
TEAM NUMBER 2

1

Smith-Waterman Local Sequence Alignment
Application for Novo-G Platform

Carlo Pascoe, Sunny Gogar, and Matthew Gudwin, Electrical Engineering, University of Florida

Abstract – Bioinformatics is the application of information

technology to the field of Biology. One use of Bioinformatics is the
efficient comparison of DNA, RNA or protein sequences to
determine structural or evolutionary similarities. A common method
for quantifying these similarities is the Smith-Waterman algorithm
which compares sequence segments of all possible lengths and
optimizes their similarity measure. The Smith-Waterman algorithm
is based on a dynamic programming algorithm and has shown
substantial performance increases over purely software
implementations when implemented on FPGA platforms such as the
Cray XD1. Following the path of previous research, this paper
chronicles a design created for University of Florida’s Novo-G
platform which performs the Smith-Waterman algorithm in a
parallelized fashion to provide sizable speedup when compared to
software or previous hardware implementations; observed speedups
of up to 71 times when compared to the Cray XD1 and up to 702
times when compared to ssearch34 software implementation.

TABLE OF CONTENTS
I. INTRODUCTION... 1

II. RELATED RESEARCH ... 2

III. IMPLEMENTATION APPROACH .. 3

IV. EXPERIMENT... 5

V. RESULTS AND ANALYSIS ... 6

VI. CONCLUSIONS AND FUTURE WORK .. 7

VII. REFERENCES ... 8
 

I. INTRODUCTION

n bioinformatics, a sequence alignment is a way of
arranging the sequences of DNA, RNA, or protein to
identify regions of similarity that may be a

consequence of functional, structural, or evolutionary
relationships between the sequences [7].” Sequence alignment
techniques are used to help decode the Human Genome as well
as identifying similarities in viruses and bacterium to help find
cures for diseases and ailments. A popular method for
performing local sequence alignment is the well-known Smith-
Waterman algorithm. The Smith-Waterman algorithm is based
on a dynamic programming algorithm that breaks down the
process of sequence alignment into a set of simpler

s
ub problems. Given database and query sequences, with
cardinality m and n respectively, m*n scores are calculated
from the max value of a set of deterministic functions with
dependence on some of the previously calculated scores.
These scores are used to populate a (m+1)x(n+1) scoring
matrix (a scoring matrix example is included in Figure 3).
The maximum score in the matrix represents the degree to
which the two sequences match, allowing for quantitative
comparisons between the calculated scores of different query
sequences. The calculation of (m+1)x(n+1) scores leads to
O(mn) time and space complexity which is not so bad until
you consider the exponential growth in the size of genetic
databases over the past decade. Past solutions have been to run
software implementations on faster and faster processors or to
supplement the software with hardware accelerators that
compute the m*n score values partially in parallel. There has
been much research in the area of Smith-Waterman application
acceleration, specifically in the area of FPGA acceleration.
Continuing this research, a Smith-Waterman sequence
alignment application, running on the Novo-G platform
(Figure 1), was designed based on the “Smith-Waterman
Accelerator” Cray XD1 implementation [1, 2]. The
requirements for implementing the algorithm are well defined
and the real problem comes from discovering ways to calculate
results more rapidly and efficiently.

“I

TEAM NUMBER 2

2

The Novo-G platform, designed by the NSF Center for

High-Performance Reconfigurable Computing (CHREC) at the
University of Florida, is the most powerful reconfigurable
supercomputer ever fielded in academia. Novo-G is a server
cluster featuring 96 high-end StratixIIIE260 accelerator
FPGAs from Altera housed in 24 quad-FPGA ProcStarIII
boards (Figure 2) from GiDEL and mounted in SuperMicro
servers connected with non-blocking DDR InfiniBand or
20Gb/s Gigabit Ethernet. More information about Novo-G can
be found in [9].

II. RELATED RESEARCH
There are many implementations of the Smith Waterman

algorithm on FPGA’s. For research, multiple papers were
found and read documenting others success. Of all the designs
researched, the Cray XD1 approach showed the most promise.
The XD1 design consists of a linear unidirectional systolic
array of basic processing elements (PEs) responsible for the
Smith-Waterman scoring matrix functionality. Each PE
compares a query character to a stream of database characters
along with other parameters to provide a single column of the
score matrix based on the set of deterministic equations in
Figure 3. The PEs are individually loaded with one query
character per PE and the database is then streamed into the
first PE, and shifted, one PE at a time, until the entire

database had been processed. Using an array of PEs allows for
the diagonals of the score matrix to be calculated
simultaneously as indicated by the arrows in Figure 4. If the
two characters (database and query) match, a specific score is
given depending on previous scores. When two characters do
not match, a “gap” is either opened, or extended in the
sequence, leading to a reduced score.

A general Block diagram for the XD1 implementation on
a single FPGA is found in Figure 5. The single FPGA design
utilizes a feedback structure that allows for the extension of
queries past the physical limit of the number of PEs that can fit
on a particular FPGA (N). Since each column directly
depends on the previous column, in order to extend the query
length past N, the data from the Nth column must be buffered
to be used as the initial conditions for the (N+1)th column,
which is the first column for the second round of calculations.
This buffering adds a significant amount of latency to the
design, requiring nearly twice as long to process an (N+1)
character query as would be required for an N character query.
Removing this latency was a major design goal for the Novo-
G implementation.

With this design, the Cray XD1 was able to produce a
speedup of 10.15 times for a single XilinxXC2VP50 FPGA
when compared to a purely software implementation
(ssearch34) run on a single 2.2GHz AMD Opteron CPU [2].
The data used in this benchmark is a micro-RNA case; 3685
query sequences compared with all 24 human genome
chromosomes, ranging from 50 to 240MBs of characters in
length.

Other recent research in the area of Smith-Waterman
acceleration is the effort of another group working on the
Novo-G project, Team 3. Their approach is very similar,

TEAM NUMBER 2

3

except they use Impulse C instead of VHDL to design the
application. The benefit of using Impulse C is that it is a
higher-level language than VHDL, the use of which should
reduce development time, possible at the cost of performance.

As our effort was partially based on the design from Cray,
Team 3 based their approach on a Smith-Waterman design
from Impulse C. The basic method used is to store up to
32KB of query elements in processors, similar to a group of
PEs, and stream the database through. Two independent
streams are used to transfer data; the initialization data and
score matrices are sent in one stream while the query and
database data are sent in the other. Processing blocks consist
of 32 concurrent hardware processors connected in cascade, of
which the streams pass through. Each processor stores 1/32nd
of the query sequence and computes 1/32nd of the columns in
the scoring matrix as the database is streamed through them.
Once the calculations for that query have finished, the next
query is streamed in and the process repeats. This is a more
course grained approach than our VHDL effort. Team 3 goes
one step further by also implementing a traceback feature in
software, which graphically shows how the query and database
sequences match; this is not implemented in the VHDL design.

III. IMPLEMENTATION APPROACH
In this research the initial approach taken was to recycle

as much code from the Cray XD1 Implementation discussed in
[1] and [2] as possible while making Novo-G platform specific
improvements (with the consent of Cray). After careful
consideration and deliberation it was decided that the platform
differences were so severe that any advantages of reusing
Cray’s existing code were outweighed by the disadvantages of
modifying the code to run efficiently on Novo-G. With the
Cray’s implementation algorithm as an initial starting point, an
efficient design was conceived to, at the very least, match the
XD1 performance and in most situations out perform it with
measured speedups as high as 71.

Figure 6 is a simple block diagram of the final Novo-G
Smith-Waterman application hardware for a single FPGA.

This Figure shows a general structure similar to Cray’s
implementation structure (Figure 5) with key differences
introduced to improve performance. Similarities include the
use of a large unidirectional linear systolic array of processing
elements to perform the scoring functionality of the Smith-
Waterman algorithm, the use of a large FIFO to stream in a
sequence database one character at a time, the loading of each
processing element with a single query character used to
calculate a single column of the scoring matrix, etc… Key
differences include the number of available PE’s that can fit on
a single FPGA, the elimination of a feedback loop used to
extend a query past the number of available PE’s in exchange
for the ability to extend a query across multiple FPGAs, the
method used to load each PE with the appropriate query
character, the addition of simple hardware that allows for
maximum PE utilization during each database stream by
allowing additional queries to be loaded into unused PE’s,
etc… These will be discussed in more detail in the following
paragraphs.

The Bulk of hardware resources are dedicated to the
instantiation of a large systolic array of processing elements
that when controlled correctly perform the Smith-Waterman
algorithm. The PE’s are the single most important element to
both designs because they are responsible for calculating the
needed scores. The PE’s used for the Novo-G platform
implement the same set of scoring equations used for the XD1
platform (Figure 3) but do so in a way which is more efficient
for the Novo-G hardware. Due to the substantial difference in
the number of available logic elements in the StratixIIIE260
compared to the XilinxXC2VP50, it is possible to fit more
PE’s per FPGA in the Novo-G implementation than the XD1
implementation; 512 PE’s per FPGA on Novo-G as apposed to
128 PE’s per FPGA on the XD1.

During program execution, each processing element
contains a single query character to use for comparison against
the entire database string that is streamed through each PE at a
rate of one character per clock cycle. The XD1
implementation loads each PE with a query character by
reading them from a single Query Ram that is routed to each
PE and asserting the appropriate load signals at the correct
time. In the Novo-G implementation, the query characters are
popped off the Query FIFO and forwarded to the correct PE by
shifting through the systolic array the correct number hops.

TEAM NUMBER 2

4

This is facilitated by the passing of a time-to-live value along
side each character that is passed to the array; when a PE
receives a character, the time-to-live is compared to zero and
the PE either forwards the character with a decremented time-
to-live to the next PE if the value is greater than zero or keeps
the character for itself.

One limitation of the XD1 implementation is that if a
short query less than the number of available PEs needs to be
computed, the computing power of all unused PEs will be
wasted. The Novo-G implementation improves upon this by
adding customized register and mux hardware between each
set of 32 PEs which allows for the start of a new query or the
extension of a previous query; this is possible because the only
thing that differentiate the start of a new query from the
extension of a previous query is the passing of default score
values (S(y,0) and H(0) from Figure 3) or previous PE score
values to the next PE. By correctly orchestrating numerous
select lines and the logging of an appropriate subset of
available max scores (subset of all 16 reported max scores), it
is possible to run multiple queries at the same time with the
streaming of a single database. This allows the Novo-G
implementation to process up to 16 times more queries in the
same number of runs as the XD1 implementation under
optimum conditions.

Databases are loaded into FPGA memory through the use
of an asynchronous DMA transfer from the host program.
When in memory, databases are streamed to the array of PE
through the use of a sequential ProcMultiPort IP core provided
with the ProcWizzard software; the multiport places sequential
blocks of memory from a starting address into a simple FIFO
which can be popped once per clock cycle after it has been
filled with enough initial data. Using ProcMultiPort has a
great advantage over using a FIFO only because it has the
ability to be reset to the starting address, causing all data in the
FIFO to be flushed and loaded with the data from the starting
address. Using this allows a single database, loaded from the
host only once, to be streamed against multiple queries; if this
reset functionality were not possible (like with the MegaFIFO
IP core) it would be necessary to transfer MBs of data
(depending on the size of the database) to load the FIFO on
every query run greatly increasing the execution time of the
program. This partially explains the massive speedup
observed when running the same case 1 benchmark (explained
later) on Novo-G and XD1.

Since the characters compared will only consist of
characters from the English alphabet, only 26 values need to
be mapped to the characters meaning only 5bits are needed per
character rather than the 8bits required for an ASCII character.
One small benefit to removing these extra bits allows for the
volume of transmitted data from the host to the FPGA to be
greatly reduced. The greater benefit comes from the
elimination of several signals per PE that would otherwise
need to be routed which carry no useful data; removal of these
useless signals allows more PEs to fit on a single FPGA.
There are other situations where the number of characters can
be reduced to as little as 4 (like with human chromosomes
where the only characters needed are A, C, G, and T),
requiring only 2 bits, and greatly increasing performance but it
was decided that having the capability to run the general case

was more important in this situation. A possible solution
would be to have a separate application that only compares
with a 4 characters alphabet rather than the 26 character
alphabet, a solution that would be very easy to implement with
minimal modifications to the current hardware.

There are interfaces between the array of PEs and each
database and query memory module (MultiPort and
MegaFIFO) that are responsible for retrieving needed
character data at the correct times by interpreting command
signals from the host and following a rigid protocol
implemented with 20 state, state machines.

The XD1 design utilizes a feedback structure that allows
for the extension of queries past the physical limit of the
number of PEs that can fit on a single FPGA by buffering all
of the last PEs score data to be used as the input to the first PE
on the next run. The time required to utilize this feedback
functionality is orders of magnitude greater than the time that
would be required if there were enough PEs to process all
query characters in parallel. This is a good solution for the
XD1 because there is no way to increase the number of PEs a
single FPGA has access to; this is not the case for Novo-G.
Because each ProcStarIII board has the rather rare quality of
possessing 4 large FPGAs that are connected with an “adjacent
FPGA bus” that connects each FPGA to the FPGA’s directly
adjacent to the left and right, it is possible to extend a query
across multiple FPGAs effectively increasing the number of
PEs available to a single FPGA if the situation requires it.
This is facilitated by adding bus connections (PEGDataIn
input from the left FPGA and PEGDataOut output to the right
FPGA in Figure 6) with registers and muxing hardware in the
same way similar hardware is added between every 32PEs hat
selects between continuing a query across multiple FPGAs or
starting a new set of queries. Extending the query across
multiple FPGAs implies the streaming of the same database
across multiple FPGAs and the ability to mux between
continuing a database or starting a new database.

Because all of this hardware is the same regardless of
which FPGA used it is possible to make a single FPGA design
and load it on all ICs, the manipulation of control signals being
the only thing that differentiates each FPGA. There are
several possibilities of how to control each FPGA individually
and how to control a group of FPGAs to work collaboratively.
Each FPGA can be loaded with its own database file or a
subset can be loaded with database files while the other
FPGAs continue the database from the previous FPGA; the
only restriction is that the first FPGA on a board must be
loaded with a database file (this leads to the possibility of 8
different database configurations on a board). The most
efficient configuration of database files depends on the number
of databases as well as the batch of query strings that need
processing. For example, if all query strings are less than 512
characters and there are 4 different database files then it would
be beneficial to schedule each FPGA with its own database
and a local copy of the batch of query strings so all 4 databases
are processed at the same time; this situation changes if there
is even one query string greater than 512 characters causing
the need for multiple FPGAs and making it more efficient to
divide the batch of query strings across the same number of
FPGAs. Another example would be if there were only 2

TEAM NUMBER 2

5

database files in the example above rather than 4; with only 2
database files it would be best to divide the query and database
files across 2 FPGAs which would utilize all of the available
hardware and finish close to twice as fast as if the database
files were only scheduled on 2 FPGAs leaving the remaining 2
FPGAs on the board inactive. Another example would of
course be if there were only single database files; the best
course of action would be to extend the database and divide
the query file across all 4 FPGAs.

With this many scheduling options, the best performance
will be observed by analyzing the input files and writing
custom code to schedule resources. With the knowledge that
this is not always desirable, an attempt was made to design
code that analyzes the query file and number of database files
to make the following scheduling decisions:
• If there are any queries longer than 2048, those queries are

removed from the list and a note is placed in the output
file saying that the query is too long to process.

• If there are any queries longer than 1024 and less than
2048, the queries are divided amongst 4 FPGAs and only
1 database is scheduled per board.

• If there are queries longer than 512 and less than 1024, the
queries are divided amongst 2 FPGAs and 2 databases are
scheduled per board (IC1&2 and IC3&4).

• If all queries are less than 512 then the number of
database files begins to effect scheduling:

o A single database file leads to the query file
divided across all 4 FPGAs.

o A multiple of 2 but not a multiple of 4 database
files leads to the query file divided across 2
FPGAs and 2 database files per board.

o All other situations (odd number or a multiple of
4) cause the databases and queries to be scheduled
to a single FPGA.

It is easy to see how this algorithm is modified to schedule
on multiple boards. Any scheduling that would cause multiple
rounds of database loading from host to FPGA can be broken
down into a single load to multiple boards. The only thing that
distinguishes one board from another would be the names of
the files it must load. Because of this it is easy to modify the
single board code to run on multiple boards by adding MPI
functionality to pass the names of the scheduled files to the
appropriate ProcStarIII board.

IV. EXPERIMENT
The experiments performed were separated into two

separate categories; experiments which test functionality and
experiments which test performance. While designing the
application, the functionality was tested in incremental steps to
aid in debugging. The performance tests were used in
benchmarking to provide an absolute processing time and also
to providing a direct comparison to a purely software
implementation (FASTA ssearch34), the Cray XD1
implementation, and Team 3’s implementations.

The functionality tests performed were as follows, in
chronological order:

• Redesigned PEs tested to verify proper operation of all
scoring calculations and shifting properties.

• Small group of PEs were coupled to validate proper PE to
PE communication, specifically score passing and
proper shifting.

• Query character loading and database streaming
functionality tested for a group of PEs.

• Gidel’s simple FIFO and MultiPort tested for expected
operation and interface requirements.

• Database interface and query interface tested with simple
FIFO and MultiPort for proper communication and
serializing of parallel inputs.

• Memory and interface components connected to a group
of 32 PEs, were tested with up to 32 character queries
and relatively small database streams for correct
scoring and general operation.

• Number of PEs increased to 512 (max PEs per FPGA)
• Mid array mux functionality added and tested for correct

function with up to 16 queries per FPGA.
• Size of database stream increased up to 32MB, amount

allowed by Single DMA transfer.
• Simple test performed to verify expected inter-FPGA

communication; a large shift register spanning all 4
FPGAs on a single ProcStarIII board.

• Smith-Waterman design instantiated on multiple FPGAs
(up to 4) verifying query extension across FPGA
interconnects.

• Above design tested for varying lengths of queries, up to
2048, and a single streaming database.

• Above design tested for independent FPGA operation
using individual databases and different queries of
lengths up to 512 characters.

• Multiple instantiations of board design tested using MPI
to pass a list databases and queries files to each board.

All of the above tests were performed solely for validating
the design and debugging. The importance of these tests for
debugging purposes was critical. There were several
deviations from expected operation discovered during this
process. One example is a problem discovered with design of
the PEs. After several hundred test query runs it was noticed
that one of the reported scores was 1 less than the actual score.
It was later discovered that this was because one ‘and’ gate in
the PE vhdl file was supposed to be an ‘or’ gate. Without
performing these tests several times, the error would never
have been discovered. There are were many other situations
similar to this that have allowed us to say with great
confidence that most if not all of the errors in the hardware
design have been discovered and fixed; of coarse the design is
error free only until the next error is discovered.

With a properly operating and verified design,
benchmarking was performed to quantify performance. Since
the Novo-G implementation was based on the Cray XD1
implementation, comparison to the XD1 is natural. The same
case 1 benchmark used in [2] was used to compare the designs.
The case 1 benchmark consists of 3685 queries, all less than
128 characters long (this means that the feedback functionality
of the XD1 will never be used), and all 24 human genome
sequences ranging from 50 to 240MB of characters, 2.9GB in
its entirety. Since the XD1 implementation does not require

TEAM NUMBER 2

6

the use of its feedback functionality for this benchmark, XD1
application is running under favorable conditions. A less
favorable benchmark for the XD1 implementation but a more
favorable benchmark for the Novo-G application would be a
long list of queries ranging in size from 128 to 512 characters;
this benchmark would cause the XD1 application to use its
feedback system and still allow for multiple scheduling of
queries on the Novo-G application. Since timing data for such
a benchmark is currently unavailable for the XD1, no such
comparisons will be made.

While the above test illustrates how well the Novo-G
application accelerates versus another FPGA-based Smith-
Waterman hardware accelerator, comparison to a purely
software implementation is also valuable. For this comparison,
the software application used for comparison by Cray in the
XD1 benchmarking was obtained and the same sets of tests
were run. The benchmarking Cray used was the FASTA
ssearch34 application on a single 2.2GHz AMD Opteron
processor. As it was expected that the Novo-G implementation
would show speedup over the XD1 implementation and the
XD1 implementation showed speedup over the software
implementation, it is only natural to expect the Novo-G
implementation to outperform the software as well. A more
fair comparison to a software implementation would be to
compare the FPGA application to a parallel implementation of
the software; since a parallel implementation of the software is
currently unavailable, no such comparisons will be made.

V. RESULTS AND ANALYSIS
Several tests were performed to analyze the performance

of the Smith-Waterman application on Novo-G. Table 1
shows the execution times and speedups for the case 1
benchmark discussed in [2] with a 2.2GHz AMD Opteron
processor, the XD1, and Novo-G. The case 1 benchmark
required 3685 query sequences searching across all 24 human
genome chromosomes but certain timing issues caused the
benchmark to be changed; because running the ssearch34
software implementation against just the first chromosome (a
250MB database sequence) took 75 hours, the benchmark was
modified to just use the first chromosome as a test. The
benchmark was run for 1, 2, 3, and 4 FPGAs.

Though accurate, technically the times shown in Table 1
for the Novo-G implementation are just simulated because
there is an issue with the correct DMA transfer of data greater
than 32MBs. Under Linux, when trying to transfer a
contiguous block of host memory greater than 32MBs to
FPGA memory on a ProcStarIII board, multiple DMA
transfers are required [10]. As of the time of this paper,
multiple DMA transfers are possible but the data does not
arrive as a contiguous chunk on the ProcStarIII board (an
email has been sent to Gidel on the issue but a response has
not been received at the time of this paper). The Novo-G
Table 1 times were calculated by running the Smith-Waterman
application with multiple DMA transfers under the assumption
that the database file is transferred correctly even though it is
not. This approach will ultimately produce incorrect scores

   Number of (CPUs/FPGAs) 

   1  2  3  4 

AMD Opteron   75  x  x  x 

XD1  7.39  3.75  2.48  1.91 

Novo‐G  0.1069  0.0528  0.0352  0.0274 

Speedup vs. CPU  701.59  x  x  x 

Speedup vs. XD1  69.13  71.02  70.45  69.70 
Table 1: Hours to Perform Case 1 Benchmark. Times Provided
for Novo-G are Average/Simulated Values.

but will execute in the same amount of time it would take to
calculate the correct answers. The times shown are averaged
execution times of the benchmark run several times.

The table clearly shows significant speedups over both the
software and XD1 implementations. The objective of our
analysis is to identify and quantify the factors that contribute
to the speedup achieved on the Novo-G implementation over
the other tested implementations.

It is easy to see why the Novo-G implementation beats the
software implementation when you consider the ssearch34
code profile from [2] provided in Figure 7. The figure shows
98.61% of the entire program execution is spent in the function
FLOCAL_ALIGN() which is the function responsible for
calculating the score matrix of the Smith-Waterman local
sequence alignment algorithm. This function directly maps to
the portion of the algorithm that is executed on FPGAs in the
Novo-G implementation meaning that this function has the
benefit FPGA acceleration when comparing the
implementations. Since this function requires tens of clock
cycles to calculate a single score in software and each FPGA
can calculate 512 scores per clock cycle, even at a clock rate
difference of 2.2GHz to 125MHz (approximately 17 times
faster), the software function can not compete.

The speedup obtained against the XD1 implementation is
a little harder to quantify; some of the speedup can be
explained by the intended improvements in the Novo-G
implementations design while some has an unknown origin.
The first source of speedup comes from the physical size
difference between the Altera StratixIIIE260 and the Xilinx
XC2VP50; because the StratixIIIE260 is larger, 512 PEs can
fit on a single FPGA rather than the 128 PEs in the XD1
implementation. Another source of speedup comes from the
optimization that allows multiple queries to be processed in a
single run, allowing up to 16 times more queries to be
processed in the same amount of runs as the XD1
implementation. Yet a third source comes from the clock rates

TEAM NUMBER 2

7

of the two designs; the XD1 implementation runs at 200MHz
but needs 2 clock cycles to calculate a score while the Novo-G
implementation runs at 125MHz and only needs 1 clock cycle
to calculate a score. These sources explain some of the
speedup but do not explain the observed 70 speedup for a
single FPGA.

Where does the rest of the speedup come from? The exact
source is unknown. An email was sent to Dave Strenski at
Cray to determine possible sources but at the time of this paper
a reply has not been received. In this email a few suggestions
were offered such as the time required to stream a database (it
is unknown if the XD1 implementation must stream the
database into the FPGA every run or if it strams the database
from FPGA memory like the Novo-G implementation) or the
time to stream a query (XD1 uses a query ram to load PEs but
Novo-G streams query through PEs from a FIFO). When a
reply is received a more accurate analysis can be made.

In order to produce unsimulated execution times, test
performance of an MPI implementation, and produce actual
scores that can be checked for accuracy, an additional test was
conceived. 96 database files of about 32MB each were run
with the 3685 query sequences from case 1. Table 2 shows the
execution times for this test case run on 1, 2, 4, 8, and 16
FPGAs. As of 8/5/09 there are still issues with MPI working
on Novo-G. Tests on this date determined that the scheduler is
not working properly; blocks of 8 processes are scheduled to
the same node resulting in 7 processes not completing because
there is only one ProcStarIII board available per node (Rafael
Garcia knows about the issue and is looking into it). We were
able to trick the scheduler into running on two boards by
setting the number of threads to 9 but this of course left 7/9th of
the required work undone. When this issue is fixed the
experiment can be completed.

Running this test allows for the reporting of real timing
data rather than the simulated times reported in Table 1; since
each database is less than 32MB, a single DMA transfer is all
that is needed, allowing for the database to be placed into
FPGA memory in a contiguous chunk. With a contiguous
database the application can be run correctly and should
produce correct scores. As expected the output files were
checked for accuracy and scores were reported correctly.

One final experiment to test the performance of our Novo-
G implementation was to compare performance against Team
3’s Impulse C implementation. The experiment consisted of
one 512 length query ran against a single 16MB database;
16MB because both designs are limited to database lengths of
32MB due to the previously discussed DMA issue. The results

MPI Execution Times 

Boards  Time (seconds) 

1  4329 

2  2330 

4  1094 

8  x 

16  x 
Table 2: Execution Times of MPI implementation

of this run were 0.5 seconds of useful work (total execution
time minus constructor time) versus Team 3’s 12 seconds; a 24
times speedup versus Team 3’s. Each design has tradeoffs.
Our VHDL implementation may outperform Team 3’s
implementation in this situation, but if the query length
exceeds 2048 characters, Team 3 would dominate because,
unlike the VHDL implementation, the Impulse C
implementation can handle up to 32k length queries. On the
other hand, if multiple queries were to be ran against the single
database, our design would show an even greater speedup due
to the efficient database reset functionality, not implemented in
Team 3’s design.

VI. CONCLUSIONS AND FUTURE WORK
The effort of this project produced a product with

respectable increases in speed and flexibility over previous
implementations. The data in the results section illustrates
Novo-G’s power, and the significant speed up which can be
achieved by parallelizing the Smith-Waterman algorithm on
such large FPGAs. The Novo-G implementation was partially
based on the Cray XD1 implementation and without the efforts
of Cray, would not be as successful.

The Novo-G platform is very expensive, but provides
more computing power than any other reconfigurable platform
in the known world. Since the Nov-G platform is a cutting-
edge technology and still being developed, there are
understandably a few issues. The MPI, DMA, driver, etc…
issues will undoubtedly be resolved with future research.

By extending development on this project, it could be
improved in many ways; more optimization to produce faster
run times, variable scoring and traceback functionality, query
length extension, etc... Given the time available to develop
this application, the results are very respectable.

One of the main sources of slowdown results from the
software manipulation of the data prior to the FPGA
processing it. Experiments have shown that the time required
for manipulation does not have a linear relationship with the
length of the data; the time required to manipulate 3685
queries was nearly ten seconds whereas the time required to
manipulate 14740 queries was nearly ninety seconds. One
possible solution is to assume that all input data would be
received in a specified format requiring no manipulation. This
solution would essentially eliminate this required time in the
Smith-Waterman application, adding to the achieved speedups.

The comparison of each character is currently performed
as a binary operation, ie only two possible outcomes, match or
mismatch. The added functionality of a match matrix would
provide more flexibility. The match matrix is a matrix of the
match scores between all possible combinations of the
characters used in both the query and the database; though no
mismatches are desirable, some character mismatches are less
desirable than others. Implementing this functionality would
allow the user to specify what score each character comparison
produces.

Another feature, which can be added, is the traceback
feature; traceback pieces the matching characters from the
query and database together for a graphical representation of

TEAM NUMBER 2

8

the matching. Traceback can be performed in software, which
can be implemented in this application, but there is the
possibility of hardware acceleration for the traceback. Adding
this functionality would drastically decrease logic resources
available for the PEs, ultimately reducing the maximum length
of processable quires.

Even though the designed application produces significant
speedup numbers, it can only process queries of lengths up to
2048 characters. In future development, this limit could be
significantly increased either by implementing a feedback
system similar to that of Cray’s XD1, or by extending the
query beyond a single ProcStarIII board. Neither approach is
straightforward but each adds flexibility. It is also possible to
combine the software implementation with the hardware
implementation, allowing all queries greater than 2048 to be
handled in software while the others are handled in hardware;
with the quad core Xeon E5520 processors available to each
board it is perfectly plausible to run the hardware on a single
thread and run multiple software threads processing queries
larger than 2048.

VII. REFERENCES
[1] Margerm, S. (n.d.). Cray XD1 Smith Waterman Accelerator (SWA)

FPGA Design.
[2] Strasli, O., Weikuan, Y., Strenki, D., & Malby, J. (May 2007).

Performance Evaluations of FPGA-Based Biological Applications.
Seattle WA: Cray Users Group Preceedings.

[3] H.Y, L., M.L, Y., & Y, C. (2004). A parallel implementation of Smith
Waterman algorithm for massive sequences searching. 26th Annual
International Conference of the Engineering in Medicine Biology
Society (EMBC., vol 2), 2817-2820.

[4] Waterman, T., & Smith, M. (1982). Identification of Common
Molecular Subsequences. Journal of Melecular Biology , 147(1), 195-
197.

[5] Yamaguchi, Y., & Maruyama, T. (2002). High Speed Homology
Search with FPGAs. IPSJ Transactions on High Performance
Computing Systems, 43, 196-205.

[6] Zang, F., Xiang-Zhen, Q., & Zhi-Yong, L. (2002). A Parallel Smith-
Waterman Algorithm Based on Divide and Conquer. IEEE Computer
Society .

[7] BioInformatics. Retrieved from Wikipedia:
http://en.wikipedia.org/wiki/Bioinformatics

[8] Sequence Alignment. Retrieved from Wikipedia:
http://en.wikipedia.org/wiki/Sequence_alignment

[9] Novo-G Info. Retrieved from Novo-G Wiki:
https://novog-wiki.hcs.ufl.edu

[10] ProcstarIII Data Book Version 1. Retrieved from Novo-G Wiki:
https://novog-wiki.hcs.ufl.edu

