
TEAM NUMBER 11

1

2-D Object Recognition Using a Parallel
Implementation of Geometric Hashing

Carlo Pascoe and Christian Davis, Electrical Engineering, University of Florida

Abstract – Many image processing applications require the

ability to promptly recognize two-dimensional objects within an
image or database of images. A technique known as geometric
hashing is used in computer vision to enable the recognition of
targeted shapes and figures. Objects of interest in this
application must be quickly matched with models in a large,
predefined database located somewhere in memory. Matches
must even be made when the target objects have undergone
transformations or have been partially obstructed within the
field of view. Computer vision may require this technique to
perform its operation on a certain amount of images per second,
or frame rate, and is limited by the speed of the architecture it is
run on. Hence, it is valuable to explore the advantages of
performing such an algorithm on a parallel architecture. The
focus of this paper is on comparing and observing the
performance benefits of implementing a parallel 2-D object
recognition algorithm with geometric hashing over the
performance of a serial one. We have shown that the
performance of the algorithm can be significantly improved by
increasing the number of processors or threads it is run on.

TABLE OF CONTENTS

I. INTRODUCTION……………………………………………………………...1
II. RELATED WORK……………………………………………………………..2

III. APPROACH BACKGROUND………………………………………………..3
IV. ALGORITHM IMPLEMENTATION………………………………………..4
V. EXPERIMENT…………………………………………………………………8

VI. RESULTS………………………………………………………………….……9
VII. CONCLUSIONS AND FUTURE WORK………………………………...…11

VIII. REFERENCES………………………………………………………..........…11
APPENDIX A…………………………………………….……………………12
APPENDIX B………………………………………………………………….15
APPENDIX C………………………………………………………………….19

I. INTRODUCTION

eometric hashing is an algorithm used to enable the
recognition of objects within an image or stream of
images and is needed in several applications seen

today. For example, in an application such as robotics it may
be necessary for a certain machine to pick out or pick up
certain items in a lab or assembly line. These computers use
video cameras at a certain frame rate to quickly observe their
environment for potential target items. Another application of
object recognition is in structural alignment of proteins. In

G

Fig. 1. The data in this graph shows that as the amount of threads is increased, the
total execution time of the program decreases.
this domain, a sequence alignment is made by establishing
similarities between different protein structures, thus,
performing a large amount of object comparisons in the
associated database. Matching in this case must also occur
even though most of the target proteins in the images acquired
are rotated, translated, scaled, and even obscured which raises
the complexity of the algorithm. Object recognition is
becoming essential in many present applications of computer
vision and must perform efficiently to function usefully.

To successfully perform object recognition, an object
must be quickly recognized from a stream of input images.
Each image must be analyzed and a possible match should be
successfully recorded before the next image is processed.
Running this application or algorithm on a single processor
may impose a certain limit on the frame rate of the input. The
processor can only work on one entire acquired scene at a
time and may not continue to the next image until it is finished
with the current one. To solve this problem, the geometric
hashing technique may be implemented on a parallel
architecture to allow for a faster frame rate and an improved
throughput of data.

The focus of this work was to create a functional parallel
implementation of the 2-D geometric hashing algorithm to
perform object detection within a stream of images. A survey
of related literature produced no actual code so much time was
spent not only creating the parallel implementation, but a
serial implementation used for baseline comparison as well.
The performance and accuracy of each implementation are
compared and it is our goal to quantify and show the

TEAM NUMBER 11

2

performance benefits achieved by running the object
recognition program on a parallel architecture. The Unified
Parallel C (UPC) extension to ANSI C is used to parallelize
the algorithm and is executed on the Mu cluster of the High
Performance Computing and Simulation (HCS) Research
Laboratory at the University of Florida (UF). The UPC
implementation takes advantage of the multiple processors
offered by the cluster through distributing pieces of the
images to multiple processors and analyzing the image
fragments simultaneously. This accelerates the processing
speed of an individual image and, as a result, is observed to
increase the overall frame rate of the application. The
function of the geometric hashing algorithm and its associated
hash table is explained in more detail in the sections that
follow.

The performances of the serial and parallel
implementations were compared by measuring their total
execution time as well as running them through the Parallel
Performance Wizard (PPW) tool provided by the HCS lab.
This tool gathers and produces profile data from a program
execution and provides a graphical interface that allows the
gathered data and performances to be analyzed efficiently and
used to identify potential bottlenecks in the code.

The results of our experimentation have shown that the
parallel implementation provides the exact same 94.7%
accuracy as the serial implementation yet runs 3.71 times
faster when run on 8 processors. This accuracy and speedup
was achieved when provided a batch of fifty test images
representative of a realistic input to the system. Since the
execution times of each implementation fluctuate greatly
depending on the inputs to the system, speedups will vary.
The fluctuations are mainly due to the O(N3) complexity of
the algorithm.

The functionality of the overall algorithm was verified
and the behavior of the parallel algorithm was tested over a
varied number of processors. Our data illustrates that as the
amount of threads or processors increases, the total execution
time of the algorithm decreases. A plot of the recorded total
execution times of the serial implementation and all parallel
processor amount variations is shown in Fig. 1. In addition to
comparing the performance of varied processor amounts, our
study also tested for the behavior of running a different
parallel algorithm that essentially distributed the serial
implementation to multiple processors. This alternative
parallel distribution demonstrates the need for load balancing
and will be further discussed in Section VI.

In Section II, a brief overview will be given of some
related work in this application. The information in Section
III will provide background information on the topics
discussed in this paper. That will be followed by a description
in Section IV of the implementation of the algorithm used and
then a depiction of the experiment performed and the results
obtained in Sections V and VI respectively. Lastly,
conclusions and future work will be presented in Section VII.

II. RELATED WORK

A popular area of research for geometric hashing is in the
scientific community of protein structural alignment. The
article [4] explains how this algorithm is used in finding
similar interaction proteins in order to better describe their
functions by how they bind to other compounds. More
specifically, the function of a protein is described by their
binding and the actual structure of the interaction site. By
knowing the function of a certain protein by its interaction
site, finding another protein with a similar site will help
describe the function of that particular protein. In a more
useful operation, an analysis of a particular large group of
proteins can return the function of each one of those proteins
by matching them with those in a pre-existing database of
profiles. The authors of [4] describe a concept of “partial”
geometric hashing to decrease the limited memory usage
associated with the large collection of protein models. The
hash table in this case only contains a fraction of the site
structures for matching. After potential candidates are
established, the overall structures are used to verify the model
match.

The area of information and security assurance is also
pursuing solutions with geometric hashing. The topic written
in article [5] describes the implementation of geometric
hashing as a solution to the auto-alignment problem occurring
with fingerprint databases. The fuzzy fingerprint vault is a
particular realization of a secure fingerprint database
discussed in the paper. When scanning a finger, an un-aligned
scan will not match a fingerprint in the database. A fast, yet
memory inefficient solution, is the use of geometric hashing.
To reduce the large amount of memory needed, the authors of
[5] have devised an approach that explores a tradeoff between
time and memory. Rather than computing all the hash table
entries a priori which reduces execution time (but increases
table size), the authors have devised a way calculate the hash
table entries on-the-fly. This method reduces the memory
requirements but is much slower than retrieving from a pre-
defined hash table.

Researching related work in implementing a geometric
hashing algorithm on a parallel architecture did not turn up
any articles that linked a real application of the algorithm to a
parallel implementation. Instead, work found in articles such
as [8] and [9] only discussed modifying the algorithm from a
serial implementation to a parallel implementation. Our work
specifically focuses on implementing an application of
geometric hashing for a parallel architecture using UPC.

Some other areas of research worth commenting on
include database image queries, detection of irregularities in
X-Rays, and other biometric identification methods such as
facial recognition.

TEAM NUMBER 11

3

Fig. 2. The mouse in this image is the object to be looked for.

Fig. 3. Shows the object mouse with labeled feature points
and the basis formed from points 1 and 5.

III. APPROACH BACKGROUND

Geometric hashing is a computationally efficient way of
finding target objects inside of other images. The brute force
manner of searching images for objects involves comparing
every pixel in the image to every pixel in a database of desired
objects for possible matches. In the case of geometric
hashing, images are searched for key features and efficiently
compared only against certain object features in a hash table.
Accesses to the hash table are based on the geometric
information in the image which negates the need to search the
entire object database. Because of the way the object features
are stored and accessed, the objects can be found in an image
even if they have undergone certain transformations such as
scaling, rotation, or translation. Though geometric hashing
can be used to search for 3D objects under all kinds of
transformations, this project will only focus on searches for
2D objects under rotations, translations, and scaling that may
or may not be partially covered by other objects in an image.

Fig. 4. Input image that will be searched for object match.

Fig. 5. Searched image with labeled feature point matches
and basis formed from points 1 and 2.

Geometric hashing is implemented as follows. First a
collection of objects that need to be found in other images are
searched for key features such as lines, curves, or points.
Every combination of the discovered features in a particular
object is used to define a unit-length basis which is then used
to describe the position of the other features in reference to the

coordinate system defined by the basis. The object number

and reference basis are placed in hash table bins defined by
the feature position. This information is pre-computed and
used when searching the images for the objects at runtime.

When it is time to search an input image for an object it is
only necessary to search the image for key features rather than
the entire object. With a list of all key features present in the
image (which should be considerably less than the total
number of pixels in the image) every combination of two
features is used to define a unit-length basis using the same
process that the object bases were calculated with. Once
again the basis is used to describe the position of every other
feature but now the calculated position is used to access the
hash table rather than populate it. If an object is present in the
image, the positions should map to the hash table bins that
hold information for that object; if an object is not present it is
highly unlikely that all or even a significant number of the
bins containing the object information will be accessed. If the
feature coordinates map to a full bin then the object and basis
information in that bin is used to “cast a vote” for the object
and basis by incrementing a counter. Once all of the
coordinates have been checked, the counters are compared
against some threshold and considered as potential object
matches if they exceed it.

Suppose it is necessary to find the computer mouse from

TEAM NUMBER 11

4

Fig. 2 in another image. In order to use geometric hashing the
mouse’s key features must be placed in the hash table. One
way to describe the mouse is to take certain points such as P1,
P2, P3, P4, and P5 as feature points for the object. Every
combination of these points is used to define a unit length-
basis. Fig. 3 depicts an example of possible points P1-P5 with
the basis formed from P1 and P5 shown. Using the basis
shown in Fig. 3 will result in

Fig. 6. Flow chart describing the general structure of the serial implementat-
ion of the geometric hashing algorithm.

 hash table entries at (0.25, 0.25),
(-0.6

m
ature points identified in the reference object from Fig. 3.

IV.

entations used in our
stud provided next in this section.

ed by a
disc

s used
to re

program begins to cycle through all of the images until there

, -0.5) and (-1.1, -0.6).
Once the feature information is loaded into the hash table,

any image can be searched for the presence of the mouse
using the geometric hashing algorithm. Say the image in Fig.
4 is searched and 12 key features are found. Every
combination of the 12 points is used to define a basis which is
then used to describe the position of every other point. Shown
in Fig. 5 is an example of the discovered features P1-P12 with
the basis from P1 and P2 shown. The basis formed from P1
and P2 above should not yield a correct match with the mouse
from Fig. 2 because the coordinates of P3-P12 with respect to
the basis should not map to full hash bins. Although, when
the algorithm gets around to using other bases, like the basis
formed from P1 and P4 or the basis formed from P4 and P6,
there should be a match because these are bases formed fro
fe

ALGORITHM IMPLEMENTATION

In our research, the geometric hashing algorithm was first
implemented serially in the C language to integrate all the
requirements of the algorithm necessary to detect an object
within an image and provide a baseline to compare with the
parallel implementation. This serial program was used to test
the functionality and debug the preliminary versions of our
parallel program. The parallel implementation was created
using UPC which is supported by the Mu cluster. Detailed
explanations of both program implem

y are

A. Serial Implementation

Full code for the serial implementation is provided in
Appendix A. The flow chart in Fig. 6 describes the general
structure of the serial implementation. In this subsection, the
serial code will be explained in detail follow

ussion of several design choices and tradeoffs considered.
The first thing the code does is load in a hash table and

key features from a pre-populated DAT file (this corresponds
to lines 65-76 in Appendix A). The hash table is populated
using a different program that has also been provided in
Appendix C. This program searches an input object for the
most unique features and chooses a subset that is evenly
distributed throughout the object. The subset is then used to
populate the hash table using the same algorithm that i

ad it (the algorithm will be discussed a little later).
After the hash table data is stored in local memory the

are none left. If there are images left to be processed the code
loads in the current image (78-92 in Appendix A).

The current image is searched pixel by pixel and
compared against a list of key features that were included in
the hash table DAT file but are not actually entries in the hash
table (96-113 in Appendix A). When a match is found, its
coordinates are recorded in a list. The code in Appendix A
searches for individual pixels as key features but the features

TEAM NUMBER 11

5

searched for could be anything. The choice of feature type is
an accuracy to computation tradeoff. For a pixel feature type
there are at most M*N*NumOfKeyFeatures comparisons for
an MxN image but it is more likely to find stray pixels that
match a key feature possibly leading to false positives. For a
five pixel cross feature type, there is a significantly less
chance of a false match (due to 120 bits uniquely identifying
the feature rather than 24bits), however, there are now at most
5*4*M*N*NumOfKeyFeatures comparisons for an MxN
image (this number of comparisons increases dramatically if
object scaling is considered). The extra comparisons are not
only due to the additional pixel values but also due to their
orientation. As you can imagine, this gets a lot worse as the
complexity of the feature type increases such as lines and
curves. In an attempt to reduce the number of features found
the coordinates for a large contiguous block that just so
happens to be the same color as a key feature are omitted (i.e.
the next pixel is checked only if it is different than the
previous pixel).

With a complete list of all key features present in the
image (which should be considerably less than the total
number of pixels in the image) every combination of two
features is used to define a unit-length basis (points P1 and
P2) and every combination of that two point unit-length basis
and every other feature point (point P3) is used to calculate
the inputs to the hash function (114-151 in Appendix A). This
is implemented in code with a triple nested for loop. The Y
input to the hash function is computed by finding the shortest
distance between P3 and the line formed from P1 and P2, then
dividing that by the distance between P1 and P2 in order to
normalize it (line 127 in Appendix A). Mathematically this is
equivalent to calculating the cross product of the two vectors
P2 and P3 with P1 as their origin (actually equivalent to the
area of the parallelogram formed from the two vectors),
dividing it by the distance between P1 and P2 (dividing by the
length of the parallelogram leaving the height), and finally
dividing it again by the distance between P1 and P2 in order to
normalize the value. The X input to the hash function is
computed by finding the shortest distance between P3 and the
line passing through P1 and perpendicular to the line formed
from P1 and P2. Once again the distance is then divided by
the distance between P1 and P2 in order to normalize it (line
126 in Appendix A). Mathematically this is equivalent to
calculating the dot product of the two vectors P2 and P3 with
P1 as their origin, dividing it by the distance between P1 and
P2 (equivalent to finding the projection of the P3 vector onto
the P2 vector), and finally dividing it again by the distance
between P1 and P2 in order to normalize the value. The
normalization is done in order to accommodate object scaling.
If an object is present in the image, the X and Y values should
map to the hash table bins that hold information for that
object; if an object is not present it is highly unlikely that all
or even a significant number of the bins addressed by X and Y
will contain object information. If the feature coordinates
map to a full bin then the object and basis information is used
to “cast a vote” for the object and basis by incrementing a

local counter variable addressed by the object number and
basis number. Once all of the coordinates for a particular
basis have been checked, the local counts are compared
against some threshold and considered as potential object
match if they exceed it; if the local count exceeds the
threshold then a global counter for that object is incremented.
The threshold is determined by the number of key features per
object and some precision variable that adjusts the accuracy of
the algorithm.

Every source read discussed calculating the inputs to the
hash function by finding the rotation and scaling
transformations about the midpoint between points P1 and P2
that send P1 to the coordinate (-1/2, 0) and P2 to the
coordinate (1/2, 0). The transformations are then applied to
P3 and its new X and Y coordinates are used as inputs to the
hash function. This involves several floating point additions
and multiplications when implemented in computer programs.
With knowledge of mathematics, we were able to derive the
much more computationally efficient technique described in
the previous paragraph. When implemented in code many of
the computations needed to find the dot product for input X
can be reused to find the cross product for input Y. Also,
because of the way we have implemented the hash table, all
but one of the multiplications and divisions needed per input
calculation are integer operations rather than floating point
operations.

Once all of the 2 point bases have been cycled through,
the global counts are compared against some global threshold
and the object is considered present if its counter exceeds the
threshold (lines 152-156 in Appendix A). If an object is
discovered in an image, the program reports “Object X found
in Image Y.” At this point if the program has exhausted its
list of input images the program terminates, otherwise it
continues with the next image.

There are many different design choices that affect the
performance of this geometric hashing implementation. Some
of the most important are the feature type, the number of
features used to describe the object, the threshold precision,
and the number of features found in an input image. As
mentioned previously, the choice of feature type leads to an
accuracy to computation tradeoff. The more complex the
feature type the greater amount of computation needed to find
that feature in an image. Also, the feature type greatly
impacts the number of features found in an input image which
above all other factors increases the total execution time by
increasing the number of iteration performed in the triple
nested for loop. Both the number of features used to describe
the object and the threshold precision affect the accuracy of
the implementation. If the number of features used to
describe the object is too low then the probability of finding
stray feature points that may map to full hash bins and trigger
increments of the vote counters increases dramatically. This
problem is magnified when the threshold precision is set too
low reducing the number of false hits required to trigger a
vote. If the number of features used to describe the object is
too high then the number of features found would increase.

TEAM NUMBER 11

6

Fig. 7. Flow chart describing the general structure of the parallel implement-
ation of the geometric hashing algorithm.

Also, the hash table size would increase due to the increased
number of hash table entries and bits required to store a single
hash table entry; for N features and O objects there are
O*N*(N-1)*(N-2) hash table entries and O*(2Log2N+ Log2O)

bits required per entry. If the threshold precision is too high
then the probability of missing an image that is present
increases. This is due in part to the fact that sometimes the
feature data is not properly found or the data may be corrupted
during transformations such as scaling or rotations. If an
object within an image is partially occluded by some other
object then some of the feature points may be covered and
therefore will not be discovered when the image is searched.
Due to the discrete nature of pixels it may be impossible to
completely preserve the features of an object under certain
transformations.

These design choices are at odds with each other making
it impossible to determine the optimum configuration without
knowing the input to the program a priori. The design choices
were left as variables to the program, allowing for program
tweaking after testing.

B. Parallel Implementation

The serial implementation was modified to run on a
variable number of processors using the Unified Parallel C
extension to the C programming language. The final version
of the parallel implementation reads in a collection of images
at runtime and processes them one at a time like the serial
implementation does, but the work is evenly distributed
amongst multiple processors rather than one. Each image is
equally distributed amongst all of the processors and each
processor searches its own section of the image for key
features; this is done rather than sending each processor its
own image to improve load balancing (an image with 10
objects in it would require much more work than an image
with absolutely no key features in it). Once all processors
have completed searching the image, each processor then
collects the discovered feature coordinates from each other
processor to populate a local list. This amounts to all-to-all
communication assuming all processors find at least one key
feature. With a complete list of the found features, all
processors perform the search algorithm on an equally
partitioned subset of the required loop iterations. Each
processor keeps a local vote counter. When all processors
have completed their subset of the computation, the local vote
counters are accumulated in a global variable and a single
processor reports if an object has been discovered.

Full code for the parallel implementation is provided in
Appendix B. The flow chart in Fig. 7 describes the general
structure of the parallel implementation. The next few
paragraphs describe the parallel code in detail.

The first thing the code does is load in a hash table and
key features from a pre-populated DAT file in the same
manner as the serial implementation (lines 68-78 in Appendix
B). Since each processor requires extensive use of the hash
table, each processor loads its own copy. The load is
implemented using standard C file I/O; an attempt to
implement the file reading using parallel UPC-IO was quickly
abandoned when it was discovered that the Mu cluster does
not support it.

TEAM NUMBER 11

7

After the hash table is stored on each processor, the
program begins to cycle through all of the images until there
are none left but not in the same way used in the serial
implementation (lines 78-108 in Appendix B). Once again,
because the Mu cluster does not support UPC-IO, the image
file read must be implemented using standard C file I/O. If
the image read was implemented the same way in the parallel
version as in the serial version, only one processor could load
in an image while the others remain idle. In order to fully
utilize all of the processors, assuming there are enough images
left to be processed, each processor loads a separate image
into shared memory every THREADS iterations so that no
images need to be loaded for the next THREADS-1 iterations.
On the iterations where images are loaded, the image loaded
by Thread 0 will always be the next image to be processed.
Because of this, it is only necessary to wait for Thread 0 to
finish loading the image rather than waiting for all processors
to finish. This is realized with the strategic use of upc_notify
and upc_wait statements.

In an earlier implementation of the parallel code, a
different image load scheme was tested. The code was set up
so that only one thread was responsible for loading images
and the rest of the threads were responsible for processing the
images. This is a classic producer/consumer implementation.
This scheme was eventually abandoned because of load
balancing; it was discovered that the image loading thread was
usually idle due to the unbalanced workload.

With the current image in shared memory, each processor
searches its section of the image pixel by pixel for the key
features loaded from the hash table DAT (112-133 in
Appendix B). The search algorithm used here is the exact
same algorithm used in the serial implementation but for a
subsection of the image. The subsection searched is
determined by its affinity to a processor which is ultimately
determined by the block distribution in shared memory. The
image data was distributed equally into THREADS number of
blocks with a blocksize equal to image size divided by
THREADS. That is, the data is striped horizontally across the
image. When matches are found, their coordinates are
recorded in a local list.

In order to proceed, each processor needs access to all
discovered feature coordinates. Since each processor stores
the coordinates of discovered feature points from its own
section of the image in a block of shared memory with affinity
to itself, the program could continue after a barrier
synchronization but every other processor would have to
perform a remote read when trying to read these coordinates
for calculation. This would be acceptable if the other
processors only read the other coordinates on occasion but
that is not the case for the geometric hashing algorithm; for N
feature points, the parallel implementation requires each
coordinate pair be accessed at least N*(N-1) times by each
processor. This is an unacceptable number of remote accesses
for even a small number of features found. One solution to
this problem is to have each processor transfer each remote
block of feature coordinates from the other processor’s shared

memory to its own local memory (Lines 134-144 in Appendix
B). This is implemented with a loop of upc_memget
statements that transfer blocks of shared memory to blocks of
local memory. upc_memget was used because it is far more
efficient than transferring data one element at a time. This
amounts to all-to-all communication assuming all processors
find at least one key feature but is better than the alternative
assuming even a few found features. The execution of two
versions of code, one with the transfer of shared memory to
local memory and one without, confirms these observations;
the code with the transfer executes a lot faster assuming the
input image has at least a few feature points. This section of
code is complete overhead not required in the serial
implementations but necessary to implement the parallel
algorithm efficiently.

With a local list of all of the found feature coordinates,
the processors begin to execute the same triple nested for loop
that the serial implementation did with the exception that the
iterations are equally distributed amongst all of the processors
(lines 145-182 in Appendix B). This is implemented by
replacing the outer for loop with a simple upc_forall loop
containing the loop counter as the affinity expression. The
global vote counter is handled differently as well; instead of
having only one global vote counter per object, each processor
now has its own global vote counter in local memory. This is
done because there would be too much contention for access
to a single counter and would result in a lot of CPU cycles
wasted waiting on a lock. Lines 183-194 in Appendix B are
added overhead not present in the serial implementation
responsible for combining all of the global counters in local
memory into a single counter on a single processor (thread
THREADS-1)

Once all other processors have finished updating the
global counter on thread THREADS-1, the other threads
continue onto the next image while thread THREADS-1 prints
the object discoveries to the screen (lines 195-202 in
Appendix B). When an object is discovered the same
message, “Object X found in Image Y,” is printed to the
screen. At this point, if the program has exhausted its list of
input images, the program terminates otherwise it continues
with the next image. As mentioned previously, only on one
out of THREADS iterations does continuing with the next
image involve loading the image from file. On the other
THREADS-1 out of THREADS iterations loading the image is
not required.

The same design choices important for the serial
implementation are important for the parallel implementation.
As in the serial implementation, the design choices were left
as variables to the program, allowing for program tweaking
after testing.

TEAM NUMBER 11

8

Fig. 8. These are the three target objects searched for in the test batch of images

V. EXPERIMENT

To carry out the performance analysis, the serial and
parallel implementations explained in the previous section
were executed on the Mu cluster of the HCS lab. This
allowed both programs to run on the same AMD 2.0 GHz
Opteron processor platform and system architecture. More
information on the Mu cluster can be found on the website in
[7]. The serial implementation will be compared against the
parallel implementation run on a variable number of threads.
Also included in our experiment are extra tests that validate
several design decisions. The total execution time and
accuracy of the algorithm were used as metrics for validation.
Additionally, the PPW analysis tool was used to measure the
relative performance of the parallel implementation on
multiple thread configurations. The results of our experiment
will be discussed in the next section.

In order to analyze the performance of our
implementations, a test batch of fifty 840x600 2-D 24-bit
BMP images was used to detect the three different 2-D target
objects shown in Fig. 8. This test batch is a load
representative of a realistic input to the system and was kept
constant from test to test. The three target objects were placed
randomly among fifty images under various transformations
where each image contained either all three, a combination of
two, just one, or no objects at all. Supported transformations
are rotations, translations, and scaling. Also, objects may or
may not be partially covered by other objects in an image.
Each image contained a random amount of extra target feature
points added in an attempt to trick the algorithm into
producing false positives and vary the workload produced by
each image. This random amount varied from having no extra
feature points in certain images to a few images containing a
heavy load of extra feature points aside from those detected in
the target objects. Each image also contained a mixture of
different geometric shapes with dissimilar colors. All images
were then saved on the cluster and loaded into the program at
runtime.

The reason for choosing the number 840 as the pixel
height of the images was because the largest number of
threads used in this study is 8. To balance the workload in the
parallel implementation, each image is divided horizontally
into equal block sizes for each thread running in the particular

execution. Using a height of 840 pixels allows the program to
evenly divide the block sizes by any number of threads up to
eight. The width dimension of 600 pixels was not significant
in this study, however, it was arbitrarily chosen as an amount
that together with the height would not cause the partitioning
of the entire image in the algorithm to exceed the maximum
block size.

The intention of using 2-D images in our work, as
opposed to 3-D images, was to avoid inaccuracies and
misdetections introduced by the azimuthal angle present in 3-
D imagery. An object shown in one picture may appear in a
second picture at a different angle from the reference plane
and vector of the first picture. For the 2-D geometric hashing
algorithm to perform accurately, it is important for this angle
to remain constant. In our work, attempts to run 2-D image
recognition on 3-D images such as license plates or stop signs
failed to find any objects at all; a problem attributed to
capturing images at different angles.

The following subsections explain the different
experimental setups for our work.

A. Hash Table Population

The three objects from Fig. 8 were used as inputs to the
hash table creation code in Appendix C. This program
searched the objects for the most unique features and chose an
equally distributed subset. The subset was then used to
populate the hash table using the same algorithm used to read
it.

B. Serial Baseline Run

The serial algorithm was considered the baseline
performance metric and used to compare with the
performances of the other algorithm executions. This
program was executed on one of the processors in the Mu
cluster. The total execution time along with gathered profile
data from PPW was collected and recorded.

C. Parallel Run

The parallel algorithm was executed on the Mu cluster
with a varied number of threads ranging from 1 to 8. Each

TEAM NUMBER 11

9

time, the total execution time and profile data from PPW was
collected and recorded.

TABLE 1: Total Execution Times

TABLE 2: Speedup

Fig. 9. Pie chart of profile data for the parallel implementation
executed on 8 threads.

Fig. 10. Pie chart of profile data for an early version of the parallel
implementation executed on 8 threads.

D. Load Balancing Test

To illustrate the importance of load balancing, the
performance of our parallel implementation was compared to
the performance of an alternative parallel implementation that
essentially runs the serial code on multiple threads. Minimal
parallelization overhead exists in this alternative implemen-
tation, however, the workload in each thread varies depending
on the input images fed into the program.

VI. RESULTS

Before experimentally
comparing the performance
of the serial and parallel
implementations, their
accuracies were tested using
the test batch of fifty
images. After execution of
each implementation, the
output was used to observe
the number of successes and
failures. It is considered a
success when an object is
detected within an image
and the object is present as
well as when it is not

detected when the object is not present. In contrast, it is
considered a failure when an object is detected within an
image and it is not present as well as when it is not detected
within an image and it is present. Since there are three objects
to search for, each image processed has the possibility of three
successes or failures; with a test bench of fifty images, this
leads to a total of 150 possible successes. In our tests, the
execution of all implementations reported the same number of
successes and failures which totaled 142 successes and 8

failures equivalent to a 94.7% success
rate. One of the failures was due to
not detecting an image when it was
actually present and is because too
many of the object feature points were
covered by another object. The other
7 out of 8 failures were due to
detecting an object when it was not
present and can be attributed to an
excessively high number of feature
points found. Subjectively, we believe
it is better to falsely detect an object
when it is not present than to miss an
object when it is present.

The total execution times for each implementation are
shown in Table 1. The execution times in the table show that
the parallel code outperforms the serial code as the number of
threads increases. Except for the parallel implementation run
on a single processor, the execution times of each parallel
execution are increasingly lower than the serial
implementation time. The best case performance achieved
was 54.7 seconds with the parallel implementation executed
on 8 processors which is significantly faster than the 203
second time achieved by the serial baseline. The execution of
the parallel code run on 1 processor achieved a slower total
execution time than the serial execution due to the negative
impact of increased overhead due to parallelization without
the added benefit of extra processors. It is also important to
note that as the number of threads increased, the performance
gained due to adding one additional processor decreased. The
reason for this is that with each added processor, additional
overhead is added but the amount of useful work remains
constant. Table 1 also shows the execution time for the
alternative parallel implementation that runs the serial code on
multiple threads and will be discussed later in this section.

The execution times from Table 1 were used to calculate
the relative speedups of the parallel executions using the serial
implementation as the baseline. Those calculated values are
listed in Table 2. As expected from our previous discussion,

Implementation
w/ P Processors

Total
Execution
Time (s)

Serial - P=1 203.0
Parallel - P=1 276.1
Parallel - P=2 181.5
Parallel - P=3 134.8
Parallel - P=4 100.2
Parallel - P=5 81.3
Parallel - P=6 72.1
Parallel - P=7 61.3
Parallel - P=8 54.7

Serial
Distributed -

P=8
160.7

of
Threads

Speedup
Over
Serial

2 1.12

3 1.51
4 2.03
5 2.50

6 2.82

7 3.31
8 3.71

TEAM NUMBER 11

10

Fig. 11. The bar graph depicting the accumulated execution times of each thread per program execution.

the speedup due to parallelization increases as the number of
threads increases but at a decreasing rate.

Fig. 12. Graphs showing execution time of each thread for the parallel
implemention (top) and alternate parallel implementation (bottom).

In addition to collecting the execution times and
calculating the speedups, the profile data collected from the
Parallel Performance Wizard was used to analyze where time
was being spent in each implementation. The pie-chart in Fig.
9 shows a breakdown of the time spent performing certain
functions in the final version of the parallel code executed on
8 threads. The green, blue, and small purple portions of the
pie represent the amount of time spent taking care of
overhead. The green slice corresponds to having a single
processor loading images into shared memory. This overhead
should be drastically reduced if the use of UPC-IO was
possible. The blue slice corresponds to the time wasted
implementing barrier synchronizations. The red portion
represents the amount of time spent executing useful code.
Overhead associated with the purple sliver is time spent doing
everything else. Fig.9 clearly shows that approximately 70%
of the execution time was spent doing useful work while 30%
was spent on overhead.

Profile data from PPW was also used to optimize our
original parallel code into the final code used for our tests.
Testing of the original implementation showed that a large
percentage of time was spent notifying under small loads and
an even larger percentage was spent in a lock under high
loads. The pie-chart in Fig. 10 corresponds to profile data
from one of the first versions of our parallel implementation
run with the same number of processors and same load as the
execution in Fig. 9. By observing the chart, it can be clearly
seen that approximately 57% of the execution time was spent
dealing with lock issues. Before running PPW, we did not
expect this to be an issue but viewing this information brought

the problem to our attention. The resulting modifications in
our code led to more efficient use of synchronization and lock
statements which improved parallel performance and led us to
the final distribution in Fig. 9.

Another feature of PPW allows further analysis of our
implementation by accumulating the time spent in each
section of the code by each thread and displaying it in an easy

TEAM NUMBER 11

11

to understand bar graph. Fig. 11 displays a comparison
between the serial implementation and our parallel
implementation run with a varying number of threads. It also
shows a comparison between the un-load-balanced
implementation that will be discussed in the next paragraph.
Overall, it can be observed from Fig. 11 that the amount of
useful work remains relatively constant among parallel
executions with varying processors while the overhead
increases as the amount of threads increases. This however
does not mean that the overall execution time increases as the
number of threads increases; the sum total of all processor’s
work increases but the average work per processor decreases,
and assuming a balanced workload, leads to a decrease in the
total execution time. Our observations from testing echo this.

An imbalance in the workload per thread prevents the
execution time from being faster than the thread with the most
work. This is illustrated in Fig. 11 with the comparison
between the bar of the 8 thread parallel execution and the bar
of the alternative parallel 8 thread execution with an
unbalanced workload (second to last and last bar
respectively). The last bar shows that the sum total of work
on each processor for the alternate parallel implementation is
less than that of the 8 thread parallel implementation, although
the later executed far more quickly. The explanation for this
can be seen in Fig. 12. The top graph in Fig. 12 shows that all
threads finished executing at approximately the same time
while the bottom graph shows that under the same batch of
input images, the majority of threads finished their executions
at relatively the same time while a single thread continued to
execute. The top graph was taken from our parallel
implementation and shows an almost perfectly balanced
workload across each thread. The bottom graph, taken from
the alternate parallel implementation, shows that one
processor ended up doing more work than the others. Fig. 11
shows less parallelization overhead exists in this alternative
implementation, however, the workload in each thread varies
depending on the input images fed into the program and leads
to the poorer performance.

VII. CONCLUSIONS AND FUTURE WORK

Applications that require analysis of every image in a
stream of incoming images are limited by the speed of the
hardware they are utilizing. The example applications
mentioned in Section II have the need for fast data processing
and that need may exceed the performance capabilities of a
single processor. Implementing the object recognition
algorithm on a parallel architecture will simply improve the
performance; that means the ability to search for a larger
number of objects at an increased rate.

We have shown that running the 2-D geometric hashing
algorithm on a parallel architecture can provide a speedup of
3.71 over a serial implementation when executing the parallel
algorithm on 8 processors. In this study, the test batch of
images was kept constant while the number of threads and

implementations were varied. As more threads were used in
the execution of the parallel algorithm, a decrease in overall
execution time was observed. Our results lead towards the
conclusion that running the geometric hashing algorithm on a
well-balanced, efficiently designed parallel implementation
executed on multiple processors performs better than a serial
implementation executing on only one.

Potential future work includes modifying the
implementations to realize the 3-D geometric hashing
algorithm, changing the feature type searched for, and running
the current implementations on more of the 8 threads available
on to us on the Mu cluster.

VIII. REFERENCES

 [1] Wolfson, H.J. and Rigoutsos, I, 1997. Geometric Hashing: An

Overview. IEEE Computational Science and Engineering, 4(4), 10-21
[2] Y. Lamdan and H. Wolfson, "Geometric Hashing: A General and

Efficient Model-Based Recognition Scheme," Proc. Int'l Conf.
Computer Vision, IEEE Computer Society, 1988, pp. 238-249

[3] A. Kalvin et al., "Two-Dimensional Model-Based Boundary Matching
Using Footprints," Int'l j. Robotics Research, Vol. 5, No. 4, 1986, pp.
38-55

[4] Kiuchi, Yasuhiro and Ozaki, Tomonob, 2007. Partial Geometric
Hashing for Retrieving Similar Interaction Protein Using Profile. 4th
International Conference on Information Technology, 589-596

 [5] Lee, Sunqiu and Moon, Daesung, 2008. Memory-Efficient Fuzzy
Fingerprint Vault based on the Geometric Hashing. 2nd International
Conference on Information and Security Assurance, 312-315

[6] Figures 2-5 from: http://en.wikipedia.org/wiki/Geometric_hashing
[7] Information on the Mu cluster of the HCS Research Lab at the

University of Florida: http://www.hcs.ufl.edu/lab/mu.php
[8] Riqoustos, I and Hummel, R, “Massively Parallel Model Matching:

Geometric Hashing on the Connection Machine,” Computer, Vol. 25,
No. 2, 1992, pp. 33-42

[9] Khokhar, A., Prasanna, V., and Cho-Li, W., “Scalable Data Parallel
Implementations of Object-Recognition on Connection Machine CM-5,”
Proceedings of the Twenty-Seventh Hawaii International Conference,
1994, pp. 130-139

http://en.wikipedia.org/wiki/Geometric_hashing
http://www.hcs.ufl.edu/lab/mu.php

