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I. INTRODUCTION 

Computational challenges in genomics data mining and 
analysis are an impending roadblock in modern health-sciences 
research, where algorithms for DNA sequence processing grow 
alarmingly in computational needs as datasets from new 
instruments continue to dramatically expand. Reconfigurable 
computers featuring customizable processing devices (e.g. 
FPGAs) hold the key in addressing these challenges with high 
performance, productivity, and sustainability, where the 
architecture adapts to match the unique needs of each application 
instead of vice-versa.  In this paper, we present the novel use of a 
method for incorporating control information into the data stream, 
limiting wasted cycles and increasing hardware utilization. This 
method is described in Section II, and then featured in Section III 
as device-level reconfigurable architectures for in-stream control 
with scalable systolic arrays to accelerate two leading genomics 
applications based upon wavefront algorithms, Needleman-
Wunsch (NW) and Smith-Waterman (SW) [1], and a third 
application, Needle-Distance (ND) [2], an augmentation of NW. 
These architectures are experimentally evaluated on Novo-G, the 
reconfigurable supercomputer in the NSF CHREC Center at 
Florida, where results achieve unprecedented levels of sustained 
performance for these problems. Case-study results are reported in 
Section IV, followed by Section V with summary and conclusions. 

II. SCALABLE  SYSTOLIC ARRAYS WITH IN-STREAM CONTROL 

Control for conventional systolic-array datapaths usually 
consists of a separate centralized controller, many small distributed 
controllers, or combinations of the two. Depending upon the 
complexity of the underlying algorithm, these conventional control 
methods can add significant overhead in terms of both chip area 
(complex state machines, additional control lines, etc.) and 
execution time (non-computational control states, pipeline stalls, 
etc.). In the case of DNA sequence alignment, the simplest design 
of such conventional controllers (i.e. with minimum area 
overhead) can achieve hardware execution time equal to N × 
(setup time + pipeline latency + PE configuration time + time to 
process streamed sequence + time to record results), assuming N 
successive alignments need to be calculated. Given that everything 
except “time to process streamed sequence” is overhead, such a 
controller is immensely inefficient. By contrast, the best possible 
performance from a systolic-array architecture is one that overlaps 
all of the overhead with useful work, achieving hardware 
execution time equal to pipeline latency + N × (time to process 
streamed sequence). This performance is possible using 
conventional methods but at the cost of a complex controller and 
other supporting logic, requiring many small state machines per 
processing element (PE) and many additional counters, registers, 
and control signals, all consuming a large percentage of PE area. 

In the proposed method of in-stream control, we replace 
complex state machines, routed control signals, and supporting 
logic with special control data inserted directly into the input data 
stream. Control words intermixed with application data are used to 

signal state transitions and trigger complex actions on application 
data that follows in the stream. In so doing, we can achieve near-
optimal time performance from a systolic-array architecture 
without a complex controller and the corresponding penalty in 
design complexity and area overhead (i.e. complex-controller 
performance with simple-controller overhead). Understanding that 
this method is not beneficial for all applications, this method is 
proving invaluable for hardware-accelerated implementations of 
sequence-alignment algorithms that are dominant and vital 
components of many genomics and bioinformatics applications. 
For such applications, reduction in controller overhead implies 
more device resources for other important circuitry, such as 
additional PEs, which translates into improved performance. 

III. APPLICATION OF IN-STREAM CONTROL 

FPGA-based sequence alignment accelerators are by no means 
new [3-5] and are commonly implemented as a pipelined, systolic 
array of PEs, each responsible for computing a single column of 
the scoring matrix generated from some form of dynamic 
programming (DP) equations. Figure 1 shows the DP equations 
for Needleman-Wunsch (other algorithms have similar equations). 
By loading each PE with a unique character from one sequence 
(loaded sequence of length X) and streaming another sequence 
(streamed sequence of length Y) through the pipeline one character 
at a time, up to X of the required X×Y scores are calculated 
simultaneously, reducing the O(X×Y) time complexity in software 
to O(X+Y) in hardware. The wavefront aspect of this algorithm 
comes from data dependencies in the DP equations, where 
computation propagates like a wave across the scoring matrix as 
illustrated in Figure 1. Control for these systolic arrays generally 
requires PE configuration (query character load, on/off, correctly 
timed reset of initial conditions, etc.), alignment calculation, result 
recording, and setup for next alignments. In this section, we 
illustrate the proposed method of in-stream control with scalable 
systolic arrays to accelerate three important wavefront applications 
in genomics (NW, SW, ND). 

This work was supported in part by the I/UCRC Program of the National Science Foundation under Grant No. EEC-0642422. 

Figure 1: NW characteristic equations and score matrix  

(for og = -10, eg = -0.5, and Sub(i,j) = 5 on match, -4 on mismatch). 
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A. Needleman-Wunsch (NW) 

Using the standard DNA sequence alphabet (A, C, G, T, N), at 
least three bits are needed for digital encoding, representing five 
data and three unused characters. Our design of the NW 
application (Figure 2) adds a set of three special control characters 
(L, R, P) to the alphabet, replacing the unused values. Without loss 
of generality, these control characters are encoded directly into the 
sequence stream before it is transferred to the FPGA‟s input FIFO 
and provides control information needed to achieve near-optimal 
time performance with less area overhead than conventional 
methods. The design moves towards full hardware automation 
where meaningful results are obtained as a result of the correct 
sequence of data words passing through the systolic array, rather 
than requiring both the correct sequence of data words and the 
correct sequence of control signals from the controller and CPU. 

The first control character „L‟ is used to configure each PE 
with sequence characters. When a particular PE recognizes an „L‟ 
character, it knows that the following sequence in the stream is for 
loading and not comparison. The character „R‟ has multiple roles 
in the control scheme. Its primary role is to reset each PE to its 
initial conditions before each new streaming comparison, but is 
also used to signal the end of a load sequence. Finally, the „P‟ 
character is used to signal the output FIFO interface that the result 
arriving on the previous clock cycle is a result that must be pushed 
onto the FIFO and to signal the end of a comparison sequence. The 
two-character sequence “PN” is used to signal that all comparisons 
have completed and trigger a completion signal to the CPU.  

As an example, consider the following set of short sequences: 
{ACGT, TTG, ACNG, CNTG}. If it is desired to use NW to 
perform pairwise alignment between each unique sequence pair in 
the set (i.e. 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4), the CPU would send 
“LACGTRTTGPRACNGPRCNTGPLTTGRACNGPRCNTGP
LACNGRCNTGPN” to the FPGA with a 3-bit encoding per 
character. After (50 + pipeline length) FPGA clock cycles, the six 
results are ready for retrieval when the CPU has free cycles.  

From this example it is evident that if the same loaded 
sequence is to be used more than once in successive comparisons, 
then it is not necessary to reload PEs after every comparison, and 
streamed sequences can be piped through the array one after 
another. One common limitation to NW designs with simple 
control using conventional methods is that hardware must wait for 
the tail end of each streamed sequence to propagate through the 
last PE before each PE can be reset to initial conditions and the 
next comparison can begin. These wasted clock cycles are 
devastating to performance and leads to idle PEs nearly 50% of the 
time. With introduction of control characters into the stream as 
framing characters for each loaded or streamed sequence, a notion 
of local control is introduced where later PEs in the pipeline 
between an „L‟ and „R‟ can be reconfiguring while simultaneously 
an earlier group between an „R‟ and „P‟ can be processing a query 
while an even earlier group is doing something else. The cost of 
maximizing accelerator performance by limiting PE idle periods 
and reducing configuration overhead between runs is the two extra 
clock cycles per sequence to process the two framing characters, 
which is more than offset by the additional PEs that can be 

implemented due to the reduction in area overhead. 

B. Smith-Waterman (SW) 

The SW design in Figure 3 incorporates the same in-stream 
control methodology as NW described above but provides many 
additional functionalities over NW and therefore requires a more 
complex control scheme (i.e. more than just „L‟, „R‟, and „P‟). 
Additional functionalities include the ability to alternate between a 
FIFO stream from the CPU and a preloaded database stream from 
local SRAM, the ability to load additional sequences into unused 
PEs so that multiple queries can be calculated for a single streamed 
database, the ability to extend a long query across multiple 
FPGAs, and many more. More details on our SW control scheme 
will be given in the presentation. 

C. Needle-Distance (ND) 

The Needle-Distance application has the same systolic 
architecture shown in Figure 2 and is used as an accelerator in 
ESPRIT [2], a metagenomics application designed for 16S rRNA 
sequence data analysis used by dozens of organizations 
worldwide. ESPRIT is a composite application consisting of five 
component applications. Among them, ND is the most time-
consuming by far and is used for computing optimal pairwise 
distance between sequences by first calculating global alignment 
using NW, followed by the quickdist algorithm on the alignment. 
In designing PEs for ND, we recognized that these operations can 
be performed in parallel by simply adding distance calculation 
modules to the PEs of NW. Thus, key parts of ND are the same as 
our NW described earlier, with its in-stream control. More details 
on our ND design and ESPRIT will be given in the presentation. 

IV. EXPERIMENTAL EVALUATION ON NOVO-G 

Novo-G, believed to be the most powerful reconfigurable 
computer ever constructed for academic research, has been 
operational in the NSF CHREC Center at Florida since July 2009. 
Novo-G consists of 24 compute nodes, each housing two GiDEL 
PROCStar-III accelerator boards. Each PROCStar-III contains 
four Altera Stratix-III E260 FPGAs, totaling 192 FPGAs system-
wide, with each FPGA connected to 4.25 GB of dedicated 
memory.  More information on Novo-G can be found at [6]. 

To evaluate performance of our in-stream control technique 
and the potential impact that large-scale RC supercomputers like 
Novo-G can achieve with it, the three previously discussed 
applications were implemented and tested with large data sets on 
multiple nodes of Novo-G. Several factors greatly affect PE area, 
such as equation parameters (Figure 1), dynamic ranges allocated 
for various signals (such as alignment score), or targeted hardware 
frequency, and therefore affect the number of PEs mapped per 
Stratix-III device. To be consistent, the same application-specific 
parameters required of the ND application for integration into 
ESPRIT were imposed on all three designs.  Each of the three 
designs was optimized to fit the largest possible number of PEs per 
FPGA for the chosen configuration, yielding 850 PEs/FPGA for 
NW, 650 for SW, and 450 for ND, all at 125 MHz. The software 
baselines used for comparison with NW and SW are optimized, 
serial codes implemented in C according to standard algorithms 
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Figure 2: Systolic Array for NW and ND (the difference being design of 

the PEs, where ND includes distance modules). 
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from relevant sections in [1] and each achieves ~100 MCUPS on a 
2.4GHz Opteron core running 64-bit Linux, while ND is 
compared with the needledist.cpp code of ESPRIT at [7]. Output 
results from all three hardware-accelerated codes were compared 
with those from the software baselines to confirm correctness. 

In Figure 4, for each application a chart illustrates relative 
design performance for one FPGA under varying input conditions. 
Corresponding tables show how the designs scale when executed 
on varying number of FPGAs. For the NW and ND designs, the 
most influential factors affecting performance are the average 
sequence length, which determines how many PEs are used for a 
particular comparison, and total number of comparisons, which 
determines how much software overhead such as DMA transfers 
is overlapped with FPGA execution. As expected, increasing 
hardware utilization by increasing the number of PEs in use (i.e. 
increasing sequence length) and hiding overhead by overlapping it 
with useful work (i.e. increasing number of comparisons) leads to 
best performance – speedups of ~830 per FPGA for NW and 
~3100 per FPGA for ND, as shown in the respective contour plots. 

In SW, depending on the database size, there are orders of 
magnitude more computation per comparison when compared to 
NW and ND, allowing software overhead to become hidden even 
for a relatively small number of comparisons, and as such database 
size becomes a more important factor in performance. The effect 
of average sequence length on performance is visibly different and 
is attributed to the aforementioned functionality that allows 
additional queries to be loaded into unused PEs for comparison 
with a single streamed database. Optimal performance of ~830 
speedup per FPGA occurs when multiple queries fit in the array 
exactly without any unused PEs (i.e. query sizes 650, 325, … for 1 
FPGA, or 1300, 650, … streamed across two FPGAs, etc.). Worst 
performance occurs when multiple queries do not fit in the array 
exactly and in such a way that maximizes the number of unused 
PEs (e.g. query size of 326 for 1 FPGA, or 651 streamed across 
two FPGAs, etc.). When sequence lengths are not held constant for 
successive comparisons, load-balancing techniques can be 
employed and this saw-tooth effect is less pronounced.  

As for the multi-FPGA studies, these applications are 
completely independent across runs and as such are completely 
scalable given a sufficiently large dataset. Using a combination of 
scripting and MPI for inter-node coordination, the three 
applications were executed on up to 128 FPGAs (i.e. 16 Novo-G 
nodes with 8 FPGAs/node) and used to estimate performance on 
all 192 FPGAs in Novo-G. The tables show optimal performance 
when there are no unused PEs per run and there is sufficient 
hardware calculation to hide software overhead.  

V. SUMMARY AND CONCLUSIONS 

As shown in Figure 4 with SW, measured speedup peaked at 
3,307 (and at 3,304 with NW) on a single Novo-G node using only 
one board with four FPGAs, as compared to software on a 2.4 
GHz Opteron core. Thus, on a conventional HPC machine (even 
assuming no overhead), 3,307 of these Opteron cores working in 
parallel would be required to perform the same amount of work in 
the same period of time as half of a single Novo-G node. For the 
ND application, experimental results show speedup on a single 
FPGA in Novo-G in excess of 3,100 and exceeding 356,000 with 
128 FPGAs.  Projected speedup when employing all 192 FPGAs 
exceeds 545,000, which is comparable to running the same 
application on over 545,000 Opteron cores in a conventional 
supercomputer. To put this into perspective, the two most massive, 
expensive, and power-hungry machines cited at www.top500.org 
in May 2010 (Jaguar at ORNL and Roadrunner at LANL) have a 
combined approximate total of 346,000 cores.  

Reconfigurable supercomputing, with scalable RC systems 
featuring many leading-edge FPGAs configurable specifically for 
high-intensity data processing for each application, holds the key 
to address escalating computational demands in genomics data 
mining and analysis with high performance, productivity, and 
sustainability. In this paper, we presented novel use of a method 
for in-stream control with scalable systolic arrays to accelerate a 
class of genomics applications, limiting wasted cycles and 
increasing hardware utilization. Combined with the computational 
power of the Novo-G machine, realization of this method to 
accelerate important genomics applications was demonstrated with 
unprecedented levels of sustained performance. 
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Baseline: 192∙225, length 850 Sequence Comparisons 

Software Runtime: 11,026 CPU∙hours on 2.4GHz Opteron 
 

Baseline: Human X Chromosome v 19200, length 650 Seqs 

Software Runtime: 5,481 CPU∙hours on 2.4GHz Opteron 
 

Baseline: 192∙224, length 450 Distance Calculations 

Software Runtime: 11,673 CPU∙hours on 2.4GHz Opteron 

# FPGAs Runtime (sec) Speedup  # FPGAs Runtime (sec) Speedup  # FPGAs Runtime (sec) Speedup 

1 47,616 833  1 23,846 827  1 13,522 3,108 
4 12,014 3,304  4 5,966 3,307  4 3,429 12,255 

96 503 78,914  96 250 78,926  96 144 291,825 

128 391 101,518  128 188 104,955  128 118 356,125 
192 (est.) 270 147,013  192 (est.) 127 155,366  192 (est.) 77 545,751 

Figure 4: Results on Novo-G for NW (left), SW (Center), and ND (Right). Each chart illustrates performance of a single FPGA under varying input 

conditions. Each table shows scaling performance with varying number of FPGAs under optimal input conditions. 
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