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Abstract

The Demand Response Program (DRP) has recently attracted much attention from Independent System Operators
(ISO) in managing end-use customers’ electricity consumption behavior. In this paper, we propose a model that con-
siders the uncertainty in customers’ responses to time-varying prices. We develop a two-stage robust optimization
model that maximizes the social welfare under unit commitment constraints. We use the Bender’s Decomposition
method to handle the two-stage robust optimization problem. Finally, we test the performance of the proposed ap-
proach through extensive case studies, and verify that the power system obtained by the robust optimization approach
is more reliable.
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1. Introduction
In most electricity markets, electricity price is constant and independent of the time it was used. But constant price
may cause the imbalance between consumption and production due to the inability to meet the high electrical demand
during peak hours. The Demand Response Program (DRP) aims at managing end-user’s electricity consumption
pattern via time-varying price, or offering incentive payments to reduce the consumption of electricity at times of
high electricity demand or when system stability is jeopardized [1]. The program can benefit the load-serving entities,
consumers, and Independent System Operators (ISO) [1],[2],[3], including:

• Load-serving entities:

◦ Demand response can reduce electricity production cost by shifting the demand of electricity from peak
hours to off-peak hours.
◦ Demand response can lower the capacity requirements for load-serving entities, which leads to the reduc-

tion of electricity production cost.

• Consumers:

◦ Those who adjust their electricity demand from high price periods to low price periods will reduce their
electricity costs.
◦ Consumers that have no response to time-varying prices may also save money due to lower electricity

production cost.

• ISO:
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◦ Demand response can help balance the electricity consumption and production, and therefore ensure a
more stable, reliable and controllable grid system.

U.S. Department of Energy reported that in 2004, demand response potential was 3% of the total U.S. peak demand. In
order to “ensure that demand response is treated comparably to other resources", the Federal Energy Regulatory Com-
mission (FERC) requires ISO and regional transmission organizations (RTOs) to “accept bids from demand response
resources in their markets for certain ancillary services, comparable to other resources"[4]. On the other hand, several
regional grid operators (e.g., NYISO, PJM, ISO-NE, and ERCOT) provide opportunities for customers to participate
in the DRP, progressively integrating demand response resources into the wholesale energy market.

To see the effects of customers’ participation in the DRP, we model how customers respond to time-varying prices, or
spot prices. The spot price is set by ISO every hour, half-hour or 15 minutes, and customers can adjust their electricity
consumptions based on the change in spot price [5]. For example, consumers can cook dinner at off-peak hours, or
they may switch off the air-conditioning when facing high electricity prices. In general, the lower the retail electricity
price, the higher the corresponding electricity consumption. However, electricity producers are usually more willing
to supply electricity under higher electricity prices. We can model the demand-price curve and the supply-price curve
as Fig. 1 [6]. The electricity supply and demand reach an equilibrium at the intersection point (P∗,Q∗), corresponding
to price P∗.

Figure 1: Demand-price curve and supply-price curve

The social welfare is defined as the summation of customer surplus and supplier surplus. The objective of ISO is to
maximize the social welfare in real time market, while satisfying a series of operational constraints and maintaining
the reliability of the power grid. However, there are several challenges:

• How to properly model customer behavior under varying spot prices. In other words, how to describe the
demand-price curve.

• For a given spot price, the corresponding electricity consumption may be uncertain. Possible reasons for the
uncertainty include lack of attention, change in consumption behavior and weather conditions. As a result,
modeling the uncertain demand-price curve in real time market is challenging.

• In order to balance supply and demand, ISO should schedule the output of each unit to obey the unit commitment
constraints while maximizing the social welfare.

In most articles, the demand-price curve is measured by demand price elasticity, which represents the sensitivity of
electricity demand to price changes [7], [8]. For a given reference point (P0,Q0), the price elasticity is defined as:

α =
∆P/P0

∆Q/Q0
(1)

In [3], the elasticity value is simplified as α = ∆P
∆Q (i.e. linearize the price-elastic demand curve). In [9], the author

approximates the price-elastic demand curve as a stepwise linear curve. In [10], the author develops the concept of
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"self-elasticity" and "cross-elasticity" when the change in price of one commodity affects both its own demand and
the demand of another commodity. They show how these elasticities can model customers’ behaviors and the set of
spot price. In our model, we consider an uncertain price-elastic demand curve that fluctuates within a certain range.

The remaining part of the paper is organized as follows: In section 2, we describe the mathematical formulation. In
section 3, we discuss the uncertain set for the demand-price curve, and develop the solution approach to solve the
problem. In section 4, we provide some case studies and present our computational results. Finally, we conclude our
research in section 5.

2. The Model and Assumption
For a T-period power grid optimization problem, we denote M as the number of generators. We use t as the index of
time periods and i as the index of generators. For each time period t, and each generator i, let Si represent the start-up
cost, Wi represent the shut-down cost, Li represent the minimum-up time, Gi represent the minimum-down time, Ui
represent the maximal generating capacity, Qi represent the minimal generating capacity, Ri represent the ramp-up
limit, and Pi represent the ramp-down limit. Let C1 represent the lower bound of the total demand, and C2 represent
the upper bound of the total demand.
In the first stage, the unit commitment decisions are binary variables yit , uit , and vit . yit indicates if the generator i is
on during time period t, uit indicates if the generator i is started up during time period t, and vit is to indicate if the
generator i is shut down during time period t. In the second stage, let dt represent the demand in time period t, and xit
represent the amount of electricity generated or received by the generator i during time period t.
According to the definition of social welfare, the objective value is the integral of the demand curve minus the integral
of the supply curve. Let rt(dt) represent the integral of the demand curve, and fit(xit) represent the fuel cost for the
generator i in time period t. The nominal model is:

max
T

∑
t=1

rt(dt)−
T

∑
t=1

M

∑
i=1

( fit(xit)+Siuit +Wivit) (2)

s.t. −yi(t−1)+ yit − yik ≤ 0, (1≤ k− (t−1)≤ Li, i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (3)
yi(t−1)− yit + yik ≤ 1, (1≤ k− (t−1)≤ Gi, i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (4)
−yi(t−1)+ yit −uit ≤ 0, (i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (5)
yi(t−1)− yit − vit ≤ 0, (i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (6)
Qiyit ≤ xit ≤Uiyit , (i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (7)
xit − xi(t−1) ≤ yi(t−1)Ri +(1− yi(t−1))Ui, (i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (8)
xi(t−1)− xit ≤ yi(t−1)Pi +(1− yi(t−1))Ui, (i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (9)
M

∑
i=1

xit = dt , (t = 1,2, · · · ,T ), (10)

C1 ≤
T

∑
t=1

dt ≤C2, (11)

yit ,uit ,vit ∈ {0,1},xit ,dt ≥ 0, (i = 1,2, · · · ,M, t = 1,2, · · · ,T ). (12)

In the above formulation, the objective function is to maximize the social welfare. Constraint (3) means once the unit
is started up, it should not be turned off within a certain time. Constraint (4) describes that once the unit is turned
down, a minimum time required before it can be started up again. The following two constraints indicate the status
of the units (i,e, switched on or switched off). Constraint (7) describes the upper and lower bound of the unit’s power
output. Ramping constraints (8), (9) limit the maximum increase or decrease of generated power from one time period
to the next. Constraint (10) ensures the demand is met. Constraint (11) describes the lower and upper bound for the
total demand.

3. Solution Methodology
3.1 The approximation of objective function
In the above formulation, there are two nonlinear terms in the objective function:

• rt(dt)
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• fit(xit)

Now we will discuss the approximation of these two nonlinear terms.

• The approximation of rt(dt):

In our model, the customer demand response is represented as a price-elastic demand curve. If the price elasticity is
constant for the demand curve, we can describe the price-elastic demand curve as: dt = At pαt

t , where αt is the given
price elasticity for time period t. At is a parameter that can be decided by a given reference point (Dre f

t ,Pre f
t ) [8].

Then, as Fig. 2 shows, a step-wise function is applied to approximate this demand-price function. We approximate
rt(dt) as:

rt(dt) =
K

∑
k=1

pk
t hk

t ,dt =
K

∑
k=1

hk
t ,0≤ hk

t ≤ lk
t , (t = 1,2, · · · ,T,k = 1,2, · · · ,K) (13)

where (pk
t , l

k
t ) is the point at step k for the step-wise function; hk

t is the variable introduced for demand at step k; K is
the number of steps.

Notice that pk
t is strictly decreasing with k. Since we are maximizing rt(dt), we will have: hz

t =


lz
t , if z < z0;
[0, lz

t ], if z = z0;
0, if z > z0.
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Figure 2: Step-wise approximation of price-elastic demand curve

when ∑
z0−1
k=1 lk

t < dt ≤ ∑
z0
k=1 lk

t for a certain z0. In this case, we can prove that (13) is justified.

• The approximation of fit(xit):

In practice, the fuel cost function fit(xit) can be expressed as a quadratic function, which we approximate as the
following N-piece piecewise linear function [11]:

φit ≥ α
j
ityit +β

j
itxit , (i = 1,2, · · · ,M, t = 1,2, · · · ,T, j = 1,2, · · · ,N) (14)

where α
j
it is the intercept of the jth segment line and β

j
it is the slope of the jth segment line.

3.2 The uncertain set
In this part, we model the uncertainty of demand-price curve as an uncertain set. As illustrated in Figure 3, for a
given certain price p0, the corresponding demand is uncertain. Similarly, for a certain demand d0, the price will
fluctuate within a corresponding range. For computational convenience, in our model, we consider for each demand
dt in the step-wise curve obtained by the previous steps, the corresponding pk

t is allowed to wing in the range pk
t ∈

[pk∗
t − ε̄t , pk∗

t +εt ], where pk∗
t is the forecasted value for pk

t , and ε̄t and εt are the deviations for pk
t . To adjust the degree

of conservation, we restrict the number of time periods that allow the price’s uncertainty, and call it “uncertain budget"
υ. It can be observed that the greater the υ, the more conservative the system. So we can adjust the robustness through
changing the value of υ. We describe uncertainty set as follows:

Pc = {p : pk∗
t − εtzt ≤ pk

t ≤ pk∗
t + ε̄tzt ,

T

∑
t=1

zt ≤ υ,zt ∈ {0,1},∀k = 1, · · · ,K} (15)
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Figure 3: The uncertainty of price-elastic demand curve

3.3 Two-stage robust optimization problem
We consider a two-stage robust optimization problem. In the first stage, we determine a turn-on and turn-off schedule
of electrical power generating units by satisfying unit commitment constraints. In the second stage, we decide how
much electricity each unit should generate to maximize the social welfare under the worst case scenario.

Then we can rewrite the model as:

max
y,u,v
−

T

∑
t=1

M

∑
i=1

(Siuit +Wivit)+min
p∈Pc

max
x,h,φ∈χ

(
T

∑
t=1

K

∑
k=1

pk
t hk

t −
T

∑
t=1

M

∑
i=1

φit)

s.t. (3), (4), (5), (6)
yit ,uit ,vit ∈ {0,1} (i = 1,2, · · · ,M, t = 1,2, · · · ,T ) (16)

where X =
{

(7), (8), (9), (14)
M

∑
i=1

xit =
K

∑
k=1

hk
t (t = 1,2, · · · ,T ) (17)

hk
t ≤ lk

t (t = 1,2, · · · ,T,k = 1,2, · · · ,K) (18)
T

∑
t=1

K

∑
k=1

hk
t ≤C1 (19)

T

∑
t=1

K

∑
k=1

hk
t ≥C2 (20)

xit ≥ 0,hk
t ≥ 0, (i = 1,2, · · · ,M, t = 1,2, · · · ,T,k = 1,2, · · · ,K)

}
(21)

By dualizing the constraints in (X ) and combining the constraints of price p, we can transform the second-stage
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problem as follows:

ω(y) = min
T

∑
t=1

M

∑
i=1

((Uiyitγ
+
it −Qiyitγ

−
it )+(Ui +(Ri−Ui)yi(t−1))τ

+
it

+(Ui +(Pi−Ui)yi(t−1))τ
−
it )−

T

∑
t=1

M

∑
i=1

N

∑
j=1

α
j
ityitζ

j
it +

T

∑
t=1

K

∑
k=1

lk
t δ

k
t +C1µ+−C2µ− (22)

s.t. γ
+
it − γ

−
it + τ

+
it − τ

−
it − τ

+
i(t+1)+ τ

−
i(t+1)+ηt +

N

∑
j=1

β
j
itζ

j
it ≥ 0, (i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (23)

−ηt +δ
k
t +µ+−µ−− pk

t ≥ 0, (t = 1,2, · · · ,T,k = 1,2, · · · ,K), (24)
N

∑
j=1

ζ
j
it = 1, (i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (25)

pk∗
t − εtzt ≤ pk

t ≤ pk∗
t + ε̄tzt , (t = 1,2, · · · ,T,k = 1,2, · · · ,K), (26)

T

∑
t=1

zt ≤ υ, (27)

γ,τ,η,µ,ζ,δ≥ 0,zt ∈ {0,1} (i = 1,2, · · · ,M, t = 1,2, · · · ,T,k = 1,2, · · · ,K) (28)
where γ,τ,η,µ,ζ,δ are dual variables for constraints (7), (8-9), (10), (11), (14) and (18) respectively.
Now we use the Bender’s decomposition algorithm to solve it. Replace minω(y) with θ and then consider the following
master problem. By adding feasibility cuts and optimality cuts, the problem can be solved iteratively:

ω
M = max

y,u,v
−

T

∑
t=1

M

∑
i=1

(Siuit +Wivit)+θ

(M ) s.t.
T

∑
t=1

M

∑
i=1

σ
s
ityit ≥ ξs, (s = 1, · · · ,S) (29)

θ−
T

∑
t=1

M

∑
i=1

σ̂
l
ityit ≤ ξ̂l , (l = 1, · · · ,L) (30)

(3), (4), (5), (6), (16)
where constraints (29) represent the feasibility cuts, while constraints (30) represent the optimality cuts.

3.4 Feasibility cuts
We use the L-shaped method to generate feasibility cuts. In this case, we don’t need to consider the constraint (14)
since it will not affect the feasibility. The corresponding formulation is shown as follows:

ω
l(y) = min

T

∑
t=1

M

∑
i=1

((Uiyit γ̂
+
it −Qiyit γ̂

−
it )+(Ui +(Ri−Ui)yi(t−1))τ̂

+
it

+(Ui +(Pi−Ui)yi(t−1))τ̂
−
it )+

T

∑
t=1

K

∑
k=1

lk
t δ̂

k
t +C1µ̂+−C2µ̂− (31)

s.t. γ̂
+
it − γ̂

−
it + τ̂

+
it − τ̂

−
it − τ̂

+
i(t+1)+ τ̂

−
i(t+1)+ η̂t ≥ 0, (i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (32)

−η̂t + δ̂
k
t + µ̂+tk− µ̂−tk ≥ 0, (t = 1,2, · · · ,T,k = 1,2, · · · ,K), (33)

0≤ γ̂
+
it ≤ 1,0≤ γ̂

−
it ≤ 1, (i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (34)

0≤ τ̂
+
it ≤ 1,0≤ τ̂

−
it ≤ 1, (i = 1,2, · · · ,M, t = 1,2, · · · ,T ), (35)

−1≤ η̂t ≤ 1, (t = 1,2, · · · ,T ), (36)

0≤ δ̂
k
t ≤ 1, (t = 1,2, · · · ,T,k = 1,2, · · · ,K), (37)

0≤ µ̂+ ≤ 1,0≤ µ̂− ≤ 1 (38)
And we have the following conclusions:
(1) If ω

l(y) = 0, y is feasible;
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(2) If ω
l(y)< 0, generate a feasibility cut as follows:

T

∑
t=1

M

∑
i=1

σ
s
ityit ≥ ξs (39)

where
σ

s
it :=Uiγ̂

+
it −Qiγ̂

−
it +(Ri−Ui)γ̂

+
i(t+1)+(Pi−Ui)γ̂

−
i(t+1), (40)

ξs :=−
M

∑
i=1

T

∑
t=1

(Uiγ̂
+
it +Uiγ̂

−
it )−

T

∑
t=1

K

∑
k=1

lk
t δ̂

k
t −C1µ̂++C2µ̂− (41)

3.5 Optimality cuts
Assume in the ith iteration, we solve the master problem and get θi and yi. Since we let θ = minω(y), so if we
substitute yi into the subproblem and get ω(yi), we should have ω(yi) ≥ θi. If ω(yi) < θi, we can claim that yi is not
optimal and generate a optimality cut:

θ−
T

∑
t=1

M

∑
i=1

σ̂
l
ityit ≤ ξ̂l (42)

where

σ̂
l
it :=Uiγ

+
it −Qiγ

−
it +(Ri−Ui)γ

+
i(t+1)+(Pi−Ui)γ

−
i(t+1)−

N

∑
j=1

α
j
itζ

j
it , (43)

ξ̂l :=−
M

∑
i=1

T

∑
t=1

(Uiγ
+
it +Uiγ

−
it )−

T

∑
t=1

K

∑
k=1

lk
t δ

k
t −C1µ++C2µ− (44)

4. Case Studies
In this section, we study the IEEE 118-bus system given online at motor.ece.iit.edu/data. In this experiment, we have
33 generators and the time horizon is 24 hours. All the experiments are implemented using CPLEX 12.2, at Intel Quad
Core 2.40GHz with 8GB memory.

4.1 Robust case: uncertain budget vs. elasticity value
The optimal objective values, number of start-ups and CPU times corresponding to different uncertain budgets and
different elasticity values are reported in TABLE 1. From the results we can observe several conclusions: 1) when
the uncertain budget increases, the predicted social welfare decreases due to the augment of uncertainty; 2) when the
uncertain budget raises, more generators should be started up to guarantee the balance between electricity supply and
demand; 3) when the uncertain budget increases, it takes more CPU times to calculate the optimal objective value. It
can also be observed that as the demand becomes more elastic (high α), the total social welfare decreases.

Table 1: Different υ vs. different α

α υ Objective value Start-ups CPU time(s)

α =−1
2 6300362 10 40
4 6273063 10 256
6 6246180 10 1480

α =−2
2 2994692 9 27
4 2983314 10 244
6 2971791 10 811

α =−4
2 2354530 9 37
4 2350413 10 173
6 2344642 10 1220

4.2 Deterministic case vs. robust Case
In this part, we discuss why robust demand response model performs better. In the deterministic case, we can set the
uncertain budget to 0. By running the same framework, we achieve the first stage decisions based on deterministic
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demand response. Then considering the uncertain set in the second stage with the uncertain budget 6, we can get
the optimal social welfare based on the first stage variables’ values. We compare the results with the robust case in
TABLE 2. From the results, we can see that the social welfare of the deterministic DR is less than the social welfare
of the robust DR.

Table 2: Deterministic DR vs. Robust DR

Deterministic Robust
α =−1 Generators that 5,9,10,16,17, 2,4,5,9,10,
υ = 6 started up 18,24,26,27,28 16,17,18,24,27

Obj. 6243943 6245050
α =−2 Generators that 4,5,9,10,16, 2,4,5,9,10,
υ = 6 started up 17,24,26,27,28 16,17,18,24,27

Obj. 2926002 2971791
α =−4 Generators that 4,5,9,10,16, 2,4,5,9,10
υ = 6 started up 17,18,24,27,28 16,17,18,24,27

Obj. 2284540 2344642

5. Conclusion
In this article, we develop a robust optimization approach to maximize the social welfare under the worst case scenario.
We use an uncertain price-elastic demand curve to model customer’s response to price signals, and the Bender’s
decomposition framework to solve the problem. Finally, our computational results on an IEEE 118-bus system verify
that our robust model gives better solutions than the deterministic model under the worst case scenario.

References
[1] U.S. Department of Energy, 2006, “Benefits of demand response in electricity markets and recommendations for

achieving them," Available at eetd.lbl.gov/ea/ems/reports/congress-1252d.pdf

[2] Kirschen, D. S., 2003, “Demand-side view of electricity markets," IEEE Transactions on Power Systems, 18(2),
520-527.

[3] Su, C. and Kirschen, D., 2009, “Quantifying the effect of demand response on electricity markets," IEEE Trans-
actions on Power Systems, 24(3), 1199-1207.

[4] Federal Energy Regulatory Commission(FERC), 2009, “Wholesale competition in re-
gions with organized electric markets: FERC notice of proposed rulemaking," Available at
http://www.kirkland.com/siteFiles/Publications/C430B16C519842DE1AEB2623F7DE21D6.pdf.

[5] Schweppe, F.C., 1988, “Spot pricing of electricity," Kluwer Academic Publishers.

[6] Jain, TR, 2006, “Microeconomics and Basic Mathematics," FK Publications.

[7] Albadi, M.H. and El-Saadany, EF, 2007, “Demand response in electricity markets: An overview," IEEE Power
Engineering Society General Meeting, 1-5.

[8] Thimmapuram, P.R. and Kim, J. and Botterud, A. and Nam, Y., 2010, “Modeling and simulation of price elasticity
of demand using an agent-based model," Proc. IEEE ISGT, 1-8.

[9] Khodaei, A. and Shahidehpour, M. and Bahramirad, S., 2011, “SCUC With Hourly Demand response considering
intertemporal load characteristics," IEEE Transactions on Smart Grid, 2(3), 564–571.

[10] Kirschen, D. and Strbac, G. and Cumperayot, P. and de Paiva Mendes, D., 2000, “Factoring the elasticity of
demand in electricity prices," IEEE Transactions on Power Systems, 15(2), 612-617.

[11] Jiang, R. and Wang, J. and Guan, Y., 2011, “Robust unit commitment with wind power and pumped storage
hydro," IEEE Transactions on Power Systems, To appear.



Chaoyue Zhao, Qianfan Wang, Yongpei Guan

[12] Faruqui, A. and George, S., 2005, “Quantifying customer response to dynamic pricing," IEEE The Electricity
Journal, 18(4), 53-63.

[13] Nicholson, W. and Snyder, C., 2008, “Microeconomic theory: basic principles and extensions," South-Western
Pub.

[14] Walawalkar, R. and Fernands, S. and Thakur, N. and Chevva, K. R., 2010, “Evolution and current status of
demand response (DR) in electricity markets: Insights from PJM and NYISO," IEEE Energy Journal, 35(4),
1553-1560.

[15] Parvania, M. and Fotuhi-Firuzabad, M., 2010, “Demand response scheduling by stochastic SCUC," IEEE
Transactions on Smart Grid, 1(1), 89-98.

[16] Khodaei, A. and Shahidehpour, M. and Bahramirad, S., 2011, “SCUC with hourly demand response considering
intertemporal load characteristics," IEEE Transactions on Smart Grid, 2(3), 564-571.

[17] Albadi, MH and El-Saadany, EF, 2008, “A summary of demand response in electricity markets," Electric Power
Systems Research, Elsevier, 78(11), 1989-1996.


	Introduction
	The Model and Assumption
	Solution Methodology
	The approximation of objective function
	The uncertain set
	Two-stage robust optimization problem
	Feasibility cuts
	Optimality cuts

	Case Studies
	Robust case: uncertain budget vs. elasticity value
	Deterministic case vs. robust Case

	Conclusion

