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Abstract—Although demand response (DR) encourages cus-
tomers to voluntarily schedule electricity consumption based on
price signals, the response from the consumer side could be
uncertain due to a variety of reasons. In this letter, we study
the stochastic unit commitment problem with uncertain demand
response to enhance the reliability unit commitment process for
ISOs. We use a stochastic representation of DR by scenario,
and each scenario corresponds to a price-elastic demand curve.
Contingency constraints are considered and in addition, a chance
constraint is applied to ensure the loss of load probability (LOLP)
lower than a pre-defined risk level. Finally, a sample average
approximation (SAA) method is applied to solve the problem.

Index Terms—Stochastic Programming, Unit Commitment,
Contingency Analysis, Demand Response, Chance Constraint.

I. INTRODUCTION AND THE MODEL

The objective of an Independent System Operator (ISO) is
to maximize the social welfare for electricity producers and
customers. Customers participating in the Demand Response
(DR) program can expect savings by reducing their electricity
usage during peak periods [1]. In the literature, DR was
mostly modeled as a fixed demand curve. However, due to
a variety of reasons such as lack of attention, latency in com-
munication, and change in consumption behavior, the actual
response from the consumers to a price signal is uncertain
in nature. Hence, the customer behavior is explicitly modeled
by an uncertain demand elasticity in this letter, which means
customers have different responses to the electricity prices
under different scenarios. We also consider generator outages
and transmission line contingencies which can be addressed by
DR programs to avoid or reduce forced load curtailment. Our
proposed approach can be applied to enhance the reliability
unit commitment process for ISOs.

We consider a two-stage stochastic programming formula-
tion with unit commitment decisions at the first stage and real-
time generation and load amount decisions at the second stage.
The objective is to maximize the social welfare:

max−(cgs +
∑T
t=1

∑
iE[fi(xit(ξ))])

+
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b
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where cgs denotes generator start-up and shut-down costs [2],
fi(xit(ξ)) represents the fuel cost for generator i at time t
when the generation amount is xit(ξ), Ft,b,ξ(·) represents the
consumer benefit at bus b at time t with dbt(ξ) representing the
amount of elastic load at bus b at time t (note here each bus
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load includes both inelastic and elastic loads, and the consumer
benefit for the inelastic load is zero, cf. [3]. Therefore, the
objective function only includes elastic loads), and wt(ξ) and
γt represent the total amount of load curtailment and unit
penalty cost at time t, respectively.

Our model includes generation upper/lower bound con-
straints, min-up/-down time constraints, start-up/shut-down
constraints, ramp-up/-down constraints, spinning reserve con-
straints, and transmission capacity constraints (cf. [2]). Both
the generation upper/lower bound and transmission capacity
constraints consider contingencies. For instance, the genera-
tion bound constraints with uncertain generator contingency
consideration are modeled as follows:

Liyit(1− Ci(ξ)) ≤ xit(ξ) ≤ Uiyit(1− Ci(ξ)) ∀i,∀t, (2)
Pr(Ci(ξ) = 1) = τi ∀i, (3)

where Li and Ui are lower and upper bounds of generator
i, yit is a binary variable to indicate if generator i is on
during time period t, Ci(ξ) is a random binary parameter
indicating the contingency of generator i, and τi is the given
probability value that the contingency happens for generator i.
Constraints (2) enforce the generation output to be zero during
the contingency. Finally, a chance constraint is introduced to
formulate the loss of load probability (LOLP) as follows:

Pr

(∑
b

(dbt(ξ) + d̂bt(ξ)) ≤
∑
i

xit(ξ), ∀t

)
≥ 1− ε, (4)

where ε is defined as risk level and d̂bt(ξ) represents the amount
of inelastic load at bus b at time t.

II. SOLUTION METHODOLOGY AND CASE STUDY

A. Solution Methodology

An SAA method is utilized to solve the problem. In our
approach, a Monte Carlo method is first applied to gener-
ate scenarios (e.g., N scenarios). Then, the expected value
function is replaced with the sample average function, and
accordingly the chance constraint is replaced with an MILP
reformulation as in [4]. The price-elastic demand curve for
each ISO could be different with the common part that the
demand is a non-increasing function of price (cf. [3] and [5]).
This curve can be obtained by simulation and historical data
analysis. Without loss of generality, in this paper, the price-
elastic demand curve is described as dbt(ξ) = Abtp

αb
t(ξ)
t,b

(cf. [6]) with the purpose to illustrate our proposed solution
approach. For a given elasticity αbt(ξ), A

b
t can be decided

by the given reference point (Dref
t,b , P

ref
t,b ). Then, a step-wise
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function is applied to approximate this demand-price function
as described in [6]:

Ft,b,ξ(d
b
t(ξ)) =

∑K
k=1 p

k
t,br

k
t,b(ξ) (5)

dbt(ξ) =
∑K
k=1 r

k
t,b(ξ), 0 ≤ rkt,b(ξ) ≤ lkt,b, (6)

where K is the number of steps (see Fig. 1), pkt,b and lkt,b
are given for each k, and rkt,b(ξ) is an auxiliary decision
variable. Based on (5) and (6), and the max objective, we
have rkt,b(ξ) = lkt,b in the solution if dbt(ξ) ≥

∑k
u=1 l

u
t,b.

Thus, the discrepancy between the approximation and the
integral of the curve (consumer benefit) is equal to the
difference between the shaded area above the curve and the
one below the curve, and this discrepancy converges to zero
as K → +∞. In addition, αbt(ξ) is assumed to follow a
normal distribution (our methodology can also be applied to
other distributions) and a Monte Carlo method is applied to
generate αbt(ξ) for obtaining Ft,b,ξ under different scenarios.
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Fig. 1. Step-wise approximation of price-
elastic demand curve

For the probability con-
straints, during the sce-
nario generation process,
we randomly set generator
i under contingency status
for τi ×N scenarios, and
transmission line (m,n)
under contingency status
for κmn × N scenarios,
where κmn is the given
probability value that the
contingency happens for
transmission line (m,n)
and N represents the total number of scenarios.

B. Case Study

We study the revised IEEE 118-bus system (online at
ece.iit.edu/data) with 33 generators to illustrate the results.

1) Deterministic DR vs. Stochastic DR: We first set the risk
level to be zero and compare the results based on the deter-
ministic DR and stochastic DR representations, to show how
stochastic DR works better. We assume possible contingencies
occur on two transmission lines and two generators in this
subsection. For the deterministic DR, the price-elastic demand
curve is certain in which the mean value of the elasticity is
taken to generate the curve. Several indicators are given in
Table I for comparison purposes. It can be observed that the

TABLE I
DETERMINISTIC VS. STOCHASTIC

Deterministic Stochastic
Number of Start-ups 82 144

Expected Reserve Amount (MW) 1191 2100
Expected Load Loss (MW) 833 120

Solution Time (sec.) 35.2 50.6

stochastic formulation approach puts more generators online
to provide additional capacity for unexpected consumption
behaviors. This approach provides more reserves (for each
scenario, it is measured as the difference between the total

generation capacity of online generators and the load) which
lead to less load curtailment.

2) Risk Levels and Demand Response Effect: The opti-
mal objective values corresponding to different risk levels
are reported in Table II. The risk level is represented by
the probability defined in the chance constraint (4), which
indicates the possibility of the load being curtailed. It can be
observed that the social welfare increases when the risk level
increases, because allowing load curtailment provides more
flexibility for generation scheduling. To show the effectiveness
of DR, we assume αbt the same for each b and t and compare
the optimal social welfare using a group of elasticities with
different mean and standard deviation values (e.g., µα and σα).
It can be observed in Table II that the total social welfare has

TABLE II
COMPUTATIONAL RESULTS FOR DIFFERENT RISKS AND ELASTICITIES

ε Obj. ($) Time (sec.) (µα, σα) Obj. ($) Time (sec.)
0 1252530 24.5 (−0.8, 0.2) 1252530 24.90

10% 1323200 57.8 (−2, 1) 1494270 30.28
30% 1464530 131.9 (−3, 2) 1738670 14.57

a tendency to increase as the demand elasticity increases. But
it is not guaranteed that there is always a positive correlation
between elasticity and welfare. It depends on each specific
price-elastic demand curve. Also, our conclusion is based on
the “reference point” modeling approach we used. It may
not be generalized to other modeling methods. However, the
general modeling framework we described in this paper can
accommodate other demand side modeling approaches. Our
proposed solution approach can solve theses models efficiently
and numerically.

III. CONCLUSION

In this letter, we provided a general modeling framework
that considers the uncertain demand-side response in which
price-elastic demand curves vary by scenario. This framework
can accommodate different demand side modeling approaches.
In addition, the proposed chance constraint controls the LOLP
and the sample average approximation method can solve the
IEEE 118-bus system efficiently. Final case studies indicate
that the stochastic representation of uncertain demand response
can lead to more available generation capacity, as compared
to its deterministic counterpart.
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