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Wind Power Output
Qianfan Wang, Student Member, IEEE, Yongpei Guan, Member, IEEE, Jianhui Wang, Member, IEEE

Abstract—In this paper, we present a unit commitment prob-
lem with uncertain wind power output. The problem is for-
mulated as a chance-constrained two-stage (CCTS) stochastic
program. Our model ensures that, with high probability, a
large portion of the wind power output at each operating hour
will be utilized. The proposed model includes both the two-
stage stochastic program and the chance-constrained stochastic
program features. These types of problems are challenging
and have never been studied together before, even though the
algorithms for the two-stage stochastic program and the chance-
constrained stochastic program have been recently developed sep-
arately. In this paper, a combined sample average approximation
(SAA) algorithm is developed to solve the model effectively. The
convergence property and the solution validation process of our
proposed combined SAA algorithm is discussed and presented in
the paper. Finally, computational results indicate that increasing
the utilization of wind power output might increase the total
power generation cost, and our experiments also verify that the
proposed algorithm can solve large-scale power grid optimization
problems.

Index Terms—Unit Commitment, Wind Power, Chance-
constrained Optimization, Sample Average Approximation.

NOMENCLATURE

A. Sets and Indices
BG Set of buses with thermal generation units.
BW Set of buses with wind farms.
B Set of all buses.
E Set of transmission lines linking bus pairs.
Λb Set of generators at bus b.
T Time horizon (e.g., 24 hours).

B. Parameters
kbi,j Line flow distribution factor for transmission line

linking bus i and bus j due to the net injection at
bus b.

Ui,j Transmission flow limit on transmission line which
links bus i and bus j.

Dbt Demand at bus b in time period t.
µbi Start-up cost for generator i at bus b.
θbi Shut-down cost for generator i at bus b.
αbi Cost of generating minimum power output for

generator i if it is turned on at bus b.
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Fc(q
b
it) Fuel cost for generator i at bus b in time period t

when its generation is qbit.
γt Penalty cost per unit of energy shortage in time

period t.
Gbi Minimum-up time for generator i at bus b.
Hb
i Minimum-down time for generator i at bus b.

Rt Amount of spinning reserve needed for the whole
power system in time period t.

URbi Ramp-up rate limit of generator i at bus b.
DRbi Ramp-down rate limit of generator i at bus b.
LBbi Lower bound of electricity generated by generator

i at bus b.
UBbi Upper bound of electricity generated by generator

i at bus b.
wbt(ξ) A random parameter indicating the wind power

output or “available capacity” at bus b in time
period t.

C. Decision Variables
QGt Total amount of electricity generated by thermal

units in time period t.
QWt Total amount of wind power committed to be

utilized (delivered) in time period t.
q̂bt Amount of wind power committed to be utilized

(delivered) at bus b in time period t.
qbit Amount of electricity generated by generator i at

bus b in time period t.
obit Binary variable to indicate if generator i at bus b

is on in time period t.
ubit Binary variable to indicate if generator i at bus b

is started up in time period t.
vbit Binary variable to indicate if generator i at bus b

is shut down in time period t.
Sbt (ξ) Amount of energy shortage at bus b in time period

t (second-stage decision variable).

I. INTRODUCTION

H Igh penetration of wind power has greatly challenged the
way the power system has been operated. On one hand,

wind power is sustainable and has zero carbon emissions. On
the other hand, wind power is intermittent and very difficult
to predict. The fluctuation in wind power output requires
sufficient ramping capability available in the system to address
the inherent variability and uncertainty. The traditional power
system operation methods, which were designed to address



ACCEPTED MANUSCRIPT, IEEE TRANSACTIONS ON POWER SYSTEMS, 2011 2

limited uncertainty in the system such as load variation, have
failed to consider the variation from the unprecedented scale
of wind power utilization. Hence, large-scale use of wind
power production calls for advanced power system operation
methods to maintain the security of system operations by better
scheduling generation sources.

Research has been done to improve power system operation
methods such as unit commitment (UC) to accommodate large
amounts of wind power. A short-term generation scheduling
model for Wind Power Integration in the Liberalised Elec-
tricity Markets (WILMAR) was proposed in [1], [2], and
[3]. WILMAR is a stochastic rolling unit commitment model
with wind power scenarios. The model has been successfully
used in several wind integration studies. Ummels et al. [4]
analyzed the impacts of wind power on thermal generation
unit commitment and dispatch in the Dutch system, which has
a significant share of combined heat and power (CHP) units.
Bouffard and Galiana [5] used a stochastic unit commitment
model to calculate the reserve requirements by simulating the
wind power realization in the scenarios in comparison with
the traditional pre-defined reserve requirements. Ruiz et al. [6]
proposed a stochastic formulation to manage uncertainty in the
unit commitment problem and extended the model to consider
uncertainty and variability in wind power by using the same
stochastic framework [7]. Wang et al. [8] presented a security-
constrained unit commitment (SCUC) algorithm that takes
into account the intermittency and variability of wind power
generation. Benders’ decomposition was used to decrease the
computational requirements brought by a large number of
wind power scenarios. A stochastic unit commitment model
was proposed in [9]. Various wind power forecasts and dif-
ferent levels of reserve requirements were simulated. It was
found that wind power forecast errors have significant impact
on unit commitment and dispatch.

Most of the models presented so far aim to minimize the
overall operating cost, which allows the curtailment of wind
power. The wind power curtailment occurs when transmission
congestion exists or there is oversupply of wind power due
to the technical constraints of the other conventional units
such as capacity or minimum on/off time constraints. In this
case, the unused wind power becomes a waste. The wind
power curtailment will dampen the incentive of wind power
investment in the long run and may cause more emissions
from the alternative energy sources. For these reasons, it is
desirable that the system operators are able to utilize as much
wind power as possible. In practice, the system operators in
some regions like Germany are required to use renewable
energy such as wind power as a priority over the other
conventional generation sources [10]. Hence, because of the
wind power uncertainty and variability, the system operators
have reliability concerns in dispatching their systems with
large amounts of wind power while wanting to utilize wind
to the largest possible extent at the same time. Therefore, the
system operators need to determine a proper unit commitment
strategy which can balance the need to spill wind power due
to reliability and other reasons while still taking the most
advantage of wind power.

In this paper, we present a novel unit commitment model

that can take into account wind power forecasting errors
while maintaining the system reliability in case of sudden
fluctuations in wind power output. In our model, the system
operators can request a portion of the wind power output to
be utilized at a certain probability. In this way, the risk of
a large amount of wind being curtailed will be adjustable
by the operators. We use the chance-constrained optimization
technique to formulate the problem to ensure that, with high
probability, a large portion of the wind power output at
each operating hour will be utilized. Since the wind power
uncertainty is captured by a number of wind power scenarios
in our approach, a large part of the wind power output,
defined by the system operators, will be utilized in a large
portion of scenarios. The system operators can refine the unit
commitment solution by defining appropriate attitudes toward
risk and cost [11]. Some system operators may prefer a lower
risk of curtailing the wind power while the others may be
prone to spill wind power when system constraints take effect.
The risk preference reflects the various treatments of wind
power in reality [12].

Chance-constrained optimization has been previously stud-
ied to solve the stochastic unit commitment problem with
uncertain load in [13] and transmission planning problem
in [14]. In [13], with the consideration of the hourly load
uncertainty and its correlation structure, the unit commitment
problem is initially formulated as a chance constrained op-
timization problem in which the load is required to be met
with a specified high probability over the entire time horizon.
In the solution approach, the probability constraint is replaced
by a set of separate probability constraints each of which could
be inverted to obtain a set of equivalent deterministic linear
inequalities. Finally, the deterministic form of the stochastic
constraint is used in solving the problem iteratively. In [14],
the chance constraint is applied to transmission planning, and
it is in the form that the not-overload-probability for the trans-
mission line is required to be more than a specified probability.
Two-step optimization process with a genetic algorithm is
applied to solve the problem.

In this paper, the chance constraint is applied to describe
policies to ensure the utilization of wind power output. In our
approach, different policies lead to different types of chance
constraints. Some of these types of constraints could not be
inverted to obtain equivalent deterministic linear inequalities.
Thus, the algorithm developed in [13] could not be directly
applied here to solve our problem. In addition, the algorithm
proposed in [14] was not designed to solve two stage stochastic
programs, and it also could not be directly applied here to
solve our problem. Therefore, we propose to study a sample
average approximation (SAA) algorithm to solve the problem.
Our approach can provide a solution that converges to the
optimal one as the number of samples increases.

The remaining part of this paper is organized as follows:
Section II describes the background of chance-constrained and
two-stage stochastic programming formulations, and provides
the problem formulation. Section III presents the SAA solution
framework, and shows the convergence property and related
solution validation process of the SAA algorithm. Section IV
describes the method to solve each sample in the SAA
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algorithm. Numerical examples are provided in Section V.
Section VI concludes the discussion.

II. MATHEMATICAL FORMULATION

A. Problem Formulation

Our model contains both chance-constrained and two-stage
stochastic program features. We first briefly describe these
two general models. The general chance-constrained stochastic
problem can be described as follows:

min
x∈X

f(x) s.t. Pr{G(x, ξ) ≤ 0} ≥ 1− ε, (1)

where X ⊂ <n denotes the deterministic feasible region, f(x)
represents the objective value to be minimized, ξ is a random
vector whose probability distribution is supported on set Ξ ⊂
<d, G : <n × <d → <m is a constraint mapping, 0 is an m
dimensional vector of zeros, and ε ∈ (0, 1) is given and usually
called the risk level of the chance-constrained optimization.
This formulation will minimize the objective function over a
deterministic feasible set while G(x, ξ) ≤ 0 should be satisfied
with a probability of at least 1 − ε. It is intractable to solve
a general chance-constrained stochastic problem because of
the multidimensional chance constraint function and the non-
convexity of the feasible region [15], [16].

The two-stage stochastic program [17] is another approach
to address uncertainty, and the general formulation of the
two-stage stochastic program with fixed recourse is shown as
follows:

min cTx+ E[Q(x, ξ)] s.t. Ax = b, x ≥ 0, (2)

where

Q(x, ξ) = min {qy(ξ)|Wy(ξ) = h− Tx, y(ξ) ≥ 0}. (3)

Here, x denotes the first stage decision variable, y(ξ) denotes
the second-stage decision variable, and ξ is a random vec-
tor. This formulation minimizes the objective function which
contains the expected value of recourse cost on second-stage
variables.

In this paper, we develop a chance-constrained two-stage
stochastic unit commitment formulation, combining (1), (2),
and (3), to address uncertain wind power output. We call it a
CCTS program, which contains both chance-constrained and
two-stage stochastic program features. In our model, the only
uncertainty considered is the wind power availability. The first
stage of the stochastic program consists of the traditional unit
commitment problem with transmission constraints and the
decision on the total amount of wind power committed to be
utilized (delivered), formed in light of a probabilistic wind
power forecast. The second stage represents the penalty cost
due to energy shortage once the actual wind power output is
known. The chance constraint ensures the utilization of wind
power output. The detailed formulation is described as follows
(denoted as the true problem).

min
∑
b∈BG

T∑
t=1

∑
i∈Λb

(µbiu
b
it + θbi v

b
it + αbio

b
it + Fc(q

b
it))

+

T∑
t=1

γtE

[ ∑
b∈BW

Sbt (ξ)

]
(4)

s.t. LBbio
b
it ≤ qbit ≤ UB

b
io
b
it (5)

(∀i ∈ Λb,∀b ∈ BG, t = 1, 2, . . . , T )

−obi(t−1) + obit − obik ≤ 0 (6)

(1 ≤ k − (t− 1) ≤ Gbi ,∀i ∈ Λb,∀b ∈ BG, 1 ≤ t ≤ T )

obi(t−1) − o
b
it + obik ≤ 1 (7)

(1 ≤ k − (t− 1) ≤ Hb
i ,∀i ∈ Λb,∀b ∈ BG, 1 ≤ t ≤ T )

−obi(t−1) + obit − ubit ≤ 0 (8)
(∀i ∈ Λb,∀b ∈ BG, t = 1, 2, . . . , T )

obi(t−1) − o
b
it − vbit ≤ 0 (9)

(∀i ∈ Λb,∀b ∈ BG, t = 1, 2, . . . , T )

qbit − qbi(t−1) ≤ (2− obi(t−1) − o
b
it)LB

b
i +

(1 + obi(t−1) − o
b
it)UR

b
i (10)

(∀i ∈ Λb,∀b ∈ BG, t = 1, 2, . . . , T )

qbi(t−1) − q
b
it ≤ (2− obi(t−1) − o

b
it)LB

b
i +

(1− obi(t−1) + obit)DR
b
i (11)

(∀i ∈ Λb,∀b ∈ BG, t = 1, 2, . . . , T )

QGt +QWt =
∑
b∈B

Dbt (12)

(t = 1, 2, . . . , T )∑
b∈BW

q̂bt = QWt (13)

(t = 1, 2, . . . , T )∑
b∈BG

∑
i∈Λb

qbit = QGt (14)

(t = 1, 2, . . . , T )∑
b∈BG

∑
i∈Λb

UBbio
b
it ≥ Rt +

∑
b∈B

Dbt (15)

(t = 1, 2, . . . , T )

−Uij ≤
∑
b∈B

kbij(q̂
b
t +

∑
n∈Λb

qbnt −Dbt) ≤ Uij (16)

(∀(i, j) ∈ E , t = 1, 2, . . . , T )

Pr(G(x, ξ) ≤ 0) ≥ 1− ε (17)
Sbt (ξ) = max{0, q̂bt − wbt(ξ)} (18)

(∀b ∈ BW ; t = 1, 2, . . . , T ; ξ ∈ Ξ ⊂ <|B|×T ).

qbit, q̂
b
t ≥ 0; obit, u

b
it, v

b
it ∈ {0, 1},∀t, ∀i,∀b. (19)

In the above formulation, the decision variables Sbt (ξ) are
second-stage variables, corresponding to y in (1)–(3), and
others are first stage variables, corresponding to x in (1)–
(3). We define Fc(qbit) = cbi (q

b
it)

2 + bbiq
b
it. Note here because

of constraints (5), we have αbio
b
it + Fc(q

b
it) = (cbi (q

b
it)

2 +
bbiq

b
it + αbi )o

b
it. The objective function (4) is composed of

power generation costs in the first stage and penalty cost due
to energy shortage in the second stage. In our model, for each
time period in the second stage, if the wind power output is
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larger than the amount of wind power committed to be utilized,
the excess wind power can be curtailed without penalty,
because the utilization of wind power usage is guaranteed
by the chance constraint (17). Excess wind power will not
be sold to a third party with the consideration of potential
transmission congestion and other constraints. If the wind
power output is less than the amount of wind power committed
to be utilized, penalty cost will be triggered due to energy
shortage. The hourly UC constraints listed above include the
unit generation capacity constraints (5), unit minimum-up time
constraints (6) (e.g., when obi(t−1) = 0 and obit = 1, it
means that the unit is turned on in time period t. Then in
the following Gbi time periods, it should be on, because we
have −0 + 1 − obik ≤ 0 at this moment, and obik = 1 can be
guaranteed for at least Gbi time periods), unit minimum-down
time constraints (7) (the explanation is similar to the one for
(6)), unit start-up constraints (8), unit shut-down constraints
(9), unit ramping up constraints (10), unit ramping down
constraints (11), system power balance constraints (12, 13, 14),
system spinning reserve requirements (15), and transmission
capacity constraints (16) (Note that the calculation of kbij
is the same as the one described in [18]). Constraints (5)-
(16) are first stage constraints; constraint (17) indicates that
G(x, ξ) ≤ 0 (for notation brevity, we use x to represent all
the first stage decision variables) should be satisfied with a
probability of at least 1−ε; constraint (17) is described in detail
in the following part B; constraints (18) are the second-stage
constraints which indicate the amount of energy shortage, in
case the wind power output is less than the amount of wind
power committed to be utilized.

B. Chance Constraint Description

We apply three policies to guarantee the utilization of
wind power and develop the corresponding three types of
chance constraints with constraint mappings G1, G2 and G3,
respectively.

1) Policy 1: Constraint mapping G1 defines that for the
entire time planning horizon (24h), there is at least 1−ε chance
the usage of the total wind power generation is larger than or
equal to β, 0 < β < 100%.

Pr(β

T∑
t=1

∑
b∈BW

wbt(ξ)−
T∑
t=1

QWt ≤ 0) ≥ 1− ε. (20)

2) Policy 2: Constraint mapping G2 defines that for each
particular operating hour on the time planning horizon, there
is at least 1− ε chance the usage of the wind power is larger
than or equal to β, 0 < β < 100%.

Pr(β
∑
b∈BW

wbt(ξ)−QWt ≤ 0) ≥ 1− ε, (21)

(t = 1, 2, . . . , T ).

3) Policy 3: Constraint mapping G3 considers the joint
probability which is at least 1 − ε chance the usage of wind
power is larger than or equal to β, 0 < β < 100% for every
operating hour.

Pr(β
∑
b∈BW

wb(ξ)−QW ≤ 0) ≥ 1− ε, (22)

where wb(ξ) = [wb1(ξ), wb2(ξ), . . . , wbT (ξ)]T , QW =
[QW1 , QW2 , . . . , QWT ]T , and 0 is a T dimensional vector of
zeros.

From above, it can be observed that policy 3 is most
restrictive, while policy 1 is the least restrictive one. In policy
3, we require that at least β of wind power is utilized during
each of the 24 operating hours to make an outcome of the
random wind generation amount a qualified one (i.e., satisfying
the chance constraint). Thus, policy 3 is more restrictive than
policy 2, which is more restrictive than policy 1.

III. SAMPLE AVERAGE APPROXIMATION

Sample average approximation (SAA) is an effective
method to solve chance-constrained and two-stage stochastic
problems. The basic idea of SAA is to approximate the true
distribution of random variables with an empirical distribution
by Monte Carlo sampling technology. A number of theoretical
research and computational studies of SAA have been devel-
oped for chance-constrained stochastic problems (e.g., [16]
and [19]) and two-stage stochastic problems (e.g., [20] and
[21]). However, there is no existing SAA method to solve
the model that contains both chance-constrained and two-
stage stochastic program features. In this section, we develop
a combined SAA algorithm to solve the CCTS program.
The combined SAA framework contains three parts: scenario
generation, convergence analysis, and solution validation. For
each SAA problem, we solve the corresponding mixed-integer-
linear program (MILP) efficiently by developing a strong for-
mulation. The details are shown in the following subsections.

A. Scenario Generation

In SAA, the true distribution of wind power generation is
replaced by an empirical distribution using computer simula-
tion. We use Monte Carlo simulation to generate scenarios.
Assume the wind power is subject to a multivariate normal
distribution N(µ,Σ) (one of many possible distributions of
wind power) for every time period t, where vector µ is
chosen as the forecasted wind power and matrix Σ describes
the volatility. The Monte Carlo simulation generates a large
number of scenarios, each with the same probability 1/N . In
each scenario, there are 24 hourly, random wind power outputs
based on the forecasted generation. To decrease the variance of
simple Monte Carlo simulation, the Latin hypercube sampling
(LHS) is employed to make the statistical distribution fit the
real distribution better [8].

After the scenarios are generated (e.g., N scenarios),
the expected value function E[

∑
b∈BW Sbt (ξ)] is estimated

by the sample average function N−1
∑N
j=1

∑
b∈BW Sbt (ξ

j)
(see, e.g., [20]). On the other hand, in general, the
chance constraint can be estimated by an indicator func-
tion N−1

∑N
j=1 1(0,∞)(G(x, ξj))≤ε (see, e.g., [16]), which

requires that a certain percentage of the samples satisfy
the chance constraint. The value of the indicator function
1(0,∞)(G(x, ξj)) is equal to one when G(x, ξj) ∈ (0,∞) or
zero when G(x, ξj) ≤ 0. The corresponding formulation is
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shown as follows (denoted as the SAA problem):

min
∑
b∈BG

T∑
t=1

∑
i∈Λb

(µbiu
b
it + θbi v

b
it + αbio

b
it + Fc(q

b
it))

+N−1
T∑
t=1

N∑
j=1

γt
∑
b∈BW

Sbt (ξ
j)

s.t.(5)− (16)

N−1
N∑
j=1

1(0,∞)(G(x, ξj))≤ε

q̂bt ≤ wbt(ξj) + Sbt (ξ
j)

(∀t;∀b ∈ BW ; j = 1, 2, . . . , N)

qbit, q̂
b
t , S

b
t (ξ

j) ≥ 0; obit, u
b
it, v

b
it ∈ {0, 1},∀t, ∀i,∀b.

First, as the sample size N goes to infinity, we can prove
that the objective of the above formulation converges to that
of the true problem as shown in the following proposition.

Proposition 1: Let θ̂N represent the objective value of the
SAA problem, and θ∗ represent the objective value of the true
program. We have θ̂N → θ∗ and D(x̂N , x

∗) → 0 w.p.1 as
N → ∞, where D(x̂N , x

∗) represents the distance between
the optimal solution x̂N for the SAA problem and the optimal
solution x∗ for the true problem.

Proof: The details of the convergence proof are given in
Appendix A.

Next, we discuss the solution validation process in the
following subsection.

B. Solution Validation

Solution validation for the two-stage and chance-constrained
problems have been well studied in [16] and [21], respectively.
In this section, we develop a combined algorithm that embeds
the solution validation of the chance-constrained problem into
that of the two-stage problem.

Assume that x̄ is an optimal solution for the SAA problem,
and v̄ is the corresponding objective value. For a given
candidate solution for the SAA problem, solution validation
provides a scheme to validate its quality by obtaining upper
and lower bounds for the corresponding optimal objective
value. We construct the upper and lower bounds as follows:

1) Upper Bound: Since CCTS contains a chance constraint,
we start with the verification of feasibility of the given solution
x̄. To do this, we first estimate the true probability function
of the chance constraint

q(x̄) = Pr{G(x̄, ξ) > 0}. (23)

Following the method described in [15] and [16], we construct
a (1− τ)-confidence upper bound on q(x̄):

U(x̄) = q̂N ′(x̄) + zτ
√
q̂N ′(x̄)(1− q̂N ′(x̄))/N ′, (24)

where N ′ is the sample size for the validation of the chance
constraint, and q̂N ′(x̄) is the estimated value of q(x̄) for the
given sample size N ′.

If this upper bound of q(x̄) is less than the risk level ε,
then x̄ is feasible with confidence level (1 − τ) . Then, we
can evaluate the corresponding upper bound of the optimal

value for the second-stage part in CCTS, the same as the
validation process for the normal two-stage stochastic problem
as described in [21]:

U(v̄) = cT x̄+
1

N ′

N ′∑
n=1

Q(x, ξn). (25)

It is easy to see that U(v̄) is the upper bound for CCTS.
2) Lower bound: To get the lower bound for the objective

value v̄, we take Ŝ iterations. For each iteration 1 ≤ s ≤ Ŝ, we
run the N scenario SAA problem M times. For these M runs,
we follow the same scheme as the one described in [15] and
[16] to pick the Lth smallest optimal value, denoted as v̄Ls

,
as the approximated lower bound for the chance-constrained
part with confidence level (1 − τ), where L is calculated as
described in [16]. Finally, taking the average of {v̄Ls , 1 ≤ s ≤
Ŝ} provides the lower bound for CCTS.

C. Summary of the Combined SAA Algorithm

In the algorithm, we put the calculation of the upper
bound for CCTS in the loop of the calculation of the lower
bound for the chance-constrained part in order to speed up
the algorithm. The proposed combined SAA algorithm is
summarized in the following steps (also see flowchart in
Fig. 1).

1. For s = 1, 2, . . . , Ŝ, repeat the following steps:
(1) For m = 1, 2, . . . ,M , repeat the following steps:

(a) Solve the associated SAA with N scenarios. Denote
the solution as x̄m and the optimal value as v̄m;

(b) Generate scenarios ξ1, ξ2, . . . , ξN
′
. Estimate q(x̄m)

by q̂N ′ (x̄m) and use (24) to get U(x̄m);
(c) If U(x̄m) ≤ ε, go to (d); else, skip (d) and go to next

iteration;
(d) Estimate the corresponding upper bound for CCTS

using (25), based on the N ′ scenarios generated in (b);
(2) Pick the smallest upper bound in Step (1) as the

approximated upper bound ĝs;
(3) Sort the M optimal values obtained in Step (1) in

nondecreasing order, e.g., v̄1 ≤ v̄2 ≤ . . . v̄M . Pick the Lth
optimal value v̄L and denote it as v̄Ls .

2. Taking the average of v̄L1
, v̄L2

, . . . , v̄LŜ
, we get the

lower bound v̄ = 1
Ŝ

∑Ŝ
s=1 v̄Ls .

3. Taking the minimum of ĝ1, ĝ2, . . . , ĝŜ , we get the
upper bound ĝ = min1≤s≤Ŝ ĝ

s.

4. Estimate the optimality gap given by (ĝ − v̄)/v̄ × 100%.

IV. METHODS TO SOLVE THE SAA PROBLEM

The SAA problem is an MILP. We can use the standard
branch and bound algorithm which is implemented in most
commercial solvers. The main problem is how to solve the
SAA problem effectively with the chance constraints under
different policies. In this section, we introduce a sorting
approach for policies 1 and 2. For policy 3, we derive a strong
formulation as studied in [19] to speed up the algorithm.
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Initialization

Solve SAA problem

Estimate q(x̄)

m=m+1

U(x̄) ≤ ε?

Estimate UB using (25)

m == M?

Pick ĝs

Sort and pick v̄Ls

s == Ŝ?

s=s+1

Take the average of {v̄Ls
} to get lower bound v̄

ĝ = min1≤s≤Ŝ ĝ
s

Estimate the optimality gap

no

yes

no

yes

no

yes

Fig. 1. Proposed Combined SAA Algorithm

A. Sorting Approach

After taking samples, we can simplify (20) by sorting the
right-hand-side values of the constraints for each sample, (i.e.,
wind power in each day) and picking the d(1 − ε) × Neth
right-hand-side value to construct a deterministic constraint.
Similarly, after taking samples, we can simplify (21) by sorting
the right-hand-side values of the constraints for each sample
(i.e., wind power in each hour) and picking the d(1−ε)×Neth
right-hand-side value to construct a deterministic constraint.

B. Strong Formulation

It can be observed that the sorting method does not work
for (22) because the sorting algorithm cannot handle the joint
probability case described in (22). Instead, reformulating as an
MILP allows solution of the problem incorporating (22). For
a given sample size N , constraint (22) can be reformulated as
follows:

β
∑
b∈BW

wbt(ξ
j)−QWt ≤M × zj

(t = 1, 2, . . . , T ; j = 1, 2, . . . , N)
N∑
j=1

zj ≤ N × ε

zj ∈ {0, 1}
(j = 1, 2, . . . , N).

The star-inequalities can speed up the computation of the
above MILP model (see, e.g., [16], [19], and [22]). Moreover,
it has been proved that the MILP model can be transformed
into a strong formulation after adding the star-inequalities [19].
To do this, we introduce a new set of binary variables
{rtj : j = 1, 2, . . . , q; t = 1, 2, . . . , T} and define htj =
β
∑
b∈BW wbt(ξ

j). Without loss of generality, we assume that
ht1 ≥ ht2 ≥ · · · ≥ htN . The strong formulation is described
as follows:

rtj − rt(j+1) ≥ 0

(j = 1, 2, . . . , q; t = 1, 2, . . . , T )

z[j] − rtj ≥ 0

(j = 1, 2, . . . , q; t = 1, 2, . . . , T )

QWt +

q∑
j=1

(htj − ht(j+1))rtj ≥ ht1 (26)

(t = 1, 2, . . . , T )
N∑
j=1

zj ≤ N × ε

rtj , zj ∈ {0, 1},
where [j] represents the scenario index corresponding to the
jth largest h value in time period t, and inequalities (26) are
the star inequalities.

V. COMPUTATIONAL RESULT

In this section, a six-bus system and a revised 118-bus
system are studied to illustrate the proposed algorithms. In
the six-bus system, we run the computational experiments
at different risk levels to compare the results of different
policies. The solution validation is neglected for simplicity,
and computational experiments at different sample sizes are
tested to verify the convergence property of the combined
SAA algorithm. In the revised 118-bus system, we run the
computational experiments to test the entire combined SAA
algorithm described in Sections III and IV. The algorithm
is coded in C++ using CPLEX 12.1. All experiments are
implemented on a computer workstation with Intel Quad Core
2.40GHz and 8GB memory.

A. Six-bus System
The six-bus system includes three generators, one wind

farm, three loads, and six transmission lines. The layout of
the system is depicted in Fig. 2, and the characteristics of the
buses, thermal units, and transmission lines are described in
Tables I-IV.

We assume the wind farm is located at bus B4, β = 85%,
and γt = 600, ∀t. The wind power is assumed multivariate
normal distributed, with the hourly mean forecasted outputs
ranging between 10−100 and a standard deviation of 45% of
the expected values. To run the model in CPLEX effectively,
we use the interpolation method [23] to approximate the fuel
cost function. A piecewise linear function replaces the fuel
cost function in (4).
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B4 B5 B6

B1 B2 B3

G1 G2

W1 G3

Fig. 2. Six-bus System

TABLE I
BUS DATA

Bus ID Type Unit Wind Farm Hourly Load (MW)
B1 Thermal G1 - -
B2 Thermal G2 - -
B3 Thermal - - 300
B4 Wind - W1 300
B5 Thermal - - 200
B6 Thermal G3 - -

TABLE II
GENERATOR DATA

Unit Lower Upper Min-down Min-up Ramp
(MW) (MW) (h) (h) (MW/h)

G1 100 300 2 4 50
G2 80 200 3 3 40
G3 150 350 3 2 15

TABLE III
FUEL DATA

Unit α b (MBtu/ c (MBtu/ Start-up Fuel Fuel Price
(MBtu) MWh) MW2h) (MBtu) ($/MBtu)

G1 50 6 0.0004 100 1.2469
G2 40 5.5 0.0001 300 1.2461
G3 60 4.5 0.005 0 1.2462

TABLE IV
TRANSMISSION LINE DATA

Line ID From To X Flow Limit (MW)
L1 B1 B2 0.170 200
L2 B1 B4 0.150 200
L3 B2 B3 0.258 300
L4 B2 B4 0.197 200
L5 B3 B6 0.140 100
L6 B4 B5 0.150 200
L7 B5 B6 0.160 400

1) A 5-scenario Example: We first give an example with 5
scenarios to illustrate Policy 3. Based on the chance constraint
description in Policy 3 with ε = 20%, there is only one sce-
nario in which there are time periods whose wind utilizations

are less than 85%. From the results shown in Figure 3, we can

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Chart Title

scenario 1 scenario 2 scenario 3 scenario 4 scenario 5

Fig. 3. Wind Utilization in Each Operating Hour for the 5 Scenario Case

observe that the chance constraint is satisfied and only scenario
3 can have utilization below 85%. The unit commitment results
in the optimal solution are listed in Table V.

TABLE V
OPTIMAL UNIT COMMITMENT

T Hours (1-24)

G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G3 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

2) Experiments at Different Risk Levels: Next, we use 200
scenarios to run experiments on different risk levels. The
results are reported in Tables VI, VII, and VIII for comparison.

It can be observed that the total cost (column “obj.”
in Table VIII) is reduced as the risk level increases from
15% to 100%. This is reasonable because the fuel cost
for thermal plants might be higher if the policy on wind
power generation is more restrictive and less wind power
will be curtailed. An extreme case is ε = 100% in which
the chance constraint can be neglected. In such a case, the
optimal cost is smaller than that at any other risk level.
Meanwhile, the wind utilization is at its lowest value as well
(below 50%). Here the wind utilization is measured as the
average wind usage under all scenarios, which is equal to
the ratio between

∑T
t=1

∑200
j=1

∑
b∈BW min{q̂bt , wbt(ξj)} and∑T

t=1

∑200
j=1

∑
b∈BW wbt(ξ

j). From Tables VI-VIII, we can
also observe that Policy 3 is the most restrictive one. For the
same given risk level, the wind power utilization is the highest
among all three polices.

TABLE VI
COMPUTATIONAL RESULTS FOR THE SIX-BUS SYSTEM WITH DIFFERENT

RISK LEVELS - USING POLICY 1

Risk Level ε Obj. ($) Utilization CPU Time (sec)
15% 53038.3 84.01% 0.29
20% 52541.3 83.04% 0.31
40% 51473.3 81.92% 0.25
70% 48235.5 75.01% 0.29
100% 46213.8 48.9% 0.11

3) Experiments at Different Scenario Sizes: We have shown
the convergence property of the combined SAA algorithm in
Section III. Here, we set different sample sizes for the SAA



ACCEPTED MANUSCRIPT, IEEE TRANSACTIONS ON POWER SYSTEMS, 2011 8

TABLE VII
COMPUTATIONAL RESULTS FOR THE SIX-BUS SYSTEM WITH DIFFERENT

RISK LEVELS - USING POLICY 2

Risk Level ε Obj. ($) Utilization CPU Time (sec)
15% 63315.5 90.00% 0.02
20% 60462.5 88.75% 0.07
40% 53782.1 83.57% 0.08
70% 48699.1 75.09% 0.1
100% 46213.8 48.9% 0.11

TABLE VIII
COMPUTATIONAL RESULTS FOR THE SIX-BUS SYSTEM WITH DIFFERENT

RISK LEVELS - USING POLICY 3

Risk Level ε Obj. ($) Utilization CPU Time (sec)
15% 79372.5 93.86% 1.47
20% 76850.5 93.5% 2.07
40% 69268.3 92.2% 3.85
70% 62789.5 90.14% 53.28
100% 46213.8 48.9% 0.11

algorithm to verify that the optimal solution indeed converges
as the scenario size increases (e.g., see Fig. 4). Policy 3 is
applied and the risk level is set to ε = 10% for comparison.
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Fig. 4. Plotting the Solutions of SAA with Different Scenario Sizes

B. Modified 118-bus System

A modified IEEE 118-bus system, based on the one given
online at motor.ece.iit.edu/data, is used to test the SAA al-
gorithm. We select all the generators that use coal as the
fuel. In total, there are 33 thermal generators. We take all
186 transmission lines and 91 loads. Since there are only 33
generators, we reduce the value of the load at each bus to
ensure the existence of a solution. Additionally, we consider
a wind farm at Bus 3, the risk level ε = 10%, and β = 85%.
The detailed revised 118-bus system data is given online at
cso.ise.ufl.edu/data r118.xls.

We then apply policy 3, and the computational results are
reported in Table IX. The first column represents the com-
bination of iteration numbers (Ŝ,M ) (i.e., iteration numbers
for obtaining the lower bound and for the chance constraint
part), and validation’s scenario size (N ′). The second column
represents the scenario size of the SAA problem. The third
column represents the lower bound obtained by the SAA

algorithm. The fourth column represents the upper bound
obtained by the SAA algorithm. The fifth column represents
the gap which is calculated by UB−LB

LB × 100%. Finally, the
sixth column represents the CPU time of the algorithm.

TABLE IX
COMPUTATIONAL RESULTS FOR THE 118-BUS SYSTEM

(Ŝ ×M,N ′) N LB UB Gap Time (sec)

(5× 5, 1000)
10 470290 477184 1.46% 3.6
50 472839 477210 0.9% 6.75
100 473578 477857 0.9% 10.2

(5× 20, 2000)
10 471994 475233 0.6% 15.8
50 474271 476325 0.4% 25.4
100 474560 477562 0.6% 40.3

(20× 20, 3000)
10 472356 473995 0.34% 64.5
50 474692 476230 0.32% 103.8
100 474701 476125 0.30% 145.8

From Table IX, we can observe that as the iteration number
and the sample size increase, the optimality gap decreases.
For the last case in which the sample size is 100, the iteration
numbers are Ŝ = M = 20, and the validation scenario size
N ′ = 3000, the optimality gap is around 0.30%. That is, the
proposed algorithm converges fast and can solve the problem
effectively.

Finally, we compare the performance between the default
MILP and the strong formulation approaches, and report the
results in Table X. It can be observed from the table that
the strong formulation approach takes much less time than
the default MILP approach when the risk level is not trivial
(e.g., 0 < ε < 100%). The results show the scalability of the
strong formulation approach to solve large-scale problems. It
can also be observed from the table that the optimal objective
value decreases as the risk level increases.

TABLE X
COMPUTATIONAL TIME FOR THE 118-BUS SYSTEM: MILP AND STRONG

FORMULATION

ε N Obj.($) MILP (sec) Strong (sec)

0%
100 477463 0.16 0.16
150 481947 0.2 0.18
200 482059 0.23 0.21

20%
100 472759 8.08 0.3
150 472833 54.16 0.49
200 473072 154.51 0.57

100%
100 468712 0.19 0.21
150 468924 0.21 0.24
200 468883 0.25 0.29

VI. CONCLUSION

In this paper, a chance constrained two-stage stochastic
program considering the uncertain wind power output was
studied. In our approach, the chance constraint guarantees the
minimum usage of the wind power by setting a risk level,
which limits the chance that a large amount of wind power
might be curtailed. We studied three different types of polices
and compared the wind utilizations by these policies. The
results verified that Policy 3 is the most restrictive one. Then,
we studied a combined SAA algorithm that can derive an
optimal solution when the sample size increases. The final
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computational results verify the effectiveness of the proposed
SAA algorithm and the related solution validation process, and
show that the proposed model can help increase the usage of
wind power.
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APPENDIX A
PROOF OF PROPOSITION 1

Convergence proofs for the chance-constrained and the two-
stage stochastic programs have been studied in [16] and [21],
respectively. This paper, however, provides the first proof for
the case that contains both chance-constrained and two-stage
stochastic program features.

In our CCTS program, the samples of the random variable
(wind generation) are used in the approximations for both the
second-stage value and the chance constraint part. Once the
samples are generated, the stochastic problem will become a
deterministic problem. We show in this part that the objective
of the deterministic problem is convergent to that of the
stochastic problem as the scenario size goes to infinity.

Recall that our CCTS program (e.g., the true problem) can
be expressed as follows:

min
∑
b∈BG

T∑
t=1

∑
i∈Λb

(µbiu
b
it + θbi v

b
it + αbio

b
it + Fc(q

b
it))

+

T∑
t=1

γtE[
∑
b∈BW

Sbt (ξ)] (27)

s.t.

(5)− (16)

Pr{G(x, ξ) ≤ 0} ≥ 1− ε
Sbt (ξ) = max{0, q̂bt − wbt(ξ)},∀t,∀ξ,∀b ∈ BW
qbit, q̂

b
t ≥ 0; obit, u

b
it, v

b
it ∈ {0, 1},∀t,∀i,∀b.

Before starting the proof of the convergence, we introduce
the following two approximated models:

(i) Replace the chance-constrained part by the sample
approximation.

min
∑
b∈BG

T∑
t=1

∑
i∈Λb

(µbiu
b
it + θbi v

b
it + αbio

b
it + Fc(q

b
it))

+

T∑
t=1

γtE[
∑
b∈BW

Sbt (ξ)] (28)

s.t.

(5)− (16)

N−1
N∑
j=1

1(0,∞)(G(x, ξj))≤ε

Sbt (ξ) = max{0, q̂bt − wbt(ξ)},∀t,∀ξ,∀b ∈ BW
qbit, q̂

b
t ≥ 0; obit, u

b
it, v

b
it ∈ {0, 1},∀t, ∀i,∀b.

(ii) Replace both the chance-constrained and the second-
stage parts by the sample approximation.

min
∑
b∈BG

T∑
t=1

∑
i∈Λb

(µbiu
b
it + θbi v

b
it + αbio

b
it + Fc(q

b
it))

+N−1
T∑
t=1

N∑
j=1

γt
∑
b∈BW

Sbt (ξ
j) (29)

s.t.

(5)− (16)

N−1
N∑
j=1

1(0,∞)(G(x, ξj))≤ε

q̂bt ≤ wbt(ξj) + Sbt (ξ
j)

(∀t;∀b ∈ BW ; j = 1, 2, . . . , N)

qbit, q̂
b
t , S

b
t (ξ

j) ≥ 0; obit, u
b
it, v

b
it ∈ {0, 1},∀t,∀i,∀b.

Before we give the detailed proof of the proposition, we
show a corollary based on an assumption and Proposition 2
in [16].

Assumption 1: There is an optimal solution x̄ of the true
problem (1) such that for any ν > 0 there is x ∈ X , where X
is the feasible region for the problem, with ‖x− x̄‖ ≤ ν and
q(x) ≤ ε.

Proposition 2: Suppose that the significance levels of the
true and SAA problems are the same (i.e., ε = εN ), the set
X is compact, the function f(x) and decision variables are
continuous, G(x, ξ) is a Caratheodory function, and the above
assumption holds, then θ̂N → θ∗ and D(x̂N , x

∗) → 0 w.p.1
as N →∞.

In Proposition 2, the convergence property holds for the
continuous case. Now we show the convergence property holds
for the mixed integer case in the following corollary.

Corollary 1: For the mix-integer case, suppose the objective
function is f(x, y), where x ∈ X is the set of binary variables,
and y ∈ Y is the set of continuous variables. If X is finite,
and the other assumptions in the above proposition hold, then,
we still have θ̂N → θ∗ and D(x̂N , x

∗)→ 0 w.p.1 as N →∞.
Proof: Let |X| = Γ. We denote the elements of set X in

order: x1, x2, . . . , xΓ. For each fixed xi, we can apply Propo-
sition 2 for continuous variable y and get a corresponding
convergent solution by solving the SAA problem, i.e.,

min{fN (xj , y)} → min{f(xj , y)} ≡ g(xj), (30)

where fN (., .) represents the objective function for the SAA
problem when the sample size is N .

Without loss of generality, we assume

σ = min
1≤i,j≤Γ

‖ g(xi)− g(xj) ‖> 0. (31)

Now let x∗ be the integer part in the optimal solution of
the true problem, and x̂N be the integer part in the optimal
solution of the SAA problem when the sample size is N .
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Based on (30), there exists a large constant number N0 such
that

‖ fN (x̂N , ŷN )− g(x̂N ) ‖< σ

2
(32)

and
‖ fN (x∗, ŷN )− g(x∗) ‖< σ

2
, (33)

when N > N0. Meanwhile, we should have

fN (x∗, ŷN ) ≥ fN (x̂N , ŷN ), (34)

since (x̂N , ŷN ) is the optimal solution for the SAA problem
when the sample size is N .

On the other hand, it is obvious that

g(x̂N ) ≥ g(x∗), (35)

based on the definition of x∗. If x̂N 6= x∗, then based on (34)
and (35),

0 ≤ g(x̂N )−g(x∗) ≤ g(x̂N )−g(x∗)+fN (x∗, ŷN )−fN (x̂N , ŷN ).

Thus

‖ g(x̂N )− g(x∗) ‖
≤‖ g(x̂N )− g(x∗) + fN (x∗, ŷN )− fN (x̂N , ŷN ) ‖
≤‖ g(x̂N )− fN (x̂N , ŷN ) ‖ + ‖ g(x∗)− fN (x∗, ŷN ) ‖
<σ,

where the third inequality follows from (32) and (33). This
contradicts with (31) and the original conclusion holds.

Now we prove our proposition in two steps.
First, we prove that the solution of (29) converges to that of

(28). Notice that (28) is a pure two-stage stochastic program,
where the first stage decision variables are continuous or
discrete and the expectation function in the objective function
is continuous. Based on the conclusion in [21], the SAA of this
problem converges to the true value of the two-stage stochastic
program.

Second, we prove that the solution of (28) converges to that
of (27). It is easy to see that our model satisfies all conditions
in the above corollary. Then, accordingly, the solution of (28)
converges to that of (27).

Therefore, the solution of our SAA problem (29) converges
to that of the true problem (27). The conclusion holds.
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