
Reconfigurable Supercomputing with Scalable Systolic Arrays and

In-Stream Control for Wavefront Genomics Processing

C. Pascoe, A. Lawande, H. Lam, A. George

NSF Center for High-Performance

Reconfigurable Computing (CHREC)

University of Florida

Y. Sun, W. Farmerie

Interdisciplinary Center for

Biotechnology Research (ICBR)

University of Florida

M. Herbordt

Department of Electrical and

Computer Engineering

Boston University

I. INTRODUCTION

Computational challenges in genomics data mining and
analysis are an impending roadblock in modern health-sciences
research, where algorithms for DNA sequence processing grow
alarmingly in computational needs as datasets from new
instruments continue to dramatically expand. Reconfigurable
computers featuring customizable processing devices (e.g.
FPGAs) hold the key in addressing these challenges with high
performance, productivity, and sustainability, where the
architecture adapts to match the unique needs of each application
instead of vice-versa. In this paper, we present the novel use of a
method for incorporating control information into the data stream,
limiting wasted cycles and increasing hardware utilization. This
method is described in Section II, and then featured in Section III
as device-level reconfigurable architectures for in-stream control
with scalable systolic arrays to accelerate two leading genomics
applications based upon wavefront algorithms, Needleman-
Wunsch (NW) and Smith-Waterman (SW) [1], and a third
application, Needle-Distance (ND) [2], an augmentation of NW.
These architectures are experimentally evaluated on Novo-G, the
reconfigurable supercomputer in the NSF CHREC Center at
Florida, where results achieve unprecedented levels of sustained
performance for these problems. Case-study results are reported in
Section IV, followed by Section V with summary and conclusions.

II. SCALABLE SYSTOLIC ARRAYS WITH IN-STREAM CONTROL

Control for conventional systolic-array datapaths usually
consists of a separate centralized controller, many small distributed
controllers, or combinations of the two. Depending upon the
complexity of the underlying algorithm, these conventional control
methods can add significant overhead in terms of both chip area
(complex state machines, additional control lines, etc.) and
execution time (non-computational control states, pipeline stalls,
etc.). In the case of DNA sequence alignment, the simplest design
of such conventional controllers (i.e. with minimum area
overhead) can achieve hardware execution time equal to N ×
(setup time + pipeline latency + PE configuration time + time to
process streamed sequence + time to record results), assuming N
successive alignments need to be calculated. Given that everything
except “time to process streamed sequence” is overhead, such a
controller is immensely inefficient. By contrast, the best possible
performance from a systolic-array architecture is one that overlaps
all of the overhead with useful work, achieving hardware
execution time equal to pipeline latency + N × (time to process
streamed sequence). This performance is possible using
conventional methods but at the cost of a complex controller and
other supporting logic, requiring many small state machines per
processing element (PE) and many additional counters, registers,
and control signals, all consuming a large percentage of PE area.

In the proposed method of in-stream control, we replace
complex state machines, routed control signals, and supporting
logic with special control data inserted directly into the input data
stream. Control words intermixed with application data are used to

signal state transitions and trigger complex actions on application
data that follows in the stream. In so doing, we can achieve near-
optimal time performance from a systolic-array architecture
without a complex controller and the corresponding penalty in
design complexity and area overhead (i.e. complex-controller
performance with simple-controller overhead). Understanding that
this method is not beneficial for all applications, this method is
proving invaluable for hardware-accelerated implementations of
sequence-alignment algorithms that are dominant and vital
components of many genomics and bioinformatics applications.
For such applications, reduction in controller overhead implies
more device resources for other important circuitry, such as
additional PEs, which translates into improved performance.

III. APPLICATION OF IN-STREAM CONTROL

FPGA-based sequence alignment accelerators are by no means
new [3-5] and are commonly implemented as a pipelined, systolic
array of PEs, each responsible for computing a single column of
the scoring matrix generated from some form of dynamic
programming (DP) equations. Figure 1 shows the DP equations
for Needleman-Wunsch (other algorithms have similar equations).
By loading each PE with a unique character from one sequence
(loaded sequence of length X) and streaming another sequence
(streamed sequence of length Y) through the pipeline one character
at a time, up to X of the required X×Y scores are calculated
simultaneously, reducing the O(X×Y) time complexity in software
to O(X+Y) in hardware. The wavefront aspect of this algorithm
comes from data dependencies in the DP equations, where
computation propagates like a wave across the scoring matrix as
illustrated in Figure 1. Control for these systolic arrays generally
requires PE configuration (query character load, on/off, correctly
timed reset of initial conditions, etc.), alignment calculation, result
recording, and setup for next alignments. In this section, we
illustrate the proposed method of in-stream control with scalable
systolic arrays to accelerate three important wavefront applications
in genomics (NW, SW, ND).

This work was supported in part by the I/UCRC Program of the National Science Foundation under Grant No. EEC-0642422.

Figure 1: NW characteristic equations and score matrix

(for og = -10, eg = -0.5, and Sub(i,j) = 5 on match, -4 on mismatch).

max1,max1

)1,(

)1,(

),1(

),1(

),()1,1(

max),(

jjiifor

ejiV

eogjiS

ejiH

eogjiS

jiSubjiS

jiS









































matrixpenaltyjiSub

ogiViH

egiogiSiS

egjiV

ogjiS
jiV

egjiH

ogjiS
jiH

































),(

)0,(),0(

)0,(),0(

)1,(

)1,(
max),(

),1(

),1(
max),(

A T A … A

A

G

G

…

C

0 -1 0 -1 0 .5 -1 1 … S (im a x ,0)

-1 0 5 -5 -5 .5 …

-1 0 .5 -5 -1 -9

-1 1 -5 .5 -9

… …

M a x

S (0 , jm a x) S (im a x , jm a x)

S
(i-1

, j-1
) +

 S
u
b
(i, j)

}

}

}

 S
(i

,j
-1

)
+

 e
o

g

S (i-1 , j) + e o g

 H (i-1 , j) + e

 V
(i

,j
-1

)
+

 e

C o m p u ta t io n o f C e ll S c o re

E
x
p

lo
it

 P
a
ra

ll
e
li
s
m

 a
lo

n
g

 A
n

ti
-d

ia
g

o
n

a
l

A. Needleman-Wunsch (NW)

Using the standard DNA sequence alphabet (A, C, G, T, N), at
least three bits are needed for digital encoding, representing five
data and three unused characters. Our design of the NW
application (Figure 2) adds a set of three special control characters
(L, R, P) to the alphabet, replacing the unused values. Without loss
of generality, these control characters are encoded directly into the
sequence stream before it is transferred to the FPGA‟s input FIFO
and provides control information needed to achieve near-optimal
time performance with less area overhead than conventional
methods. The design moves towards full hardware automation
where meaningful results are obtained as a result of the correct
sequence of data words passing through the systolic array, rather
than requiring both the correct sequence of data words and the
correct sequence of control signals from the controller and CPU.

The first control character „L‟ is used to configure each PE
with sequence characters. When a particular PE recognizes an „L‟
character, it knows that the following sequence in the stream is for
loading and not comparison. The character „R‟ has multiple roles
in the control scheme. Its primary role is to reset each PE to its
initial conditions before each new streaming comparison, but is
also used to signal the end of a load sequence. Finally, the „P‟
character is used to signal the output FIFO interface that the result
arriving on the previous clock cycle is a result that must be pushed
onto the FIFO and to signal the end of a comparison sequence. The
two-character sequence “PN” is used to signal that all comparisons
have completed and trigger a completion signal to the CPU.

As an example, consider the following set of short sequences:
{ACGT, TTG, ACNG, CNTG}. If it is desired to use NW to
perform pairwise alignment between each unique sequence pair in
the set (i.e. 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4), the CPU would send
“LACGTRTTGPRACNGPRCNTGPLTTGRACNGPRCNTGP
LACNGRCNTGPN” to the FPGA with a 3-bit encoding per
character. After (50 + pipeline length) FPGA clock cycles, the six
results are ready for retrieval when the CPU has free cycles.

From this example it is evident that if the same loaded
sequence is to be used more than once in successive comparisons,
then it is not necessary to reload PEs after every comparison, and
streamed sequences can be piped through the array one after
another. One common limitation to NW designs with simple
control using conventional methods is that hardware must wait for
the tail end of each streamed sequence to propagate through the
last PE before each PE can be reset to initial conditions and the
next comparison can begin. These wasted clock cycles are
devastating to performance and leads to idle PEs nearly 50% of the
time. With introduction of control characters into the stream as
framing characters for each loaded or streamed sequence, a notion
of local control is introduced where later PEs in the pipeline
between an „L‟ and „R‟ can be reconfiguring while simultaneously
an earlier group between an „R‟ and „P‟ can be processing a query
while an even earlier group is doing something else. The cost of
maximizing accelerator performance by limiting PE idle periods
and reducing configuration overhead between runs is the two extra
clock cycles per sequence to process the two framing characters,
which is more than offset by the additional PEs that can be

implemented due to the reduction in area overhead.

B. Smith-Waterman (SW)

The SW design in Figure 3 incorporates the same in-stream
control methodology as NW described above but provides many
additional functionalities over NW and therefore requires a more
complex control scheme (i.e. more than just „L‟, „R‟, and „P‟).
Additional functionalities include the ability to alternate between a
FIFO stream from the CPU and a preloaded database stream from
local SRAM, the ability to load additional sequences into unused
PEs so that multiple queries can be calculated for a single streamed
database, the ability to extend a long query across multiple
FPGAs, and many more. More details on our SW control scheme
will be given in the presentation.

C. Needle-Distance (ND)

The Needle-Distance application has the same systolic
architecture shown in Figure 2 and is used as an accelerator in
ESPRIT [2], a metagenomics application designed for 16S rRNA
sequence data analysis used by dozens of organizations
worldwide. ESPRIT is a composite application consisting of five
component applications. Among them, ND is the most time-
consuming by far and is used for computing optimal pairwise
distance between sequences by first calculating global alignment
using NW, followed by the quickdist algorithm on the alignment.
In designing PEs for ND, we recognized that these operations can
be performed in parallel by simply adding distance calculation
modules to the PEs of NW. Thus, key parts of ND are the same as
our NW described earlier, with its in-stream control. More details
on our ND design and ESPRIT will be given in the presentation.

IV. EXPERIMENTAL EVALUATION ON NOVO-G

Novo-G, believed to be the most powerful reconfigurable
computer ever constructed for academic research, has been
operational in the NSF CHREC Center at Florida since July 2009.
Novo-G consists of 24 compute nodes, each housing two GiDEL
PROCStar-III accelerator boards. Each PROCStar-III contains
four Altera Stratix-III E260 FPGAs, totaling 192 FPGAs system-
wide, with each FPGA connected to 4.25 GB of dedicated
memory. More information on Novo-G can be found at [6].

To evaluate performance of our in-stream control technique
and the potential impact that large-scale RC supercomputers like
Novo-G can achieve with it, the three previously discussed
applications were implemented and tested with large data sets on
multiple nodes of Novo-G. Several factors greatly affect PE area,
such as equation parameters (Figure 1), dynamic ranges allocated
for various signals (such as alignment score), or targeted hardware
frequency, and therefore affect the number of PEs mapped per
Stratix-III device. To be consistent, the same application-specific
parameters required of the ND application for integration into
ESPRIT were imposed on all three designs. Each of the three
designs was optimized to fit the largest possible number of PEs per
FPGA for the chosen configuration, yielding 850 PEs/FPGA for
NW, 650 for SW, and 450 for ND, all at 125 MHz. The software
baselines used for comparison with NW and SW are optimized,
serial codes implemented in C according to standard algorithms

F IF O
In p u t

F IF O

In te r fa c e

P E (1) P E (2) P E (3)

F IF O
O u tp u t

F IF O

In te r fa c e P E (N) P E (N -1) P E (N -2)

P E (4)P E (5)P E (6)
G o

D o n e

T i- 1

E i -1 E i

T i

E d i t D i s ta n c e

A l ig n m e n t L e n g thH T i-1

H E i- 1 H E i

H T i

I n i t .

V i(P E i)

In i t .

S i(P E i)

C ha r a cte r S tr e a m

3

Q C

||

H iH i -1

S i- 1

>

V i

>

S i>

+ 1 0

-8

- 2 0

- 1

3

Q u e r y

C h a r a cte r

H i

S i

A l ig n m e n t S c o re
I n it .

H i(P E i)

S C

L o a d (L ,P E i)

R e s e t (L ,P E i)

+

+

+

+

+

- 1

-2 0

S i D S i

D S i- 1

Figure 2: Systolic Array for NW and ND (the difference being design of

the PEs, where ND includes distance modules).

T o N e x t

F P G A

F IF O

In p u t

F IF O

In te r fa c e

P E (1) P E (2) P E (N)

F IF O

O u tp u t

F IF O

In te r fa c e

G o

S R A M

(D a ta b a s e)

In p u t

B u ffe r

F ro m P re v .

F P G A

O u tp u t

B u ffe r

D o n e

>
M a x i- 1

F r.

M a x

> M a x

M a x i

I n i t .

V i(P E i)

I n it .

S i(P E i)

C h a ra cte r S tre a m

4

Q C

||

H iH i -1

S i- 1

>

V i

>

S i>

+ 1 0

-8

- 2 0

- 1

4

Q u e r y

C h a r a cte r

H i

S i

P ro c e s s in g E le m e n t
In i t .

H i(P E i)

S C

L o a d (L ,P E i)

R e s e t (L ,P E i)

+

+

+

+

+

- 1

-2 0

S i D S i

D S i- 1

Figure 3: Systolic Array for Smith-Waterman.

from relevant sections in [1] and each achieves ~100 MCUPS on a
2.4GHz Opteron core running 64-bit Linux, while ND is
compared with the needledist.cpp code of ESPRIT at [7]. Output
results from all three hardware-accelerated codes were compared
with those from the software baselines to confirm correctness.

In Figure 4, for each application a chart illustrates relative
design performance for one FPGA under varying input conditions.
Corresponding tables show how the designs scale when executed
on varying number of FPGAs. For the NW and ND designs, the
most influential factors affecting performance are the average
sequence length, which determines how many PEs are used for a
particular comparison, and total number of comparisons, which
determines how much software overhead such as DMA transfers
is overlapped with FPGA execution. As expected, increasing
hardware utilization by increasing the number of PEs in use (i.e.
increasing sequence length) and hiding overhead by overlapping it
with useful work (i.e. increasing number of comparisons) leads to
best performance – speedups of ~830 per FPGA for NW and
~3100 per FPGA for ND, as shown in the respective contour plots.

In SW, depending on the database size, there are orders of
magnitude more computation per comparison when compared to
NW and ND, allowing software overhead to become hidden even
for a relatively small number of comparisons, and as such database
size becomes a more important factor in performance. The effect
of average sequence length on performance is visibly different and
is attributed to the aforementioned functionality that allows
additional queries to be loaded into unused PEs for comparison
with a single streamed database. Optimal performance of ~830
speedup per FPGA occurs when multiple queries fit in the array
exactly without any unused PEs (i.e. query sizes 650, 325, … for 1
FPGA, or 1300, 650, … streamed across two FPGAs, etc.). Worst
performance occurs when multiple queries do not fit in the array
exactly and in such a way that maximizes the number of unused
PEs (e.g. query size of 326 for 1 FPGA, or 651 streamed across
two FPGAs, etc.). When sequence lengths are not held constant for
successive comparisons, load-balancing techniques can be
employed and this saw-tooth effect is less pronounced.

As for the multi-FPGA studies, these applications are
completely independent across runs and as such are completely
scalable given a sufficiently large dataset. Using a combination of
scripting and MPI for inter-node coordination, the three
applications were executed on up to 128 FPGAs (i.e. 16 Novo-G
nodes with 8 FPGAs/node) and used to estimate performance on
all 192 FPGAs in Novo-G. The tables show optimal performance
when there are no unused PEs per run and there is sufficient
hardware calculation to hide software overhead.

V. SUMMARY AND CONCLUSIONS

As shown in Figure 4 with SW, measured speedup peaked at
3,307 (and at 3,304 with NW) on a single Novo-G node using only
one board with four FPGAs, as compared to software on a 2.4
GHz Opteron core. Thus, on a conventional HPC machine (even
assuming no overhead), 3,307 of these Opteron cores working in
parallel would be required to perform the same amount of work in
the same period of time as half of a single Novo-G node. For the
ND application, experimental results show speedup on a single
FPGA in Novo-G in excess of 3,100 and exceeding 356,000 with
128 FPGAs. Projected speedup when employing all 192 FPGAs
exceeds 545,000, which is comparable to running the same
application on over 545,000 Opteron cores in a conventional
supercomputer. To put this into perspective, the two most massive,
expensive, and power-hungry machines cited at www.top500.org
in May 2010 (Jaguar at ORNL and Roadrunner at LANL) have a
combined approximate total of 346,000 cores.

Reconfigurable supercomputing, with scalable RC systems
featuring many leading-edge FPGAs configurable specifically for
high-intensity data processing for each application, holds the key
to address escalating computational demands in genomics data
mining and analysis with high performance, productivity, and
sustainability. In this paper, we presented novel use of a method
for in-stream control with scalable systolic arrays to accelerate a
class of genomics applications, limiting wasted cycles and
increasing hardware utilization. Combined with the computational
power of the Novo-G machine, realization of this method to
accelerate important genomics applications was demonstrated with
unprecedented levels of sustained performance.

REFERENCES

[1] W. Pearson and W. Miller, "Dynamic programming algorithms for
biological sequence comparison,” Methods Enzymol. 210: 575-601,
1992.

[2] Y. Sun, Y. Cai, L. Liu, F. Yu, M.L. Farrell, W. McKendree, W.
Farmerie, “ESPRIT: Estimating Species Richness Using Large
Collections of 16S rRNA Pyrosequences,” Nucleic Acids Research,
vol. 37, no. 10 e76, May 2009. PMCID: PMC2691849.

 [3] S. Lloyd and Q. Snell, “Hardware Accelerated Sequence Alignment
with Traceback,” Int. Journal of RC, vol. 2009, Article ID 762362.

[4] O. Storaasli, W. Yu, D. Strenski, J. Maltby, “Performance Evaluation
of FPGA-Based Biological Applications,” Proc. Cray Users Group,
Seattle, WA, May 2007.

[5] K. Benkrid, Y. Liu, and A. Benkrid, “A Highly Parameterized and
Efficient FPGA-Based Skeleton for Pairwise Biological Sequence
Alignment,” IEEE Trans. VLSI Systems, vol. 17, pp. 561-570, 2009.

 [6] Novo-G architecture overview, www.chrec.org/~george/Novo-G.pdf
 [7] ESPRIT download, plaza.ufl.edu/sunyijun/ESPRIT.htm

Baseline: 192∙225, length 850 Sequence Comparisons

Software Runtime: 11,026 CPU∙hours on 2.4GHz Opteron

Baseline: Human X Chromosome v 19200, length 650 Seqs

Software Runtime: 5,481 CPU∙hours on 2.4GHz Opteron

Baseline: 192∙224, length 450 Distance Calculations

Software Runtime: 11,673 CPU∙hours on 2.4GHz Opteron

FPGAs Runtime (sec) Speedup # FPGAs Runtime (sec) Speedup # FPGAs Runtime (sec) Speedup

1 47,616 833 1 23,846 827 1 13,522 3,108
4 12,014 3,304 4 5,966 3,307 4 3,429 12,255

96 503 78,914 96 250 78,926 96 144 291,825

128 391 101,518 128 188 104,955 128 118 356,125
192 (est.) 270 147,013 192 (est.) 127 155,366 192 (est.) 77 545,751

Figure 4: Results on Novo-G for NW (left), SW (Center), and ND (Right). Each chart illustrates performance of a single FPGA under varying input

conditions. Each table shows scaling performance with varying number of FPGAs under optimal input conditions.

http://www.top500.org/
http://www.chrec.org/~george/Novo-G.pdf

