DYNORA: A New Caching Technique

Srivatsan P.

Sudarshan P.B.

Bhaskaran P.P.

Department of Electrical and Electronics Engineering
Sri Venkateswara College of Engineering, Chennai, India
e-mail: srivatsan00 @yahoo.com

Abstract

Cache design for high performance computing requires
the realization of two seemingly disjoint goals of higher
hit ratios at reduced access times. Recent research advo-
cates the use of "resizable” caches to exploit cache require-
ment variability in programs. Existing schemes for resiz-
able caches effectively employ either of the two fundamen-
tally different methods: by changing the cache organization
itself or by using a proper resizing strategy, that is, either
static or dynamic resizing. Our paper looks at a new dy-
namic resizing strategy that aims at run time manipulation
of the cache parameters to improve its performance. Two
algorithms for dynamic reconfiguration are proposed and
the results explained.

1. Introduction

Increasing problem sizes in High Performance Comput-
ing require efficient caching methodologies. Current re-
search is being focused on energy efficient cache architec-
tures ([11,[31,[5],[9]) and new reconfigurable caching tech-
niques ([2],[4],[8]). Since circuit level techniques are not
able to single handedly provide solutions for achieving the
above mentioned ends, higher levels of abstraction namely
Algorithmic and Architectural levels [7] are being looked at
with increasing interest.

Present caching techniques utilize only separate, dedi-
cated, associative-memory hardware structures. This fixed
division of fast memory into separate pieces cannot achieve
efficient fast memory access across all applications. Also,
they do not take advantage of the variations in problem size
for the base design of the cache because of which the end
performance is affected. With the advancements in archi-
tecture over the years, the pattern of memory referencing
has also undergone changes. The incorporation of multi-
threaded parallel processing has resulted in patterns that
have less temporal locality. Multitasking makes the prob-

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

lem worse by interleaving logically unrelated, but possibly
interfering cache accesses. One way to reduce these prob-
lems is the implementation of the brute-force method of in-
creasing the cache size or designing caches with higher as-
sociativities. But already caches are occupying a large frac-
tion of the chip area. A better solution would be seeking of
improved ways of cache utilization. Static Cache partition-
ing is an old idea wherein Instruction and Data caches have
already been split in Harvard architectures. The main dis-
advantage with static partitioning is that it wastes resources
by allocating either too much or too less.

Misses in caches can be classified into four categories:
conflict, compulsory, capacity, and coherence [6]. Conflict
misses are misses that would not occur if the cache was
fully-associative and had LRU replacement. Compulsory
misses will occur in any cache organization because they
are the first references to an instruction or piece of data.
Capacity misses occur when the cache size is not sufficient
to hold data between references. Coherence misses are a re-
sult of invalidation to preserve multiprocessor/multitasked
cache consistency. Even though direct-mapped caches have
more conflict misses due to their lack of associativity, their
performance is still better than set-associative caches when
the access time costs for hits are considered. In fact, the
direct-mapped cache is the only cache configuration where
the critical path is merely the time required to access a
RAM.

One way of reducing the number of capacity and com-
pulsory misses is to use longer cache line sizes or using
hardware prefetching methods. However, line sizes can-
not be made arbitrarily large without increasing the miss
rate and greatly increasing the amount of data to be trans-
ferred. Coherence misses can be effectively reduced by us-
ing a sound placement and replacement policy, wherein the
interleaving of unrelated data is reduced.

In this paper we evaluate the opportunity for a dynamic
resizing strategy (DYNORA) in cache memory architec-
tures. We also propose two hybrid resizing techniques
and compare them with the existing solution for recon-

YF]',F.

COMPUTER

SOCIETY

figurable caches ([5],[2]) with emphasis on what types of
cache misses our scheme will improve. The rest of the paper
is organized as follows. Section 2 gives a brief overview of
conventional performance improvement schemes for caches
and also mentions recent trends in recent research. Section
3 describes DYNORA and aims at explaining our imple-
mentation of Performance-on-Demand caching. Simulation
Results are explained in Section 4 and Section 5 gives a
summary of the paper and describes future work.

2 Improving cache performance by reducing
Cache misses

2.1 Conventional Schemes

Most cache research is concentrated on reducing the
miss rate. Conceptually, conflicts are the easiest to handle:
Fully associative placement avoids all conflict misses, but
is very expensive to implement in hardware. Little can be
done to capacity misses other than to enlarge the cache size.
This reduces thrashing of data between the main memory
and the cache, but since cache memory already occupies a
large percentage of the chip area, this is not feasible always
and the issue of power dissipation comes into the picture.

Importantly, changing one or more cache parameters for
reducing a particular type of miss might have an impact on
performance in case of another type of miss and on the ac-
cess time of the cache itself. Thus any scheme to improve
cache performance should try to achieve a balance between
the various apparently conflicting factors.

Conventionally, the following six techniques are used
to reduce the miss rate in caches. They are: having a
larger block size, implementing higher associativity, using
victim caches, hardware prefetching, compiler-controlled
prefetching and by compiler optimizations. A detailed ex-
planation of these is given in [6].

In addition to reducing miss rate, performance can also
be improved by reducing the cache miss penalty. Perhaps
the most interesting of the techniques for this has been the
idea of adding a second level cache, in between the original
cache and the main memory.

2.2 Recent Advances

Recent trends in improving performance have been fo-
cused mainly on reducing the power dissipation in caches
without affecting its performance [1]. Research has also
been done in trade-offs between the cache parameters. [3]
gives a case study of cache design trade-offs for power
and performance optimizations. Since [5], the focus of re-
search has shifted to run-time reconfiguration methods with
on-demand-performance as the keyword. This paper ex-
plored the concept of sub-array partitioning of set associa-

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

tive caches, both to conserve power and improve perfor-
mance. In [2], an integrated architectural and circuit-level
approach to reducing leakage energy in instruction caches is
explored in detail. At the circuit-level, the DRI i-cache em-
ploys gated-Vq4 to virtually eliminate leakage in the cache’s
unused sections.

The cache parameters can be set either dynamically or
statically. As a first step towards understanding a dynam-
ically resizable cache design, [2] focuses on designs that
statically set the values for the parameters prior to the start
of program execution. Though this paper looks at cache re-
sizing, it is not totally dynamic. Here is where our work
gains significance, as we propose a truly dynamic cache re-
sizing strategy. We proceed to explain our DYNORA (DY-
namic Need Oriented Resource Allocation) concept in the
following sections.

3. DYnamic Need Oriented Resource Alloca-
tion

DYNORA is a new caching technique in which a set of
parameters are used to monitor, react and adapt to changes
in the application that is currently running the cache. Fig-
ure 1 shows a DYNORA cache and its important elements.
We use the miss rate as the most important parameter for
monitoring the cache performance.

Address

.
Translation
Unit

-~ DYNORA
TaTb'e Cache

Cache T T
Controller Size Search
¢ Bound Bound

A A

'

Auxiliary -
Cache

H/M

Figure 1. Anatomy of a DYNORA Cache

It is well known that the range of caches from direct
mapped to fully associative is really a continuum of levels
of set associativity: direct mapped is simply 1-way set as-
sociative and a fully associative cache with m blocks can be
thought of as a m-way set associative cache. Alternatively,
a direct mapped cache may be thought of as having m sets
and a fully associative cache as having just a single set.

YF]',F.

COMPUTER

SOCIETY

A DYNORA cache differs from a conventional cache in
the sense that its associativity is not fixed; that is, it can
vary in between a fixed upper and lower limit. The novelty
is that the upper and lower limits can be preset. Moreover,
in a DYNORA cache, the blocks belonging to a given set
need not be adjacent as in a conventional cache; the set can
contain 'n’ blocks from any location (according to the cur-
rent associativity). This is elucidated in fig. 2 .

Frame no. 0 1 2 3 4 5 6 7

Set 0 Set 1 Set 2 Set 3

Frameno. 0 1 2 3 4 5 6 17

L » Set) =«

Figure 2. Conventional Cache Vs. DYNORA
Cache

With respect to fig. 1, the initial or the starting cache
associativity is preset. The Auxiliary Cache Table (ACT)
maintains information about what is the current cache asso-
ciativity and which blocks in the cache belongs to which set.
We shall explain the significance of this in the forthcoming
paragraphs. The cache is controlled by a Cache Controller
(CC), which forms the interface between the processor and
the cache. The subsystem also contains a search bound and
a size bound that form an integral part in determining the
cache associativity for the next run.

Having thus defined the features of a DYNORA cache,
we now proceed to explain the actual caching process. With
reference to fig. 1, the most important elements of the cache
subsystem are: the cache controller and the auxiliary cache
table. We now present two algorithms, DY-1 and DY-2 ex-
ploiting the new type of cache.

The algorithm for DY-1 is as follows:

Let

nAss = Current Associativity
nCSize = Cache Size
nBSize = Block Size

Algorithm: DY-1 using DYNORA
begin
get nAss,nCSize,nBSize
get Cache Address
decode Address to get tag and index
Start Search at index for tag

if {Hit}
begin
if (nAss # 2)
nAss =nAss/2

end
else
retain ACT
if {Miss}
begin
Search N adjacent sets
if {Hit}
begin
Swap {Current Block, LRU}
if (nAss # nCSize/(2xnBSize))
nAss =nAss 2
end
if {Miss}
begin
if (nAss #nCSize/(2+nBSize))
nAss =nAss 2
end
end

end

DY-1 works as follows: We assume that currently a user
program is running and we investigate the caching opera-
tion. Assume that 'k’ denotes the current associativity and
nCSize and nBSize denote the cache size and the block size
respectively. Once the processor generates the address to be
looked up in the cache, it is fed into the Address Translation
Unit (ATU). The ATU then generates the tag and index for
the cache lookup based on the data in the ACT (the ACT
has information about current cache associativity and what
blocks belongs to which set). Once the address is generated
for lookup and the data is searched for, the Hit/Miss flag
(H/M flag) is set.

Now we propose to reduce the associativity of the cache
by a factor of 2 in case of a hit. But in case of a cache miss,
we proceed to search N nearby blocks, N depending on the
cache size. If the data is found in this search, we propose to

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

swap the block where the search is initiated and the block
where the data is found in the corresponding sets (see fig 2).
This is the major design feature of DYNORA. In case the
search doesn’t result in a hit, a cache miss has occurred and
the main memory is referenced for the data. In case of such
a search-and-miss we propose to increase the associativity
of the cache by a factor of 2.

After every cache access, the ACT is updated by the
Cache Controller and this information is signaled to the pro-
cessor. Of course, this associativity increase/decrease oper-
ation must be done in such a way that the cache neither be-
comes fully associative or direct mapped. The search bound
and the size bound units control the number of blocks to be
searched and upper and lower limits of cache associativity,
respectively.

For programs with large temporal incoherence, we pro-
pose another algorithm closely on the lines of DY-1, but
with a more complex search and replace algorithm.

As seen above, although the associativity of the cache
varies dynamically in DY-1, at any given time it is constant
throughout the cache. Though it may change in the next
cache access, all sections of the cache have the same asso-
ciativity. In DY-2, it is proposed that different sections of
the cache may have different associativities. Our novel idea
that even non-adjacent frames can be part of a set gains im-
portance in this context. If this feature were not available
in a DYNORA cache, then it is impossible to conceptual-
ize different sections of the cache having different associa-
tivities. In the following paragraphs, we present the DY-2
algorithm.

As mentioned previously, in DY-2, different sections of
the cache have different associativities. The ACT, in addi-
tion to maintaining information about which block belong
to which set, should also contain data about which portions
of the cache have what associativities. In DY-2, in case of
a cache hit, the current cache associativity is retained. If
a cache miss occurs, searching is initiated in N adjacent
blocks. If data is found in this search, instead of swapping
(as in DY-1), the associativity of the current index where
the search is initiated is increased so that it now includes N
additional blocks. Once the associativity of the current set
is altered, the blocks near it lose their associativity. These
blocks are dynamically allocated to a new index with the
current associativity. In case of a miss after the search, the
associativity of the cache is increased by a factor of 2 as in
DY-1. Here the block with the largest associativity is not
adjusted; only the other sets are adjusted.

As can be seen, DY-2 is slightly more difficult to imple-
ment than DY-1. This algorithm, if used for normal pro-
grams (i.e. not in a multitasking environment) can lead to
excessive and unheeded cache reconfigurations. This might
lead to excessive power dissipation. Currently we are work-
ing at simulating the DY-2 algorithm.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

Algorithm: DY-2 using DYNORA
begin
get nAss,nCSize,nBSize
get Cache Address
decode Address to get tag and index
Start Search at index for tag

if{Hit}
retain ACT
if{Miss}
begin
Start Search in N adjacent blocks
if{Hit}
begin
calculate nAss + N
Set nAss = nAss + N for given index alone
Start partitioning of remaining blocks
begin
For all possible adj. blocks retain the
current associativity.
Assign all non-adj. blocks for
nAss = k till all possible non-adj.
blocks are assigned.
end
update ACT
end
end
if{Miss}
begin

Set nAss = (k * 2) for blocks other than the
with largest associativity
update ACT
end
end

4. Simulation Results

We modeled a unified cache memory that had the fea-
tures of DYNORA using the C++ programming language.
We used LRU policy for data replacement and write back
on a cache miss. The program computes the average mem-
ory access time based on the model given in [6]. The model
was programmed such that it could also be run as a conven-
tional cache. The program was written to handle the DY-1
caching algorithm. The simulations were done for various
associativities for both conventional and DYNORA cache.
In case of DYNORA cache, this would be the starting asso-
ciativity for the program. The results of the tests are given
in figures 3 and 4. We measured the difference in hit ratio
and access time between a normal and DYNORA cache.

Referring to fig. 3, we see that there is definite increase
in the hit ratio for a DYNORA cache. It can be seen that

block

YF]',F.

COMPUTER

SOCIETY

the comparison is between a normal cache of fixed associa-
tivity and a DYNORA cache of varying associativity. It is
important to note that the DYNORA cache will soon change
its associativity, and the average associativity of the cache
through the entire program, will definitely be more than
that of a normal cache. Though superficially it might seem
that the comparison is void, the significance of DYNORA
comes out only because of this comparison. This is because
DYNORA methodologies try to find out the optimum as-
sociativity for the cache, based on the type of program. It
was found out that the associativity of a DYNORA cache
does not change after a particular limit, and this is reflected
in the graphs. The flat portion towards the end of both the
graphs suggest that the percentage increase in hit ratio and
access time become constant after a particular limit for all
associativities shown.

The significance is that for achieving identical results
with a normal cache, either the associativity or the block
size or the overall cache size has to be increased hugely.
This would be prohibitive from both the energy dissipation
cost point of view. With DYNORA, it is possible to retain
the cache and block sizes but still improve the parameters.

o
o

N
(&)

N
o

%]
o

w
o

Associativity 1
— — - Associativity 2
— - — -~ Associativity 4
— — - Associativity 8

Increase in Hit Ratio (%)
- —_ n N
(4] o (&) o o

o

&

P - P -
500 1000
Cache size (in Kb)

(=1 1 SNEEN FEWEN NENEN FRNEN SRRNN FRRR ARANN KRN N

ol
o
[S]

T -
1500

Figure 3. Impact on Hit Ratio

5. Conclusions

This paper presented two algorithms for run time recon-
figuration of cache parameters using the concept of a Dy-
namic Set Associative Cache (DSAC). Simulated results for
DSAC show very promising improvements in cache param-
eters. The implementation aspects, though not discussed,
would not involve major changes in architecture. The dis-
cussed model will only require an improved cache con-

Proceedings of the Euromicro Symposium on Digital System Design (DSD’03)
0-7695-2003-0/03 $17.00 © 2003 IEEE

Associativity 1
— — - Associativity 2
— - — -~ Associativity 4
— — - Associativity 8

Decrease in Access Time (%)

| T L
500 1000 1500 2000
Cache size (in Kb)

Figure 4. Impact on Access Time

troller and synchronizing schemes, which would be more
economic than just increasing the cache size or designing
caches with increased associativity. These aspects are be-
ing looked at, along with comprehensive simulations for the
proposed DY-1 and DY-2 models. We expect the models
to produce considerable power savings over conventional
caching models. Since the cache power accounts for a large
fraction of processor power dissipation, this outcome is sig-
nificant. We are also working to benchmark the results of
both the algorithms.

References

[1] Falsafi. B., Vijaykumar. T.N., Roy. K., and Powell. M.D. An
integrated circuit/architecture approach to reducing leakage in
deep-submicron high-performance i-caches. In Seventh Inter-
national Symposium on High-Performance Computer Archi-
tecture (HPCA), 2000.

[2] Se-Hyun Yang, Powell. M.D., Falsafi B. and Vijaykumar. T.N.
Exploiting choice in resizable cache design to optimize
deep-submicron processor energy-delay. In Eighth Interna-
tional Symposium on High-Performance Computer Architec-
ture (HPCA), 2001.

[3] Su. C.L. and Despain. A.M. Cache design trade-offs for
power and performance optimization: A case study. In In-
ternational Symposium on Low Power Design, 1995.

[4] Chiou. D., Rudolph. L., Devda. S., and Ang. B.S. Dynamic
cache partitioning via columnization. Memo 430, Computer
Systems Group, Massachusetts Institute of Technology, 2000.

[5] D.H.Albonesi. Selective cache ways: On-demand resource
allocation. In Proceedings of the Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO 32), pages
248-259, 2000.

COMPUTER
SOCIETY

YF]',F.

[6] J. L. Henessey and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
2nd edition, 1996.

[7] Inoue. K. High-Performance Low power Cache Architectures.
PhD thesis, Konshu University, 2000.

[8] Zhang . M. and Asanovik. K. Highly associative caches for
low power processors. In Proceedings of 33rd International
Symposium for Micro Architectures, 2001.

[9] Ko. U., Balsara. P.T, and Mangione-Smith. W.H. Energy op-
timization for multilevel cache architectures for risc and cisc
processors. In Proceedings of the International Symposium
on Low Power Electronics and Design, 1998.

IF]‘,F.
Proceedings of the Euromicro Symposium on Digital System Design (DSD’03) COMPUTER
0-7695-2003-0/03 $17.00 © 2003 IEEE

SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

