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Abstract – Bioinformatics is the application of information 

technology to the field of Biology.  One use of Bioinformatics is the 
efficient comparison of DNA, RNA or protein sequences to 
determine structural or evolutionary similarities. A common method 
for quantifying these similarities is the Smith-Waterman algorithm 
which compares sequence segments of all possible lengths and 
optimizes their similarity measure.  The Smith-Waterman algorithm 
is based on a dynamic programming algorithm and has shown 
substantial performance increases over purely software 
implementations when implemented on FPGA platforms such as the 
Cray XD1. Following the path of previous research, this paper 
chronicles a design created for University of Florida’s Novo-G 
platform which performs the Smith-Waterman algorithm in a 
parallelized fashion to provide sizable speedup when compared to 
software or previous hardware implementations; observed speedups 
of up to 71 times when compared to the Cray XD1 and up to 702 
times when compared to ssearch34 software implementation. 
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I.  INTRODUCTION 
 
n bioinformatics, a sequence alignment is a way of 
arranging the sequences of DNA, RNA, or protein to 
identify regions of similarity that may be a 

consequence of functional, structural, or evolutionary 
relationships between the sequences [7].” Sequence alignment 
techniques are used to help decode the Human Genome as well 
as identifying similarities in viruses and bacterium to help find 
cures for diseases and ailments.  A popular method for 
performing local sequence alignment is the well-known Smith-
Waterman algorithm. The Smith-Waterman algorithm is based 
on a dynamic programming algorithm that breaks down the 
process of sequence alignment into a set of simpler 

s
ub problems. Given database and query sequences, with 
cardinality m and n respectively, m*n scores are calculated 
from the max value of a set of deterministic functions with 
dependence on some of the previously calculated scores.  
These scores are used to populate a (m+1)x(n+1) scoring 
matrix (a scoring matrix example is included in Figure 3).  
The maximum score in the matrix represents the degree to 
which the two sequences match, allowing for quantitative 
comparisons between the calculated scores of different query 
sequences.  The calculation of (m+1)x(n+1) scores leads to 
O(mn) time and space complexity which is not so bad until 
you consider the exponential growth in the size of genetic 
databases over the past decade. Past solutions have been to run 
software implementations on faster and faster processors or to 
supplement the software with hardware accelerators that 
compute the m*n score values partially in parallel.  There has 
been much research in the area of Smith-Waterman application 
acceleration, specifically in the area of FPGA acceleration.  
Continuing this research, a Smith-Waterman sequence 
alignment application, running on the Novo-G platform 
(Figure 1), was designed based on the “Smith-Waterman 
Accelerator” Cray XD1 implementation [1, 2].  The 
requirements for implementing the algorithm are well defined 
and the real problem comes from discovering ways to calculate 
results more rapidly and efficiently. 

“I    
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The Novo-G platform, designed by the NSF Center for 

High-Performance Reconfigurable Computing (CHREC) at the 
University of Florida, is the most powerful reconfigurable 
supercomputer ever fielded in academia.  Novo-G is a server 
cluster featuring 96 high-end StratixIIIE260 accelerator 
FPGAs from Altera housed in 24 quad-FPGA ProcStarIII 
boards (Figure 2) from GiDEL and mounted in SuperMicro 
servers connected with non-blocking DDR InfiniBand or 
20Gb/s Gigabit Ethernet.  More information about Novo-G can 
be found in [9]. 

II.  RELATED RESEARCH 
There are many implementations of the Smith Waterman 

algorithm on FPGA’s.  For research, multiple papers were 
found and read documenting others success.  Of all the designs 
researched, the Cray XD1 approach showed the most promise.  
The XD1 design consists of a linear unidirectional systolic 
array of basic processing elements (PEs) responsible for the 
Smith-Waterman scoring matrix functionality.  Each PE 
compares a query character to a stream of database characters 
along with other parameters to provide a single column of the 
score matrix based on the set of deterministic equations in 
Figure 3.  The PEs are individually loaded with one query 
character per PE and the database is then streamed into the 
first PE, and shifted, one PE at a time, until the entire 
 

 
 
 

database had been processed.  Using an array of PEs allows for 
the diagonals of the score matrix to be calculated 
simultaneously as indicated by the arrows in Figure 4.  If the 
two characters (database and query) match, a specific score is 
given depending on previous scores.  When two characters do 
not match, a “gap” is either opened, or extended in the 
sequence, leading to a reduced score. 

A general Block diagram for the XD1 implementation on 
a single FPGA is found in Figure 5.  The single FPGA design 
utilizes a feedback structure that allows for the extension of 
queries past the physical limit of the number of PEs that can fit 
on a particular FPGA (N).  Since each column directly 
depends on the previous column, in order to extend the query 
length past N, the data from the Nth column must be buffered 
to be used as the initial conditions for the (N+1)th column, 
which is the first column for the second round of calculations.  
This buffering adds a significant amount of latency to the 
design, requiring nearly twice as long to process an (N+1) 
character query as would be required for an N character query.  
Removing this latency was a major design goal for the Novo-
G implementation. 

With this design, the Cray XD1 was able to produce a 
speedup of 10.15 times for a single XilinxXC2VP50 FPGA 
when compared to a purely software implementation 
(ssearch34) run on a single 2.2GHz AMD Opteron CPU [2]. 
The data used in this benchmark is a micro-RNA case; 3685 
query sequences compared with all 24 human genome 
chromosomes, ranging from 50 to 240MBs of characters in 
length. 

Other recent research in the area of Smith-Waterman 
acceleration is the effort of another group working on the 
Novo-G project, Team 3.  Their approach is very similar,  
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except they use Impulse C instead of VHDL to design the 
application.  The benefit of using Impulse C is that it is a 
higher-level language than VHDL, the use of which should 
reduce development time, possible at the cost of performance. 

As our effort was partially based on the design from Cray, 
Team 3 based their approach on a Smith-Waterman design 
from Impulse C.  The basic method used is to store up to 
32KB of query elements in processors, similar to a group of 
PEs, and stream the database through.  Two independent 
streams are used to transfer data; the initialization data and 
score matrices are sent in one stream while the query and 
database data are sent in the other.  Processing blocks consist 
of 32 concurrent hardware processors connected in cascade, of 
which the streams pass through.  Each processor stores 1/32nd 
of the query sequence and computes 1/32nd of the columns in 
the scoring matrix as the database is streamed through them.  
Once the calculations for that query have finished, the next 
query is streamed in and the process repeats.  This is a more 
course grained approach than our VHDL effort.  Team 3 goes 
one step further by also implementing a traceback feature in 
software, which graphically shows how the query and database 
sequences match; this is not implemented in the VHDL design. 

III.  IMPLEMENTATION APPROACH 
In this research the initial approach taken was to recycle 

as much code from the Cray XD1 Implementation discussed in 
[1] and [2] as possible while making Novo-G platform specific 
improvements (with the consent of Cray). After careful 
consideration and deliberation it was decided that the platform 
differences were so severe that any advantages of reusing 
Cray’s existing code were outweighed by the disadvantages of 
modifying the code to run efficiently on Novo-G.  With the 
Cray’s implementation algorithm as an initial starting point, an 
efficient design was conceived to, at the very least, match the 
XD1 performance and in most situations out perform it with 
measured speedups as high as 71. 

Figure 6 is a simple block diagram of the final Novo-G 
Smith-Waterman application hardware for a single FPGA.  

This Figure shows a general structure similar to Cray’s 
implementation structure (Figure 5) with key differences 
introduced to improve performance.  Similarities include the 
use of a large unidirectional linear systolic array of processing 
elements to perform the scoring functionality of the Smith-
Waterman algorithm, the use of a large FIFO to stream in a 
sequence database one character at a time, the loading of each 
processing element with a single query character used to 
calculate a single column of the scoring matrix, etc… Key 
differences include the number of available PE’s that can fit on 
a single FPGA, the elimination of a feedback loop used to 
extend a query past the number of available PE’s in exchange 
for the ability to extend a query across multiple FPGAs, the 
method used to load each PE with the appropriate query 
character, the addition of simple hardware that allows for 
maximum PE utilization during each database stream by 
allowing additional queries to be loaded into unused PE’s, 
etc…  These will be discussed in more detail in the following 
paragraphs. 

The Bulk of hardware resources are dedicated to the 
instantiation of a large systolic array of processing elements 
that when controlled correctly perform the Smith-Waterman 
algorithm.  The PE’s are the single most important element to 
both designs because they are responsible for calculating the 
needed scores.  The PE’s used for the Novo-G platform 
implement the same set of scoring equations used for the XD1 
platform (Figure 3) but do so in a way which is more efficient 
for the Novo-G hardware.  Due to the substantial difference in 
the number of available logic elements in the StratixIIIE260 
compared to the XilinxXC2VP50, it is possible to fit more 
PE’s per FPGA in the Novo-G implementation than the XD1 
implementation; 512 PE’s per FPGA on Novo-G as apposed to 
128 PE’s per FPGA on the XD1.   

During program execution, each processing element 
contains a single query character to use for comparison against 
the entire database string that is streamed through each PE at a 
rate of one character per clock cycle.  The XD1 
implementation loads each PE with a query character by 
reading them from a single Query Ram that is routed to each 
PE and asserting the appropriate load signals at the correct 
time.  In the Novo-G implementation, the query characters are 
popped off the Query FIFO and forwarded to the correct PE by 
shifting through the systolic array the correct number hops.  
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This is facilitated by the passing of a time-to-live value along 
side each character that is passed to the array; when a PE 
receives a character, the time-to-live is compared to zero and 
the PE either forwards the character with a decremented time-
to-live to the next PE if the value is greater than zero or keeps 
the character for itself. 

One limitation of the XD1 implementation is that if a 
short query less than the number of available PEs needs to be 
computed, the computing power of all unused PEs will be 
wasted.  The Novo-G implementation improves upon this by 
adding customized register and mux hardware between each 
set of 32 PEs which allows for the start of a new query or the 
extension of a previous query; this is possible because the only 
thing that differentiate the start of a new query from the 
extension of a previous query is the passing of default score 
values (S(y,0) and H(0) from Figure 3) or previous PE score 
values to the next PE.  By correctly orchestrating numerous 
select lines and the logging of an appropriate subset of 
available max scores (subset of all 16 reported max scores), it 
is possible to run multiple queries at the same time with the 
streaming of a single database.  This allows the Novo-G 
implementation to process up to 16 times more queries in the 
same number of runs as the XD1 implementation under 
optimum conditions. 

Databases are loaded into FPGA memory through the use 
of an asynchronous DMA transfer from the host program.  
When in memory, databases are streamed to the array of PE 
through the use of a sequential ProcMultiPort IP core provided 
with the ProcWizzard software; the multiport places sequential 
blocks of memory from a starting address into a simple FIFO 
which can be popped once per clock cycle after it has been 
filled with enough initial data.  Using ProcMultiPort has a 
great advantage over using a FIFO only because it has the 
ability to be reset to the starting address, causing all data in the 
FIFO to be flushed and loaded with the data from the starting 
address.  Using this allows a single database, loaded from the 
host only once, to be streamed against multiple queries; if this 
reset functionality were not possible (like with the MegaFIFO 
IP core) it would be necessary to transfer MBs of data 
(depending on the size of the database) to load the FIFO on 
every query run greatly increasing the execution time of the 
program.  This partially explains the massive speedup 
observed when running the same case 1 benchmark (explained 
later) on Novo-G and XD1. 

Since the characters compared will only consist of 
characters from the English alphabet, only 26 values need to 
be mapped to the characters meaning only 5bits are needed per 
character rather than the 8bits required for an ASCII character.  
One small benefit to removing these extra bits allows for the 
volume of transmitted data from the host to the FPGA to be 
greatly reduced. The greater benefit comes from the 
elimination of several signals per PE that would otherwise 
need to be routed which carry no useful data; removal of these 
useless signals allows more PEs to fit on a single FPGA.  
There are other situations where the number of characters can 
be reduced to as little as 4 (like with human chromosomes 
where the only characters needed are A, C, G, and T), 
requiring only 2 bits, and greatly increasing performance but it 
was decided that having the capability to run the general case 

was more important in this situation.  A possible solution 
would be to have a separate application that only compares 
with a 4 characters alphabet rather than the 26 character 
alphabet, a solution that would be very easy to implement with 
minimal modifications to the current hardware.  

There are interfaces between the array of PEs and each 
database and query memory module (MultiPort and 
MegaFIFO) that are responsible for retrieving needed 
character data at the correct times by interpreting command 
signals from the host and following a rigid protocol 
implemented with 20 state, state machines.   

The XD1 design utilizes a feedback structure that allows 
for the extension of queries past the physical limit of the 
number of PEs that can fit on a single FPGA by buffering all 
of the last PEs score data to be used as the input to the first PE 
on the next run.  The time required to utilize this feedback 
functionality is orders of magnitude greater than the time that 
would be required if there were enough PEs to process all 
query characters in parallel.  This is a good solution for the 
XD1 because there is no way to increase the number of PEs a 
single FPGA has access to; this is not the case for Novo-G.  
Because each ProcStarIII board has the rather rare quality of 
possessing 4 large FPGAs that are connected with an “adjacent 
FPGA bus” that connects each FPGA to the FPGA’s directly 
adjacent to the left and right, it is possible to extend a query 
across multiple FPGAs effectively increasing the number of 
PEs available to a single FPGA if the situation requires it.  
This is facilitated by adding bus connections (PEGDataIn 
input from the left FPGA and PEGDataOut output to the right 
FPGA in Figure 6) with registers and muxing hardware in the 
same way similar hardware is added between every 32PEs hat 
selects between continuing a query across multiple FPGAs or 
starting a new set of queries.  Extending the query across 
multiple FPGAs implies the streaming of the same database 
across multiple FPGAs and the ability to mux between 
continuing a database or starting a new database. 

Because all of this hardware is the same regardless of 
which FPGA used it is possible to make a single FPGA design 
and load it on all ICs, the manipulation of control signals being 
the only thing that differentiates each FPGA.  There are 
several possibilities of how to control each FPGA individually 
and how to control a group of FPGAs to work collaboratively.  
Each FPGA can be loaded with its own database file or a 
subset can be loaded with database files while the other 
FPGAs continue the database from the previous FPGA; the 
only restriction is that the first FPGA on a board must be 
loaded with a database file (this leads to the possibility of 8 
different database configurations on a board).  The most 
efficient configuration of database files depends on the number 
of databases as well as the batch of query strings that need 
processing.  For example, if all query strings are less than 512 
characters and there are 4 different database files then it would 
be beneficial to schedule each FPGA with its own database 
and a local copy of the batch of query strings so all 4 databases 
are processed at the same time; this situation changes if there 
is even one query string greater than 512 characters causing 
the need for multiple FPGAs and making it more efficient to 
divide the batch of query strings across the same number of 
FPGAs.  Another example would be if there were only 2 
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database files in the example above rather than 4; with only 2 
database files it would be best to divide the query and database 
files across 2 FPGAs which would utilize all of the available 
hardware and finish close to twice as fast as if the database 
files were only scheduled on 2 FPGAs leaving the remaining 2 
FPGAs on the board inactive. Another example would of 
course be if there were only single database files; the best 
course of action would be to extend the database and divide 
the query file across all 4 FPGAs.   

With this many scheduling options, the best performance 
will be observed by analyzing the input files and writing 
custom code to schedule resources.  With the knowledge that 
this is not always desirable, an attempt was made to design 
code that analyzes the query file and number of database files 
to make the following scheduling decisions: 
• If there are any queries longer than 2048, those queries are 

removed from the list and a note is placed in the output 
file saying that the query is too long to process. 

• If there are any queries longer than 1024 and less than 
2048, the queries are divided amongst 4 FPGAs and only 
1 database is scheduled per board. 

• If there are queries longer than 512 and less than 1024, the 
queries are divided amongst 2 FPGAs and 2 databases are 
scheduled per board (IC1&2 and IC3&4). 

• If all queries are less than 512 then the number of 
database files begins to effect scheduling: 

o A single database file leads to the query file 
divided across all 4 FPGAs. 

o A multiple of 2 but not a multiple of 4 database 
files leads to the query file divided across 2 
FPGAs and 2 database files per board.  

o All other situations (odd number or a multiple of 
4) cause the databases and queries to be scheduled 
to a single FPGA.  

It is easy to see how this algorithm is modified to schedule 
on multiple boards.  Any scheduling that would cause multiple 
rounds of database loading from host to FPGA can be broken 
down into a single load to multiple boards.  The only thing that 
distinguishes one board from another would be the names of 
the files it must load.  Because of this it is easy to modify the 
single board code to run on multiple boards by adding MPI 
functionality to pass the names of the scheduled files to the 
appropriate ProcStarIII board. 

IV.  EXPERIMENT 
The experiments performed were separated into two 

separate categories; experiments which test functionality and 
experiments which test performance.  While designing the 
application, the functionality was tested in incremental steps to 
aid in debugging.  The performance tests were used in 
benchmarking to provide an absolute processing time and also 
to providing a direct comparison to a purely software 
implementation (FASTA ssearch34), the Cray XD1 
implementation, and Team 3’s implementations. 

The functionality tests performed were as follows, in 
chronological order: 

• Redesigned PEs tested to verify proper operation of all 
scoring calculations and shifting properties. 

• Small group of PEs were coupled to validate proper PE to 
PE communication, specifically score passing and 
proper shifting. 

• Query character loading and database streaming 
functionality tested for a group of PEs. 

• Gidel’s simple FIFO and MultiPort tested for expected 
operation and interface requirements. 

• Database interface and query interface tested with simple 
FIFO and MultiPort for proper communication and 
serializing of parallel inputs. 

• Memory and interface components connected to a group 
of 32 PEs, were tested with up to 32 character queries 
and relatively small database streams for correct 
scoring and general operation. 

• Number of PEs increased to 512 (max PEs per FPGA) 
• Mid array mux functionality added and tested for correct 

function with up to 16 queries per FPGA. 
• Size of database stream increased up to 32MB, amount 

allowed by Single DMA transfer. 
• Simple test performed to verify expected inter-FPGA 

communication; a large shift register spanning all 4 
FPGAs on a single ProcStarIII board. 

• Smith-Waterman design instantiated on multiple FPGAs 
(up to 4) verifying query extension across FPGA 
interconnects. 

• Above design tested for varying lengths of queries, up to 
2048, and a single streaming database. 

• Above design tested for independent FPGA operation 
using individual databases and different queries of 
lengths up to 512 characters. 

• Multiple instantiations of board design tested using MPI 
to pass a list databases and queries files to each board. 

All of the above tests were performed solely for validating 
the design and debugging.  The importance of these tests for 
debugging purposes was critical.  There were several 
deviations from expected operation discovered during this 
process.  One example is a problem discovered with design of 
the PEs.  After several hundred test query runs it was noticed 
that one of the reported scores was 1 less than the actual score.  
It was later discovered that this was because one ‘and’ gate in 
the PE vhdl file was supposed to be an ‘or’ gate.  Without 
performing these tests several times, the error would never 
have been discovered.  There are were many other situations 
similar to this that have allowed us to say with great 
confidence that most if not all of the errors in the hardware 
design have been discovered and fixed; of coarse the design is 
error free only until the next error is discovered. 

With a properly operating and verified design, 
benchmarking was performed to quantify performance.  Since 
the Novo-G implementation was based on the Cray XD1 
implementation, comparison to the XD1 is natural.  The same 
case 1 benchmark used in [2] was used to compare the designs.  
The case 1 benchmark consists of 3685 queries, all less than 
128 characters long (this means that the feedback functionality 
of the XD1 will never be used), and all 24 human genome 
sequences ranging from 50 to 240MB of characters, 2.9GB in 
its entirety. Since the XD1 implementation does not require 
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the use of its feedback functionality for this benchmark, XD1 
application is running under favorable conditions.  A less 
favorable benchmark for the XD1 implementation but a more 
favorable benchmark for the Novo-G application would be a 
long list of queries ranging in size from 128 to 512 characters; 
this benchmark would cause the XD1 application to use its 
feedback system and still allow for multiple scheduling of 
queries on the Novo-G application.  Since timing data for such 
a benchmark is currently unavailable for the XD1, no such 
comparisons will be made. 

While the above test illustrates how well the Novo-G 
application accelerates versus another FPGA-based Smith-
Waterman hardware accelerator, comparison to a purely 
software implementation is also valuable. For this comparison, 
the software application used for comparison by Cray in the 
XD1 benchmarking was obtained and the same sets of tests 
were run.  The benchmarking Cray used was the FASTA 
ssearch34 application on a single 2.2GHz AMD Opteron 
processor. As it was expected that the Novo-G implementation 
would show speedup over the XD1 implementation and the 
XD1 implementation showed speedup over the software 
implementation, it is only natural to expect the Novo-G 
implementation to outperform the software as well. A more 
fair comparison to a software implementation would be to 
compare the FPGA application to a parallel implementation of 
the software; since a parallel implementation of the software is 
currently unavailable, no such comparisons will be made. 

V.  RESULTS AND ANALYSIS 
Several tests were performed to analyze the performance 

of the Smith-Waterman application on Novo-G.  Table 1 
shows the execution times and speedups for the case 1 
benchmark discussed in [2] with a 2.2GHz AMD Opteron 
processor, the XD1, and Novo-G.  The case 1 benchmark 
required 3685 query sequences searching across all 24 human 
genome chromosomes but certain timing issues caused the 
benchmark to be changed; because running the ssearch34 
software implementation against just the first chromosome (a 
250MB database sequence) took 75 hours, the benchmark was 
modified to just use the first chromosome as a test.  The 
benchmark was run for 1, 2, 3, and 4 FPGAs. 

Though accurate, technically the times shown in Table 1 
for the Novo-G implementation are just simulated because 
there is an issue with the correct DMA transfer of data greater 
than 32MBs.  Under Linux, when trying to transfer a 
contiguous block of host memory greater than 32MBs to 
FPGA memory on a ProcStarIII board, multiple DMA 
transfers are required [10].  As of the time of this paper, 
multiple DMA transfers are possible but the data does not 
arrive as a contiguous chunk on the ProcStarIII board (an 
email has been sent to Gidel on the issue but a response has 
not been received at the time of this paper).  The Novo-G 
Table 1 times were calculated by running the Smith-Waterman 
application with multiple DMA transfers under the assumption 
that the database file is transferred correctly even though it is 
not.  This approach will ultimately produce incorrect scores  

 

   Number of (CPUs/FPGAs) 

   1  2  3  4 

AMD Opteron   75  x  x  x 

XD1  7.39  3.75  2.48  1.91 

Novo‐G  0.1069  0.0528  0.0352  0.0274 

Speedup vs. CPU  701.59  x  x  x 

Speedup vs. XD1  69.13  71.02  70.45  69.70 
Table 1: Hours to Perform Case 1 Benchmark.  Times Provided 
for Novo-G are Average/Simulated Values. 

but will execute in the same amount of time it would take to 
calculate the correct answers.  The times shown are averaged 
execution times of the benchmark run several times. 

The table clearly shows significant speedups over both the 
software and XD1 implementations.  The objective of our 
analysis is to identify and quantify the factors that contribute 
to the speedup achieved on the Novo-G implementation over 
the other tested implementations.   

It is easy to see why the Novo-G implementation beats the 
software implementation when you consider the ssearch34 
code profile from [2] provided in Figure 7.  The figure shows 
98.61% of the entire program execution is spent in the function 
FLOCAL_ALIGN() which is the function responsible for 
calculating the score matrix of the Smith-Waterman local 
sequence alignment algorithm.  This function directly maps to 
the portion of the algorithm that is executed on FPGAs in the 
Novo-G implementation meaning that this function has the 
benefit FPGA acceleration when comparing the 
implementations.  Since this function requires tens of clock 
cycles to calculate a single score in software and each FPGA 
can calculate 512 scores per clock cycle, even at a clock rate 
difference of 2.2GHz to 125MHz (approximately 17 times 
faster), the software function can not compete. 

The speedup obtained against the XD1 implementation is 
a little harder to quantify; some of the speedup can be 
explained by the intended improvements in the Novo-G 
implementations design while some has an unknown origin.  
The first source of speedup comes from the physical size 
difference between the Altera StratixIIIE260 and the Xilinx 
XC2VP50; because the StratixIIIE260 is larger, 512 PEs can 
fit on a single FPGA rather than the 128 PEs in the XD1 
implementation.  Another source of speedup comes from the 
optimization that allows multiple queries to be processed in a 
single run, allowing up to 16 times more queries to be 
processed in the same amount of runs as the XD1 
implementation.  Yet a third source comes from the clock rates 
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of the two designs; the XD1 implementation runs at 200MHz 
but needs 2 clock cycles to calculate a score while the Novo-G 
implementation runs at 125MHz and only needs 1 clock cycle 
to calculate a score.  These sources explain some of the 
speedup but do not explain the observed 70 speedup for a 
single FPGA.   

Where does the rest of the speedup come from?  The exact 
source is unknown.  An email was sent to Dave Strenski at 
Cray to determine possible sources but at the time of this paper 
a reply has not been received.  In this email a few suggestions 
were offered such as the time required to stream a database (it 
is unknown if the XD1 implementation must stream the 
database into the FPGA every run or if it strams the database 
from FPGA memory like the Novo-G implementation) or the 
time to stream a query (XD1 uses a query ram to load PEs but 
Novo-G streams query through PEs from a FIFO).  When a 
reply is received a more accurate analysis can be made. 

In order to produce unsimulated execution times, test 
performance of an MPI implementation, and produce actual 
scores that can be checked for accuracy, an additional test was 
conceived.  96 database files of about 32MB each were run 
with the 3685 query sequences from case 1.  Table 2 shows the 
execution times for this test case run on 1, 2, 4, 8, and 16 
FPGAs.  As of 8/5/09 there are still issues with MPI working 
on Novo-G.  Tests on this date determined that the scheduler is 
not working properly; blocks of 8 processes are scheduled to 
the same node resulting in 7 processes not completing because 
there is only one ProcStarIII board available per node (Rafael 
Garcia knows about the issue and is looking into it).  We were 
able to trick the scheduler into running on two boards by 
setting the number of threads to 9 but this of course left 7/9th of 
the required work undone.  When this issue is fixed the 
experiment can be completed. 

Running this test allows for the reporting of real timing 
data rather than the simulated times reported in Table 1; since 
each database is less than 32MB, a single DMA transfer is all 
that is needed, allowing for the database to be placed into 
FPGA memory in a contiguous chunk.  With a contiguous 
database the application can be run correctly and should 
produce correct scores.  As expected the output files were 
checked for accuracy and scores were reported correctly. 

One final experiment to test the performance of our Novo-
G implementation was to compare performance against Team 
3’s Impulse C implementation. The experiment consisted of 
one 512 length query ran against a single 16MB database; 
16MB because both designs are limited to database lengths of 
32MB due to the previously discussed DMA issue.  The results  

MPI Execution Times 

Boards  Time (seconds) 

1  4329 

2  2330 

4  1094 

8  x 

16  x 
Table 2: Execution Times of MPI implementation 

of this run were 0.5 seconds of useful work (total execution 
time minus constructor time) versus Team 3’s 12 seconds; a 24 
times speedup versus Team 3’s.  Each design has tradeoffs. 
Our VHDL implementation may outperform Team 3’s 
implementation in this situation, but if the query length 
exceeds 2048 characters, Team 3 would dominate because, 
unlike the VHDL implementation, the Impulse C 
implementation can handle up to 32k length queries.  On the 
other hand, if multiple queries were to be ran against the single 
database, our design would show an even greater speedup due 
to the efficient database reset functionality, not implemented in 
Team 3’s design. 

VI.  CONCLUSIONS AND FUTURE WORK 
The effort of this project produced a product with 

respectable increases in speed and flexibility over previous 
implementations.  The data in the results section illustrates  
Novo-G’s power, and the significant speed up which can be 
achieved by parallelizing the Smith-Waterman algorithm on 
such large FPGAs.  The Novo-G implementation was partially 
based on the Cray XD1 implementation and without the efforts 
of Cray, would not be as successful. 

The Novo-G platform is very expensive, but provides 
more computing power than any other reconfigurable platform 
in the known world.  Since the Nov-G platform is a cutting-
edge technology and still being developed, there are 
understandably a few issues.  The MPI, DMA, driver, etc… 
issues will undoubtedly be resolved with future research.     

By extending development on this project, it could be 
improved in many ways; more optimization to produce faster 
run times, variable scoring and traceback functionality, query 
length extension, etc...  Given the time available to develop 
this application, the results are very respectable. 

One of the main sources of slowdown results from the 
software manipulation of the data prior to the FPGA 
processing it.  Experiments have shown that the time required 
for manipulation does not have a linear relationship with the 
length of the data; the time required to manipulate 3685 
queries was nearly ten seconds whereas the time required to 
manipulate 14740 queries was nearly ninety seconds.  One 
possible solution is to assume that all input data would be 
received in a specified format requiring no manipulation.  This 
solution would essentially eliminate this required time in the 
Smith-Waterman application, adding to the achieved speedups. 

The comparison of each character is currently performed 
as a binary operation, ie only two possible outcomes, match or 
mismatch.  The added functionality of a match matrix would 
provide more flexibility.  The match matrix is a matrix of the 
match scores between all possible combinations of the 
characters used in both the query and the database; though no 
mismatches are desirable, some character mismatches are less 
desirable than others.  Implementing this functionality would 
allow the user to specify what score each character comparison 
produces. 

Another feature, which can be added, is the traceback 
feature; traceback pieces the matching characters from the 
query and database together for a graphical representation of 
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the matching.  Traceback can be performed in software, which 
can be implemented in this application, but there is the 
possibility of hardware acceleration for the traceback.  Adding 
this functionality would drastically decrease logic resources 
available for the PEs, ultimately reducing the maximum length 
of processable quires. 

Even though the designed application produces significant 
speedup numbers, it can only process queries of lengths up to 
2048 characters.  In future development, this limit could be 
significantly increased either by implementing a feedback 
system similar to that of Cray’s XD1, or by extending the 
query beyond a single ProcStarIII board.  Neither approach is 
straightforward but each adds flexibility.  It is also possible to 
combine the software implementation with the hardware 
implementation, allowing all queries greater than 2048 to be 
handled in software while the others are handled in hardware; 
with the quad core Xeon E5520 processors available to each 
board it is perfectly plausible to run the hardware on a single 
thread and run multiple software threads processing queries 
larger than 2048. 
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