hard to solve to optimality. As in-
dicated in the computational experiment results, the empirical
complexity for the master problem is not very bad, so the
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Fig. 3. CCUC Objective with Different k Values

bottleneck is the subproblem. In particular, it is mainly due
to the big-M formulation in the subproblem (e.g., the big-M
formulation usually leads to a big optimality gap). In addition,
too much redundancy/symmetry (in terms of which component
is to be selected as a contingency) also makes it challenging
for the solver to identify the optimal solution. A similar issue
arose in [11], in which an optimal solution could not be found
in a short time for the IEEE 73-bus network (RTS 96) without
considering transmission switching (i.e., the similar setting
as ours). Meanwhile, the heuristic approach proposed in this
paper can detect severe contingency scenarios (i.e., provide
good feasible solutions for the subproblems) easily and in a
short time, according to our experimental results, although it is
very difficult to prove the optimality of the obtained solution.
In future research, we will explore alternative formulations and
other methods to solve large scale problems to optimality.
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APPENDIX A
ADDITIONAL TRANSMISSION LINES AND GENERATORS

We add 31 transmission lines and two thermal generators
to construct a more reliable network structure for our experi-
ments. The additional transmission lines are reported in Table
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X. The flow limit is 100MW and the reactance is 0.072 for
each additional transmission line. Two thermal generators are
added to B117 and B118 respectively, with the same generator
parameter setting as G2 in Table II.

TABLE X
TRANSMISSION LINE PARAMETERS

Line ID From To Line ID From To
L1 B1 B4 L17 B73 B74

L2 B2 B6 L18 B73 B76

L3 B7 B9 L19 B78 B84

L4 B10 B13 L20 B79 B86

L5 B10 B14 L21 B87 B88

L6 B16 B18 L22 B87 B90

L7 B20 B22 L23 B91 B95

L8 B26 B28 L24 B97 B98

L9 B29 B33 L25 B101 B107

L10 B35 B39 L26 B102 B108

L11 B36 B43 L27 B109 B111

L12 B44 B48 L28 B111 B112

L13 B50 B52 L29 B113 B114

L14 B53 B57 L30 B115 B116

L15 B58 B63 L31 B116 B117

L16 B67 B72
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