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Differential equations (ODE’s) 

  Assumptions 
  large (infinite) populations 
 well-mixed contacts 
 exponential waiting times (memory-less) 

  Continuous treatment of individuals; 
appropriate for: 
 average system behavior 
 population proportions 
 population densities 



Differential equations (ODE’s) 

  Equations describe the change in state 
variables through time 
➙ deterministic progression from a set of initial 

conditions 

  Good for: 
 understanding periodicity in long time series 

for large populations 
 understanding effects of vaccination and 

birth rates on persistence and periodicity 



Model terminology 

  Deterministic 
  Stochastic 

  Continuous time 
  Discrete time 

  Compartmental models 
  Network models 
  Individual-based models 



Model taxonomy 

INTEGER INDIVIDUALS 
Discrete treatment of individuals 

CONTINUOUS APPROXIMATION 
Continuous treatment of individuals 

(averages, proportions, or population densities) 
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•  Ordinary differential equations 

•  Partial differential equations 

DISCRETE TIME 

•  Difference equations 

•  Reed-Frost type models 

CONTINUOUS TIME 

•  Stochastic differential equations 

CONTINUOUS TIME  

•  Gillespie algorithm 

DISCRETE TIME 

•  Binomial chain type models 

 



The Gillespie algorithm 

  Provides an analogue to a system of 
differential equations that treats individuals 
as discrete entities 
  finite, countable populations 
 well-mixed contacts 
 exponential waiting times (memory-less) 
 noise (stochasticity) is introduced by the 

discrete nature of individuals 

  Event-driven simulation 
  Computationally slow 

 especially for large populations 



The Gillespie algorithm 
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The Gillespie algorithm 
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The Gillespie algorithm 

while (I > 0 and time < MAXTIME) 
  Calculate rates 
  Determine time to next event 
  Determine event type 
  Update state variables 
  Update time 

end 



The Gillespie algorithm 

€ 

dS
dt

= −
βS I
N

dI
dt

=
βS I
N

− γ I

dR
dt

= γ I

€ 

(S, I, R) → (S −1, I +1, R) at rate βSI
N

(S, I, R) → (S, I −1, R +1) at rate γI

TRANSMISSION 

RECOVERY 



The Gillespie algorithm 

  Gillespie, DT (1977) Exact stochastic 
simulation of coupled chemical reactions. 
J Phys Chem 81: 2340–2361.  

  Example: 
 http://yushan.mcmaster.ca/theobio/mmed/

index.php/Gillespie 



Model taxonomy 

INTEGER INDIVIDUALS 
Discrete treatment of individuals 

CONTINUOUS APPROXIMATION 
Continuous treatment of individuals 

(averages, proportions, or population densities) 
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•  Ordinary differential equations 

•  Partial differential equations 

DISCRETE TIME 

•  Difference equations 

•  Reed-Frost type models 

CONTINUOUS TIME 

•  Stochastic differential equations 

CONTINUOUS TIME  

•  Gillespie algorithm 

DISCRETE TIME 

•  Binomial chain type models 

 



The Reed-Frost model 

Abbey, H (1952) An examination of the Reed-Frost theory of epidemics. Hum Biol 24: 
201-233. [As quoted in Fine, PEM (1977) Am J Epi 106(2): 87-100.] 



The Reed-Frost model 

  Time unit is roughly time from infection to 
end of infectiousness 

  Generations of cases do not overlap 
  If p=1-q is the probability of any two 

individuals coming into “adequate 
contact” during a time unit, 1-q^C is the 
probability a susceptible individual 
becomes infected during a time unit, so 
the expected number of cases in the next 
time unit is    
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The Reed-Frost model 

  The full set of equations describing the 
deterministic population update is: 

  If N=S+C+R is the total population size, the 
basic reproductive number for this model is 
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Ct+1 = St (1− q
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Rt+1 = Rt +Ct
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R0 = (N −1)(1− q)



The Reed-Frost model 
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Model taxonomy 

INTEGER INDIVIDUALS 
Discrete treatment of individuals 

CONTINUOUS APPROXIMATION 
Continuous treatment of individuals 

(averages, proportions, or population densities) 
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•  Ordinary differential equations 

•  Partial differential equations 

DISCRETE TIME 

•  Difference equations 

•  Reed-Frost type models 

CONTINUOUS TIME 

•  Stochastic differential equations 

CONTINUOUS TIME  

•  Gillespie algorithm 

DISCRETE TIME 

•  Chain binomial type models  



The stochastic R-F model 

  The stochastic formulation of the Reed-
Frost model is a type of chain binomial 
model with non-overlapping generations 

  For small populations (eg, households), 
final size distributions can be calculated 
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The stochastic R-F model 
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Chain binomial models 

  Chain binomial models can also be 
formulated based on the same 
parameters we used in the ODE models 
and with overlapping generations 

  As before, instantaneous hazard of 
infection for a individual susceptible 
individual is 

  For a susceptible at time t, the probability 
of infection by time           is  
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Chain binomial models 

  Similarly, for an infectious individual at time 
t, the probability of recovery by time t+ dt 
is  

  The stochastic population update can 
then be described as 
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Chain binomial models 

  For this model, if D is the average duration 
of infection, the basic reproductive 
number is: 

  Non-generation-based chain binomial 
models can be adapted to include many 
variations on the natural history of infection 

  Discrete-time simulation of chain binomials 
is far more computationally efficient than 
event-driven simulation in continuous time 
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Chain binomial simulation 

while (I > 0 and time < MAXTIME) 
  Calculate transition probabilities 
  Determine number of transitions for each type 

  Update state variables 
  Update time 

end 



Model taxonomy 

INTEGER INDIVIDUALS 
Discrete treatment of individuals 

CONTINUOUS APPROXIMATION 
Continuous treatment of individuals 

(averages, proportions, or population densities) 
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•  Ordinary differential equations 

•  Partial differential equations 
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•  Difference equations 

•  Reed-Frost type models 
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•  Stochastic differential equations 
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•  Gillespie algorithm 

DISCRETE TIME 
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Proposed Topics 

  Day 1: Infectious disease terminology and 
simple ODE models 

  Day 2: Model taxonomy and transmission 
in finite populations 

  Day 3: Contact networks and 
consequences of heterogeneity (?) 

  Day 4: Matching models with data (?) 
  Day 5: Case study – TBD (?) 


