Chapter 2:

Cost Behavior, Activity Analysis, and Cost Estimation

Agenda

- History of Cost Accounting
- Cost Formulas
- Cost Estimation Techniques
- New School Nonunit-Level Data

1

Cost Accounting

- First developed by General Motors 80 years ago
- Postulates that the total manufacturing cost is the sum of the costs of individual operations
- We've come a long way since then

Why do we care about costs?

3

Δ

- To evaluate past performance
- To predict future performance
- Old-School:
 - Add up the costs
 - Add up the units produced
 - Determine the average cost/unit

Which type of cost would you prefer as manager?

Variable!!!

You're not assessed a charge if you don't produce.

What happens if you abandon a business segment that is made up of fixed costs? Those costs persist ...

(So what good were those goofy graphs?)

 Relevant range: If you sufficiently *contract* your time horizon, the segment of the nonlinear graph will be linear

Suppose the total cost of producing machines					
				is as follows.	
				Number of Machines	Total Cost
1	\$50,000				
2	98,000				
3	144,000				
4	184,000				
5	225,000				
6	270,000				
7	315,000				
8	368,000				
0	423,000				
9	120,000				

Determine the Marginal and Average Cost a				
each Out	put Level:			
Number of				
Machines	Total Cost	Marginal Cost	Average Cost	
1	\$50,000	\$50,000	\$50,000	
2	98,000	48,000	49,000	
3	144,000	46,000	48,000	
4	184,000	40,000	46,000	
5	225,000	41,000	45,000	
6	270,000	45,000	45,000	
7	315,000	45,000	45,000	
8	368,000	53,000	46,000	
9	423,000	55,000	47,000	
10	180,000	57,000	18,000	

(We need a drink)

- Return to Beverage of Your Choice Corp.
- Suppose that the company is approached by a potential customer who would like to buy 200,000 bottles for \$0.75 per bottle. Should you accept or decline?

 It's a "marginal" thing ...

 Incremental revenue (\$0.75 x 200,000 bottles)
 \$150,000

 Incremental cost (\$0.47 x 200,000 bottles)
 (94,000)

 Incremental profit
 \$56,000

 Is it that simple?

 How does capacity level figure into this decision?

 Are there any other ramifications of this pricing policy?

Cannibalization of other higher margin customers

26

Let's recap

- Variable total variable cost varies with number of units produced
- Fixed total fixed cost remains constant regardless of number of units produced

- Estimate the variable portion of the mixed cost as:
 - Variable cost per unit = (High activity cost low activity cost)/(High activity level – low activity level)
- Compute fixed costs based on the estimation of variable cost:
 - Fixed costs = Total costs (variable cost per unit * activity level)
 - You can apply this formula to either the high or low point (assuming fixed costs are constant at both activity levels)

(Draw us a picture ...)
Scatter Diagrams – graph of historical data (cost versus activity level)
Graph points
Fit a straight line (visually)
Choose two points on the line and perform highlow cost analysis

34

(*We're paying tuition and you're teaching us how to draw*?)

- Least Squares Regression Analysis produces a mathematically-derived line (not visual line-fitting) that minimizes the distance between the line and the data points.
 - Uses more data points to produce the line (model will perform better if outliers are eliminated).
 - The intercept of the line is the total fixed cost amount, and the slope of the line is the variable cost per unit.
 - Coefficient of determination (R²) indicates the explanatory power of the fitted line (would like an R² close to 1.00)
 - Can extend simple regression to several activity drivers to arrive a more complex cost and product function.

35

Complicating Factors in Analyzing Cost Data:

- Changing technology
- Changing input prices (goods used in production or delivery of services)
 - All prices are dynamic (i.e., changing frequently at different rates of change)
- Time lags between activity and cost [activity can precede cost (utility bills) or vice versa (operation of a machine]
- Establishing causal links between activity and cost (i.e., units produced and cost of corporate legal department)
 - This becomes more difficult in complex organizations (multi-product, diversification into other industries or geographic areas, etc.)

Customer Cost Hierarchy :

- Unit-level
- Order-level performed for each sales order
- Customer-level performed to obtain and maintain each customer
- Facility-level