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Price-Based Unit Commitment with Wind Power
Utilization Constraints
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Abstract—This paper proposes an optimal bidding strategy
for independent power producers (IPPs) in the deregulated
electricity market. The IPPs are assumed to be price takers,
whose objectives are to maximize their profits considering price
and wind power output uncertainties, while ensuring high wind
power utilization. The problem is formulated as a two-stage
stochastic price-based unit commitment problem with chance
constraints to ensure wind power utilization. In our model, the
first stage decision includes unit commitment and quantity of
electricity submitted to the day-ahead market. The second stage
decision includes generation dispatch, actual usage of wind power,
and amount of energy imbalance between the day-ahead and
real-time markets. The chance constraint is applied to ensure
a certain percentage of wind power utilization so as to comply
with renewable energy utilization regulations. Finally, a Sample
Average Approximation (SAA) approach is applied to solve the
problem, and the computational results are reported for the
proposed SAA algorithm showing the sensitivity of the total profit
as the requirement of wind power utilization changes.

Index Terms—Price based unit commitment, wind power,
stochastic programming, chance constrains, mixed integer pro-
gramming, sample average approximation

NOMENCLATURE

A. Sets and Indices
N Number of scenarios.
T Time horizon (24 hours).
B Number of buses.
Λb, Υb Sets of thermal generators and hydro units

in bus b, respectively.

B. Parameters
SU b

i Start-up cost of thermal generator i in bus
b.

SDb
i Shut-down cost of thermal generator i in bus

b.
Fc(p

b
it) Fuel cost of thermal generator i in time t at

bus b when its generation is pbit.
MU b

i Minimum-up time for thermal generator i in
bus b.

MDb
i Minimum-down time for thermal generator

i in bus b.
URb

i Ramp-up rate limit for thermal generator i
in bus b.
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DRb
i Ramp-down rate limit for thermal generator

i in bus b.
Lb
i Lower limit of electricity generated by ther-

mal generator i in bus b.
U b
i Upper limit of electricity generated by ther-

mal generator i in bus b.
Sbegin
ib Water reserve level of pumped-storage unit

i in bus b in the first time period.
Send
ib Water reserve level of pumped-storage unit

i in bus b in the last time period.
LH
ib Lower limit of power pumped in/out by

pumped-storage unit i in bus b in one time
period.

UH
ib Upper limit of power pumped in/out by

pumped-storage unit i in bus b in one time
period.

γbt Penalty cost per MW for energy imbalance
in time t in bus b.

η1 Efficiency of generating power by the
pumped-storage unit.

η2 Efficiency of absorbing power by the
pumped-storage unit.

C. Decision Variables
pbit Electricity generation amount by thermal

generator i in time t in bus b.
ybit Binary decision variable: “1” if thermal

generator i is on in time t in bus b; “0”
otherwise.

obit Binary decision variable: “1” if thermal gen-
erator i is started up in time t in bus b; “0”
otherwise.

vbit Binary decision variable: “1” if thermal gen-
erator i is shut down in time t in bus b; “0”
otherwise.

hbit Binary decision variable to indicate whether
pumped-storage unit i generates (e.g., “1”)
or consumes (e.g., “0”) power in time t in
bus b.

sbit Water reserve level of pumped-storage unit
i in time t in bus b.

qBtb Electricity bid into the day-ahead market in
time t in bus b.

qGtb Total amount of thermal unit generation in
time t in bus b.

qWtb Wind power sold in the real-time market in
time t in bus b.

qH
+

itb Power generated from pumped-storage unit
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i in time t in bus b.
qH
−

itb Power consumed by pumped-storage unit i
in time t in bus b.

qimb
tb Power imbalance in time t in bus b.

Some of these decision variables are second stage variables
when they are followed by (ξ), where ξ represents a rand-
om vector following a certain probabilistic distribution.

D. Random Numbers
RDA

tb (ξ) Day-ahead market price of electricity in time
t in bus b.

RRT
tb (ξ) Real-time market price of electricity in time

t in bus b.
W tb(ξ) Wind power output in time t in bus b.

I. INTRODUCTION

ANumber of initiatives have been launched to increase
the utilization of wind power in different countries and

regions (e.g., [1] and [2]). One common approach is to
introduce green certificates to ensure utilization of renewable
energy as effectively as possible [3]. This approach is basically
imposing the national target for renewable energy utilization
on either the demand side including consumers or distribution
companies (e.g., Denmark and Germany) [4], or the generation
side (e.g., Italy) [4]. If the regulation is applied to the demand
side, consumers or distributors will be required to prove that
they consume at least the specified amount of renewable
energy by submitting certificates to the authorities at a given
time. If the regulation is applied to the generation side, every
supplier, except renewable energy producers or importers, is
required to ensure that a certain percentage of the energy
produced by them, is renewable energy.

This regulation has exerted a large impact on electricity
market economics and operations, in particular market par-
ticipants such as independent power producers (IPPs) that
own thermal units as well as renewable generation resources
like wind power. Under this regulation, each producer has
to utilize as much renewable energy as possible for possible
extra profit obtained from the green certificate market. On
the other side, an IPP owning traditional thermal units and
wind power turbines has to face two-fold uncertainties - price
and wind power output uncertainties when submitting bids
to the market. If there is a mismatch between the amount
submitted in day-ahead and the real-time outputs [5], a penalty
will be imposed (e.g., [6] and [7]). Due to the intermittent
nature of wind power, significant penalties can be generated.
To avoid such significant penalties, an efficient approach to
handle the uncertainties is based on the mixed utilization of
wind power and pumped-storage units [5]. In addition, it is
easy to observe that thermal units can also help accommodate
wind power output uncertainty. For instance, among others,
the WILMAR model is studied in [8] and [9], a stochastic
security-constrained unit commitment model is analyzed to
integrate uncertain wind power output into a thermal power
system in [10], and the impact of wind power on power
generation in the Dutch system is investigated in [11].

In this paper, we propose to study the optimal bidding
strategy for an IPP whose generation portfolio may consist

of thermal, hydro and wind power units. The objective of an
IPP’s self-scheduling problem is to maximize its profit while
ensuring high utilization of wind power output to comply with
related regulations. In our approach, the IPP is assumed to be a
price taker in the market, which means the IPP does not have
control over the market prices by bidding strategically. One
of the reasons for the IPP to be a price taker is its relatively
small share of generation in the total generation capacity in
the market. Since the IPP is a price-taker, the market prices
are purely input to the IPP’s own profit maximization problem.
Thus, the objective of the IPP is to optimize its own generation
portfolio based on the forecasted day-ahead and real-time price
information. With this price-based decision making, the IPP
tries to come up with its best generation schedule that can
be bid into the market subject to physical constraints of the
generators such as min on/off, capacity limits, etc. Along with
the generation quantity obtained from the optimization, the
IPP can bid a low price to ensure the acceptance of its bids
in the market. This problem is typically defined as the Price-
based Unit Commitment (PBUC) problem as shown in the
literature (see, e.g., [12], [13], [14], [15]). In this paper, the
IPP is considered to operate and schedule a few number of
thermal generators, several wind farms and pumped-storage
units. We propose a novel bidding strategy that can maximize
the expected profit with the consideration of wind power
forecasting errors and ensure high utilization of wind power
output for IPPs.

The chance constraint requires a certain probability at which
a given portion of wind power must be utilized. For example,
we can define a probability of 95% at which the utilization of
wind power is no smaller than a certain number (e.g., 85%).
Applications of chance-constrained optimization in power sys-
tem have been studied recently. In [16], the chance constraints
are applied to address the hourly load uncertainty. The chance
constraint is used to formulate a stochastic unit commitment
problem which guarantees the load satisfied with a pre-defined
chance. In [17], the not-overload-probability is addressed using
chance-constrained optimization for the transmission planning
problem. In [18], the chance constraint is presented to solve
the unit commitment problem with uncertain wind power
output from the system operator’s point of view. In [19], the
chance constraint is utilized to ensure the load balance at each
time period to be satisfied by a certain percentage while the
demand response uncertainty is considered. However, none
of the previous studies has investigated wind power bidding
strategies with chance constraints, which is the main focus of
this paper.

In this paper, we study a sample average approximation
(SAA) method to solve the chance constrained power producer
bidding problem. As compared to the SAA algorithms recently
developed for the two-stage stochastic program described in
[18], [20] and [21], and for the chance-constrained single-stage
stochastic program described in [22] and [23], we develop a
different SAA algorithm due to the binary decision variables
for the hydro units in the second stage. The validation process
and convergence proof of the proposed approach are also
investigated. The case studies show the proposed algorithm
in this paper provides tight lower and upper bounds, which
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illustrate the effectiveness of our approach.
The contributions of this paper are summarized as follows:

(1) Much of the previous research studied the stochastic
unit commitment problem from an ISO’s perspective. In
this paper, our contributions focus on the price-based
unit commitment (PBUC) from a price-taking IPP’s per-
spective. A two-stage stochastic programming model is
studied to solve the problem.

(2) Compared with other works in PBUC [12], [13], this is
the first paper to apply the chance-constrained stochastic
programming to address bidding strategies on a thermal-
wind-hydro generation portfolio.

(3) The SAA framework is adjusted specifically for our
chance-constrained stochastic programming model. We
also propose a heuristic-based SAA algorithm for this
specific problem structure.

The rest of the paper is organized as follows: Section II
describes the problem and presents the mathematical formu-
lation of the problem. Section III introduces the proposed
SAA algorithm and discusses the convergence property of the
algorithm and the related solution validation process. Section
IV reports the numerical examples and computational results
for both single-bus and multi-bus systems. Finally, Section V
summarizes the contributions of this research.

II. MATHEMATICAL FORMULATION

A. Market Framework

In a deregulated electricity market, the IPPs submit bids
each day, and the market operator provides the market clearing
prices of electricity. The IPPs with both thermal and wind
power units in the generation portfolio face at least two
main sources of uncertainties: market prices and variable
wind power output. IPPs have to consider the uncertainty of
wind power in their bidding as their wind power forecasts
will not be perfectly accurate and errors always exist. In
addition, some of the electricity markets (such as PJM [24])
are enforcing penalties on the mismatch between IPPs’ day-
ahead bids and their actual generation in the real-time market.
One can easily observe that uncertain wind power output
contributes significantly to the mismatch. In the meantime,
IPPs can not choose to abandon too much wind power to avoid
its fluctuation as they may be subject to certain regulations
that require renewable energy like wind power accounting for
a certain share of their total generation output [4]. Hence, IPPs
need to optimize their bidding strategies that can balance the
objective of profit maximization and the risks associated with
wind power realizations, while making sure the wind power is
utilized to the greatest degree. Based on the above discussion,
the proposed method in this paper models such a bidding
process for IPPs by formulating the problem as a two-stage
stochastic program. To maximize the total expected profit, the
IPPs decide the quantity to be submitted to the market in
the first stage (day-ahead market), considering the possible
realizations of uncertain market prices and wind power output
in the second stage (real-time market). Chance constraints are
used to model the least percentage of wind power utilization.
Our modeling framework also captures the two-settlement

(day-ahead and real-time) market procedure as in most of the
U.S. markets by modeling the two markets in the objective
function (e.g., PJM [24]).

B. Problem Formulation

The PBUC problem is formulated as a two-stage chance
constrained stochastic programming problem. The first stage
of the model is a unit commitment problem with decisions
on commitment and quantity of the electricity offered to
the day-ahead market. The second stage of the model is an
economic dispatch problem with decisions on thermal and
hydro unit dispatch, the actual usage of wind power, and
energy imbalance. We consider the chance constraint at the
second stage, in which the actual wind power utilized could
be different from the wind power output. We describe the final
formulation of the problem (denoted as the true problem) as
follows.

max−
T∑

t=1

B∑
b=1

∑
i∈Λb

(SU b
i o

b
it + SDb

i v
b
it)

+E[Q(y, o, v, qB , ξ)] (1)
s.t. −ybi(t−1) + ybit − ybik ≤ 0,

1 ≤ k − (t− 1) ≤MU b
i ,∀i ∈ Λb,∀b,∀t (2)

ybi(t−1) − y
b
it + ybik ≤ 1,

1 ≤ k − (t− 1) ≤MDb
i ,∀i ∈ Λb,∀b,∀t (3)

−ybi(t−1) + ybit − obit ≤ 0,

∀i ∈ Λb,∀b,∀t (4)
ybi(t−1) − y

b
it − vbit ≤ 0,

∀i ∈ Λb,∀b,∀t (5)
ybit, o

b
it, v

b
it ∈ {0, 1},∀i ∈ Λb,∀b,∀t, (6)

where Q(y, o, v, qB , ξ) is equal to

max

T∑
t=1

B∑
b=1

(RDA
tb (ξ)qBtb +RRT

tb (ξ)qimb
tb (ξ))

−
T∑

t=1

B∑
b=1

∑
i∈Λb

Fc(p
b
it(ξ))−

T∑
t=1

B∑
b=1

γbt |qimb
tb (ξ)| (7)

s.t. Lb
iy

b
it ≤ pbit(ξ) ≤ U b

i y
b
it, ∀i ∈ Λb,∀b,∀t (8)

pbit(ξ)− pbi(t−1)(ξ) ≤ (2− ybi(t−1) − y
b
it)L

b
i +

(1 + ybi(t−1) − y
b
it)UR

b
i , ∀i ∈ Λb,∀b,∀t (9)

pbi(t−1)(ξ)− p
b
it(ξ) ≤ (2− ybi(t−1) − y

b
it)L

b
i +

(1− ybi(t−1) + ybit)DR
b
i , ∀i ∈ Λb,∀b,∀t (10)∑

i∈Λb

pbit(ξ) = qGtb(ξ), ∀b,∀t (11)

qWtb (ξ) + qGtb(ξ) +
∑
i∈Υb

(qH
+

itb (ξ)− qH
−

itb (ξ)) = qBtb

+qimb
tb (ξ), ∀b,∀t (12)

sbit(ξ) = sbi(t−1)(ξ) + η2q
H−

itb (ξ)− qH
+

itb (ξ)

η1
,

∀i ∈ Υb,∀b,∀t (13)
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hbit(ξ)L
H
ib ≤ qH

+

itb (ξ) ≤ hbit(ξ)UH
ib , ∀i ∈ Υb,∀b,∀t(14)

(1− hbit(ξ))LH
ib ≤ qH

−

itb (ξ) ≤ (1− hbit(ξ))UH
ib ,

∀i ∈ Υb,∀b,∀t (15)
sbiT (ξ) = Send

ib , sbi0(ξ) = Sbegin
ib , ∀i ∈ Υb,∀b (16)

Pr(β

B∑
b=1

Wtb(ξ) ≤
B∑

b=1

qWtb (ξ),∀t) ≥ 1− ε (17)

pbit(ξ), q
W
tb (ξ), qGtb(ξ), q

H+

itb (ξ), qH
−

itb (ξ), sbit(ξ) ≥ 0,

hbit(ξ) ∈ {0, 1}, qBtb free, ∀i,∀b,∀t. (18)

The objective function (1) is to maximize the
expected total profit. It is equal to the expected revenue
E[

∑T
t=1

∑B
b=1(RDA

tb (ξ)qBtb +RRT
tb (ξ)qimb

tb (ξ))] which
follows the two-settlement market procedure in most
U.S. electricity markets, minus the expected power
generation cost

∑T
t=1

∑B
b=1

∑
i∈Λb

(SU b
i o

b
it + SDb

i v
b
it) +

E[
∑T

t=1

∑B
b=1

∑
i∈Λb

Fc(p
b
it(ξ))], and the expected penalty

cost E[
∑T

t=1

∑B
b=1 γ

b
t |qimb

tb (ξ)|]. It should be noted here
that qimb

tb (ξ) captures the amount of imbalance between the
day-ahead bid amount and the real-time generation output.
As this imbalance is mainly caused by the variable wind
power and inaccurate wind power forecasting, the additional
penalty γbt which is imposed by market operators can reduce
the uncertainty of the market related to uncertain wind
generation. The unit commitment constraints at the first
stage listed above include constraints (2) to (5), representing
the unit minimum-up time requirement when the unit is
turned on (e.g., constraints (2)), the unit minimum-down time
requirement when the unit is turned off (e.g., constraints
(3)), the unit start-up condition (e.g., constraints (4)), and the
unit shut-down condition (e.g., constraints (5)). The hourly
economic dispatch constraints at the second stage include
unit generation upper and lower limit constraints (8), unit
ramping up constraints (9), unit ramping down constraints
(10), total thermal generation output (11) (it sums up all
the generation by thermal units), power balance constraints
(12) (the total system generation should be equal to the
amount of energy offered in the day-ahead market plus the
imbalance), hydro water inventory balance constraints (13),
hydro unit pump in/out limit constraints ((14) and (15)), and
first/last period water reservation amount constraints (16).
The chance constraint (17) is associated with a risk level ε
(e.g., ε = 10%), which means the total utilization of wind
power has to be larger than or equal to β (e.g., β = 85%) for
at least 100(1− ε) percent of chance. As can be seen, adding
this constraint can help IPPs comply with regulations which
require a certain percentage of wind power utilization at a
high probability. In addition, ybit, o

b
it and vbit are first-stage

decision variables, and others are second-stage decision
variables.

In the objective function of our model, there exists an
absolute value which indicates the imbalance penalty. It can be
reformulated by using linear programming as shown in [25].
For instance, the following minimization problem

min γbt |qimb
tb |, subject to Ax = b (19)

can be reformulated as follows:

min{γbtdtb| − dtb ≤ qimb
tb ≤ dtb and Ax = b} (20)

after introducing an auxiliary variable dtb. Thus, we can
replace the absolute value part in (19) with a linear function
(20).

III. SAMPLE AVERAGE APPROXIMATION

In this section, we apply a sample average approximation
(SAA) method to solve the stochastic program shown above.
SAA is composed of three steps: 1) scenario generation to
approximate the true distribution, 2) convergence analysis
to show the convergence property of the algorithm, and 3)
solution validation to verify that the solution converges to the
optimal one. The readers are referred to [21] for more details
regarding the traditional SAA method description. For notation
brevity, the proposed mathematical model can be abstracted as
follows:

min
xf∈X

f(xf ) + E[Q(xf , ξ)]

where

Q(xf , ξ) =min cxs(ξ)

s.t. Axs(ξ) = g −Dxf , xs(ξ) ≥ 0

Pr{H(xf , xs(ξ), ξ) ≤ 0} ≥ 1− ε.

In the above formulation, xf and xs represent the first and
second stage decision variables, and f(xf ) and Q(xf , ξ)
represent the first and second stage objective functions. In
addition, X represents the feasible region of xf , c, g, A,D
are vectors/matrices of parameters, and H is the constraint
mapping.

A. SAA Problem

In our approach, the SAA problem is generated similarly to
the one described in [18] and [21]. For instance, a Monte Carlo
simulation method is utilized for scenario generation purposes.
After the scenarios are generated (e.g., N scenarios), the
objective function E[Q(xf , ξ)] can be linearized and replaced
by the sample average function N−1

∑N
j=1Q(xf , ξj) [20].

Meanwhile, an indicator function 1(0,∞)(H(xf , xs(ξj), ξj)
is introduced to estimate the chance constraint as de-
scribed in [22]. We have 1(0,∞)(H(xf , xs(ξj), ξj)) = 1 if
H(xf , xs(ξj), ξj) ∈ (0,∞) and 1(0,∞)(H(xf , xs(ξj), ξj)) =
0 when H(xf , xs(ξj), ξj) ≤ 0. By introducing binary decision
variables z to indicate if a constraint is satisfied, when a
sample size N is given, we can linearize the chance constraint
as the following constraints (22)–(24), and the SAA problem
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can be described as follows:

max−
T∑

t=1

B∑
b=1

∑
i∈Λb

(SU b
i o

b
it + SDb

i v
b
it) +N−1

N∑
j=1[

T∑
t=1

B∑
b=1

(RDA
tb (ξj)qBtb +RRT

tb (ξj)qimb
tb (ξj))

−
T∑

t=1

B∑
b=1

∑
i∈Λb

Fc(p
b
it(ξ

j))−
T∑

t=1

B∑
b=1

γbt |qimb
tb (ξj)|

]
(21)

s.t. (2)− (6), (8)− (16), and (18)

β

B∑
b=1

Wtb(ξ
j)−

B∑
b=1

qWtb (ξj) ≤M × zj ,∀t, ∀j (22)

N∑
j=1

zj ≤ N × ε (23)

zj ∈ {0, 1}, j = 1, 2, . . . , N. (24)

B. Convergence Analysis and Solution Validation

We use statistical methods to analyze the solution of the
SAA problem and provide convergence analysis and solution
validation. As the sample size N goes to infinity, we claim that
the objective of the SAA problem converges to that of the true
problem. To prove the convergence property, we need to first
prove the convergence of the chance constrained part. This
result can be achieved using a similar approach as described
in [22]. Secondly, after converting the chance constraint into
the MILP formulation, we should notice that the first-stage
problem in the whole SAA problem of the true problem is a
pure integer program, and the second-stage problem is a mixed
integer linear program. According to [21], the solution of such
an SAA problem will converge to that of the true problem.

In [21] and [22], the procedures for solution validation of
SAA problems have been developed for the two-stage problem
and for the chance-constrained problem, respectively. Let x̄
and v̄ be an optimal solution and the corresponding optimal
objective value for the SAA problem, respectively. To validate
the quality of x̄, the validation process obtains upper and
lower bounds for v̄ of the true problem. Usually, the solution
validation needs to consider the feasibility when dealing with
chance constraints (e.g., chance constraints contain both first
and second stage decision variables), because it is not guar-
anteed that the solution of the SAA problem always satisfies
the chance constraints with a large scenario size. However,
in this paper, the chance constraints are only considered in
the second stage. The second-stage decision is made after the
scenarios are realized. Thus, the chance constraints can always
be satisfied by tuning the second stage decision variables.
We apply directly the validation process in [21] to construct
statistical bounds for the objective value of our SAA problem.

C. SAA Algorithm Framework

To describe the SAA algorithm, we first introduce additional
notation. For instance, we let N be the scenario size of the
SAA problem, K be the iteration number, N ′ be the scenario
size of the validation process to obtain a lower bound, ĝ be

the lower bound of the true problem, x̄k and v̄k be the optimal
solution and optimal objective value in iteration k, and v̄ be
the upper bound of the true problem. The SAA algorithm can
be summarized as follows with a flowchart in Fig. 1:

1. Set k = 1, 2, . . . ,K and repeat the following steps for
each k:
(1) For a given sample size N , generate a corresponding

SAA problem and solve the SAA problem to obtain
x̄k and v̄k;

(2) For a given sample size N ′ for the validation process,
generate independent scenarios ξ1, ξ2, . . . , ξN

′
, and

estimate the lower bound of the problem using the
following formula:

ĝk = f(x̄fk) +
1

N ′

N ′∑
n=1

Q(x̄fk , ξ
n), (25)

whereQ(x̄fk , ξ
n) is the second-stage problem defined

in (7)-(18) with xf fixed as x̄fk .
2. Take the average of v̄1, v̄2, . . . , v̄K . The upper bound can

be obtained as v̄ = 1
K

∑K
k=1 v̄k following Theorem 1

in [26].
3. Take the maximum of ĝ1, ĝ2, . . . , ĝK . The lower bound

can be obtained as ĝ = max1≤k≤K ĝk.
4. Estimate the optimality gap: (v̄ − ĝ)/ĝ × 100%.

Initialization

Solve the SAA problem

Estimate LB using (25)

k == K?

k = k + 1

Take the average of {v̄k} to get upper bound v̄

Let ĝ = max1≤k≤K ĝk

Estimate the optimality gap: (v̄ − ĝ)/ĝ × 100%

no

yes

Fig. 1. Proposed SAA Algorithm

D. Heuristics for Solving Each SAA Problem

As shown in Section III-A, each SAA problem contains
many integer variables which make the problem hard to
solve by commercial solvers like CPLEX [27] under default
settings. In addition, there are many binary decision variables
in the second stage due to hydro operations. When the system
becomes larger, the number of integer variables will increase
significantly. To reduce the computational complexity of the
problem, we apply heuristic methods to obtain good feasible
solutions, and tight inner upper and lower bounds of the
optimal objective value for each SAA problem. Based on
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optimization theory, in our heuristic approach, we solve a re-
laxation problem by relaxing the second stage binary decision
variables to be fractional, which provides an upper bound for
our maximization problem. In addition, any feasible solution
leads to a corresponding lower bound.

1) Inner upper bound (Inner UB): The basic idea is to use
the relaxation to get an inner upper bound for a maximization
problem. Since the integer variables lead to the difficulty
of solving each SAA problem, we relax the integrality for
constraints (14) and (15) while maintaining the integrality of
the z variables in (24) to get an inner upper bound for the given
SAA problem. Note here that this approach is more effective
for small sample sizes.

2) Inner lower bound (Inner LB): We create a feasible
solution to get an inner lower bound for the given SAA
problem in this part. Note that the first-stage solution from
obtaining the inner upper bound in III-D1 should also satisfy
the first-stage constraints in the SAA problem. Therefore, we
can fix the first-stage solution obtained from the above part
in III-D1, and solve the second-stage sub-problem to obtain a
feasible solution and a corresponding inner lower bound for
the SAA problem.

Moreover, when we use the inner upper bound and cor-
responding solution derived in III-D1 to replace v̄k and x̄k
in Step 1.1 in III-C in the calculation of obtaining the upper
bound in the validation process, we still obtain the upper bound
for the original true problem. Similarly, using the inner lower
bound and corresponding solution obtained in III-D2 to replace
v̄k and x̄k in Step 1.1 in III-C in the calculation of obtaining
the lower bound in the validation process provides the lower
bound for the original true problem.

IV. COMPUTATIONAL RESULTS

In this section, we first study a three-generator system in
a single bus to illustrate the proposed algorithm. Second,
we consider a more complicated large system in a single
bus to evaluate the performance of the heuristic approach.
Finally, we evaluate the performance of our algorithm on a
generalized multi-bus system (e.g., thermal, wind and hydro
units are located in different buses), by comparing it with the
case in which each bus is considered separately. It should
be noted that our SAA solution framework can be applied to
larger systems as well although the sizes of the test systems
used in this paper are moderate. The reason for us to use
a moderate size instance is that an IPP with an excessively
large generation portfolio may most likely be able to influence
the market prices, which violates our assumption of a price-
taker. For the three-generator system, we run the computational
experiments on the SAA problems at different risk levels and
different sample sizes for comparison. The SAA algorithm
described in Section III is also tested for this system. For
the complicated system, we consider the heuristic method
described in Section III-D to solve the SAA problem and run
the computational experiments to test the heuristic-based SAA
algorithm. The codes are written in C++ and the problem is
solved with CPLEX 12.1. All the experiments are implemented
on a computer workstation with 4 Intel Cores and 8GB RAM.

A. Scenario Generation for Uncertain Wind Power and Price

In the SAA framework, we need to generate scenarios by
Monte Carlo simulation. In our approach, MISO wind power
and price historical data are utilized for our case studies.
The wind power data is available in the National Renewable
Energy Laboratory (NREL) 2006 eastern wind data set. The
Locational Marginal Price (LMP) historical data is provided by
MISO. The state-of-the-art time series models for wind power
generation are in two categories: wind speed-based approaches
and wind power-based approaches. The wind speed-based
approaches (see, e.g., [28], [29]) apply the time series model
to generate wind speed scenarios and convert them into wind
power output. The wind power-based approaches consider
wind power time series directly (see, e.g., [30]). To capture
the wind power uncertainty, we now first apply the time series
model to analyze the historical wind data available from NREL
[31]. The method in [30] is applied to construct the ARIMA-
based model. A Monte Carlo simulation is then performed
on random noise which is subject to a normal distribution in
the ARIMA model to generate scenarios. As LMPs are very
difficult to forecast themselves due to a variety of factors such
as strategic bidding or transmission congestion, we assume
the uncertainties of day-ahead and real-time LMPs to follow a
Gaussian distribution and follow the method described in [32]
to generate price scenarios. That is, we use the historical data
to get the mean and variance for the Gaussian distribution for
the day-ahead and real-time LMPs, respectively. Then, the iid
samples are generated from the Gaussian distribution with the
estimated mean and variance, plus the white noise following
the standard normal distribution. Note that the proposed model
in this paper can be applied to other scenario generation
approaches without loss of generality by changing the scenario
generation approach accordingly. For example, as described in
[10], the wind power can be assumed to follow a multivariate
Gaussian distribution in Monte Carlo simulation.

B. Three-Generator System

In this subsection, we study a simple case in which an IPP
owns and operates three thermal generators, one wind farm,
and one pumped-storage unit. For this small instance, each
SAA problem can be solved by CPLEX with default settings
directly. Therefore, the heuristic method in Section III-D is not
considered. We report the computational results at different
risk levels and scenario sizes. The characteristics of thermal
and pumped-storage units are described in Tables I-III.

TABLE I
GENERATOR DATA

Unit Lower Upper Min-down Min-up Ramp

(MW) (MW) (h) (h) (MW/h)

G1 50 100 2 4 40

G2 100 150 3 3 30

G3 20 50 3 2 15

In order to run the model in CPLEX effectively, we linearize
the fuel cost function by using the interpolation method [33].
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TABLE II
FUEL DATA

Unit a b (MMBtu c (MMBtu Start-up Fuel Price

(MMBtu) /MWh) /MW2h) (MMBtu) ($/MMBtu)

G1 50 6 0.0004 100 1.246

G2 40 5.5 0.0001 300 1.246

G3 60 4.5 0.005 0 1.246

TABLE III
PUMPED-STORAGE

Upper Lower Start Level End Level η1 η2

(MW) (MW) (MWh) (MWh)

20 0 5 10 0.9 0.9

Accordingly, the fuel cost function in (7) is replaced by a
piecewise linear function.

1) Optimal solution with ten scenarios: We report the
optimal solution of the SAA algorithm with ten scenarios and
risk level ε = 10% in this subsection. Table IV reports the
unit commitment status for each generator. It can be observed
that G1 is committed mostly, The reason is that G1 has
more flexible lower/upper bounds and ramp limits than G2

and G3. The flexibility of these characteristics allows G1 to
accommodate the wind power better.

TABLE IV
OPTIMAL UNIT COMMITMENT

T Hours (1-24)

G1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

G2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

G3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

To show the effectiveness of the pumped-storage unit, we
compare the average imbalance qimb

tb value with and without
the pumped-storage unit. The average imbalance decreases
from 6.8 to 2.5 when we have the pumped-storage unit in
the system.

2) Sensitivity analysis for different risk levels and different
scenario sizes: The numerical results on different risk levels
and different scenario sizes are reported in the following
Figs. 2 and 3. From Fig. 2, it can be observed that the total
profit increases as the risk level increases. This is reason-
able because the total profit will be lower if the utilization
requirement of wind power output is more restrictive. To
verify the convergence property of the SAA algorithm shown
in Section III, the SAA algorithm is tested numerically by
setting different sample sizes. The results shown in Fig. 3 (with
the risk level to be 10%) indicate that the objective function
oscillates at the beginning when the sample size is small and
then converges slowly to the optimal objective value.

C. Computational Results for a Complicated System

In this subsection, we report the case study result of a more
complicated system. We assume the IPP owns five generators,
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Fig. 3. Obj.($) of the SAA Problem with Different Scenario Sizes

five wind farms, and two hydro units. G1 and G2 used in
the three-generator system are duplicated in this case study
setting.

Under this setting, each SAA problem cannot be solved to
optimality within the two-hour time limit when the scenario
size reaches 50. The reason is that the wind power scenarios
vary extensively such that the computational complexity is
dominated by the chance constraint. However, our heuristic
approach can still provide tight inner lower and upper bounds.
As shown in Table V, the lower bound matches the upper
bound when the sample size is no larger than 50. When the
sample size increases, we can stop our heuristic algorithm if
the time limit is reached. Accordingly, we can still report the
corresponding lower and upper bounds for each SAA. The
drawback for this approach is that it potentially increases
the optimality gap for each SAA problem. However, as we
increase the iteration number K and the validation process
sample size N ′, the final estimated optimality gap for the SAA
framework can still be reduced to a small number, as shown
in Table VI.

TABLE V
COMPUTATIONAL RESULTS FOR A COMPLICATED SYSTEM FOR EACH

SAA PROBLEM - HEURISTIC METHOD (RISK LEVEL: 10%)

N Inner LB Inner UB CPU Time(s)

10 128690 128690 3.8

30 123820 123820 605.6

50 124688 124688 2476.9
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TABLE VI
RESULTS OF SOLUTION VALIDATION FOR A COMPLICATED SYSTEM (RISK

LEVEL: 10%)

(K,N ′) LB UB Gap CPU Time(s)

(10, 200) 122410 129672 5.9% 1334.5

(30, 500) 121040 128765 6.3% 3243.8

(50, 800) 122818 126637 3.1% 5453.2

D. Multi-bus System

In the above larger system in Section IV-C, we assume
all the IPP’s power generation resources are in a single
bus, or aggregated. It is common in practice that the IPP’s
power generation resources are distributed at different buses
as described in the model in Section II. In such a case, the
electricity prices at different buses might be different. One
can separately solve the problem for each bus, which can save
the computational time. In this subsection, we use our model
to consider different buses simultaneously since the objective
of the IPP should be to maximize the profit of its entire
generation portfolio located at different buses. While each bus
contains its own price information and power bidding balance
constraints, one chance constraint is applied on the total wind
utilization for the whole multi-bus generation portfolio. The
chance constraint is the coupling constraint for all buses. In our
experiment, we assume the IPP’s power generation resources
are distributed in five different buses. G1 used in the three-
generator system is duplicated as the fourth generator in this
case study. The detailed settings are summarized in Table VII.

TABLE VII
BUS SETTINGS

Bus No. Wind Thermal Hydro

1 1 1 1

2 1 2 0

3 1 1 1

4 2 1 2

5 1 0 0

The computational results are reported in Table VIII. It
can be observed that the proposed method which considers
the coupling chance constraint provides a larger total profit.
This matches the theoretical result. That is, any solution of
the separated chance constrained problem must be a feasible
solution of the coupling chance constrained problem, which
leads to the fact that the coupling chance constrained problem
provides a better solution with a higher total profit. We
therefore conclude that sharing resources inside the multi-bus
system can tackle the uncertainties better and offer a higher
profit in general.

V. CONCLUSION

In this paper, a stochastic programming model is proposed
to address the price-based unit commitment problem with
wind power utilization constraints. Our model incorporates

TABLE VIII
COMPUTATIONAL RESULTS FOR DISTRIBUTED SYSTEM

Risk Level Obj. with Coupling Obj. with Separating

Chance Constraint Chance Constraints

0% 79873 62968

10% 92266 76452

40% 113419 104145

100% 153631 153631

day-ahead price, real-time price, and wind power output un-
certainties. In the first stage, an IPP makes decisions on unit
commitment and the amount of energy offered for the day-
ahead market. The economic dispatch of generators is made in
the second stage. A chance constraint is considered to ensure
the utilization of the volatile wind power to a large extent.
In other words, there is a great chance the usage of the wind
power satisfies a pre-defined percentage. The chance constraint
allows the power producer to adjust the utilization of wind
power based on different regulations.

Our model maximizes the profit and accommodates the
required usage of wind power output. An SAA algorithm is
developed to solve the problem, and the objective value of the
SAA problem converges to the optimal one as the scenario
size increases. For more complicated systems, we propose
a heuristic approach to accelerate the SAA algorithm. Our
implementation provides the overall upper and lower bounds
for the true problem. The reasonable estimated optimality gap
and moderate computational time verify that our approach is
effective in solving this problem.
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