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Abstract – Many image processing applications require the 

ability to promptly recognize two-dimensional objects within an 
image or database of images.  A technique known as geometric 
hashing is used in computer vision to enable the recognition of 
targeted shapes and figures.  Objects of interest in this 
application must be quickly matched with models in a large, 
predefined database located somewhere in memory.  Matches 
must even be made when the target objects have undergone 
transformations or have been partially obstructed within the 
field of view.  Computer vision may require this technique to 
perform its operation on a certain amount of images per second, 
or frame rate, and is limited by the speed of the architecture it is 
run on.  Hence, it is valuable to explore the advantages of 
performing such an algorithm on a parallel architecture.  The 
focus of this paper is on comparing and observing the 
performance benefits of implementing a parallel 2-D object 
recognition algorithm with geometric hashing over the 
performance of a serial one.  We have shown that the 
performance of the algorithm can be significantly improved by 
increasing the number of processors or threads it is run on. 
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I.   INTRODUCTION 

eometric hashing is an algorithm used to enable the 
recognition of objects within an image or stream of 
images and is needed in several applications seen 

today.  For example, in an application such as robotics it may 
be necessary for a certain machine to pick out or pick up 
certain items in a lab or assembly line.  These computers use 
video cameras at a certain frame rate to quickly observe their 
environment for potential target items.  Another application of 
object recognition is in structural alignment of proteins.  In 
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Fig. 1.  The data in this graph shows that as the amount of threads is increased, the 
total execution time of the program decreases. 
this domain, a sequence alignment is made by establishing 
similarities between different protein structures, thus, 
performing a large amount of object comparisons in the 
associated database.  Matching in this case must also occur 
even though most of the target proteins in the images acquired 
are rotated, translated, scaled, and even obscured which raises 
the complexity of the algorithm.  Object recognition is 
becoming essential in many present applications of computer 
vision and must perform efficiently to function usefully. 

To successfully perform object recognition, an object 
must be quickly recognized from a stream of input images.  
Each image must be analyzed and a possible match should be 
successfully recorded before the next image is processed.  
Running this application or algorithm on a single processor 
may impose a certain limit on the frame rate of the input. The 
processor can only work on one entire acquired scene at a 
time and may not continue to the next image until it is finished 
with the current one.  To solve this problem, the geometric 
hashing technique may be implemented on a parallel 
architecture to allow for a faster frame rate and an improved 
throughput of data.    

The focus of this work was to create a functional parallel 
implementation of the 2-D geometric hashing algorithm to 
perform object detection within a stream of images.  A survey 
of related literature produced no actual code so much time was 
spent not only creating the parallel implementation, but a 
serial implementation used for baseline comparison as well.  
The performance and accuracy of each implementation are 
compared and it is our goal to quantify and show the 
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performance benefits achieved by running the object 
recognition program on a parallel architecture.  The Unified 
Parallel C (UPC) extension to ANSI C is used to parallelize 
the algorithm and is executed on the Mu cluster of the High 
Performance Computing and Simulation (HCS) Research 
Laboratory at the University of Florida (UF).  The UPC 
implementation takes advantage of the multiple processors 
offered by the cluster through distributing pieces of the 
images to multiple processors and analyzing the image 
fragments simultaneously.  This accelerates the processing 
speed of an individual image and, as a result, is observed to 
increase the overall frame rate of the application.  The 
function of the geometric hashing algorithm and its associated 
hash table is explained in more detail in the sections that 
follow. 

The performances of the serial and parallel 
implementations were compared by measuring their total 
execution time as well as running them through the Parallel 
Performance Wizard (PPW) tool provided by the HCS lab.  
This tool gathers and produces profile data from a program 
execution and provides a graphical interface that allows the 
gathered data and performances to be analyzed efficiently and 
used to identify potential bottlenecks in the code.   

The results of our experimentation have shown that the 
parallel implementation provides the exact same 94.7% 
accuracy as the serial implementation yet runs 3.71 times 
faster when run on 8 processors.  This accuracy and speedup 
was achieved when provided a batch of fifty test images 
representative of a realistic input to the system.  Since the 
execution times of each implementation fluctuate greatly 
depending on the inputs to the system, speedups will vary.  
The fluctuations are mainly due to the O(N3) complexity of 
the algorithm. 

The functionality of the overall algorithm was verified 
and the behavior of the parallel algorithm was tested over a 
varied number of processors.   Our data illustrates that as the 
amount of threads or processors increases, the total execution 
time of the algorithm decreases.  A plot of the recorded total 
execution times of the serial implementation and all parallel 
processor amount variations is shown in Fig. 1.  In addition to 
comparing the performance of varied processor amounts, our 
study also tested for the behavior of running a different 
parallel algorithm that essentially distributed the serial 
implementation to multiple processors.  This alternative 
parallel distribution demonstrates the need for load balancing 
and will be further discussed in Section VI.     

In Section II, a brief overview will be given of some 
related work in this application.  The information in Section 
III will provide background information on the topics 
discussed in this paper.  That will be followed by a description 
in Section IV of the implementation of the algorithm used and 
then a depiction of the experiment performed and the results 
obtained in Sections V and VI respectively.  Lastly, 
conclusions and future work will be presented in Section VII.  
   
 

II.   RELATED WORK 

A popular area of research for geometric hashing is in the 
scientific community of protein structural alignment. The 
article [4] explains how this algorithm is used in finding 
similar interaction proteins in order to better describe their 
functions by how they bind to other compounds.  More 
specifically, the function of a protein is described by their 
binding and the actual structure of the interaction site.  By 
knowing the function of a certain protein by its interaction 
site, finding another protein with a similar site will help 
describe the function of that particular protein.  In a more 
useful operation, an analysis of a particular large group of 
proteins can return the function of each one of those proteins 
by matching them with those in a pre-existing database of 
profiles.  The authors of [4] describe a concept of “partial” 
geometric hashing to decrease the limited memory usage 
associated with the large collection of protein models. The 
hash table in this case only contains a fraction of the site 
structures for matching. After potential candidates are 
established, the overall structures are used to verify the model 
match. 

The area of information and security assurance is also 
pursuing solutions with geometric hashing.  The topic written 
in article [5] describes the implementation of geometric 
hashing as a solution to the auto-alignment problem occurring 
with fingerprint databases.  The fuzzy fingerprint vault is a 
particular realization of a secure fingerprint database 
discussed in the paper.  When scanning a finger, an un-aligned 
scan will not match a fingerprint in the database.  A fast, yet 
memory inefficient solution, is the use of geometric hashing.  
To reduce the large amount of memory needed, the authors of 
[5] have devised an approach that explores a tradeoff between 
time and memory.  Rather than computing all the hash table 
entries a priori which reduces execution time (but increases 
table size), the authors have devised a way calculate the hash 
table entries on-the-fly.  This method reduces the memory 
requirements but is much slower than retrieving from a pre-
defined hash table. 

Researching related work in implementing a geometric 
hashing algorithm on a parallel architecture did not turn up 
any articles that linked a real application of the algorithm to a 
parallel implementation.  Instead, work found in articles such 
as [8] and [9] only discussed modifying the algorithm from a 
serial implementation to a parallel implementation.  Our work 
specifically focuses on implementing an application of 
geometric hashing for a parallel architecture using UPC.    

Some other areas of research worth commenting on 
include database image queries, detection of irregularities in 
X-Rays, and other biometric identification methods such as 
facial recognition. 
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Fig. 2.  The mouse in this image is the object to be looked for. 

 

 
 
 

Fig. 3.  Shows the object mouse with labeled feature points 
and the basis formed from points 1 and 5. 

III.   APPROACH BACKGROUND 

Geometric hashing is a computationally efficient way of 
finding target objects inside of other images.  The brute force 
manner of searching images for objects involves comparing 
every pixel in the image to every pixel in a database of desired 
objects for possible matches.  In the case of geometric 
hashing, images are searched for key features and efficiently 
compared only against certain object features in a hash table.  
Accesses to the hash table are based on the geometric 
information in the image which negates the need to search the 
entire object database.  Because of the way the object features 
are stored and accessed, the objects can be found in an image 
even if they have undergone certain transformations such as 
scaling, rotation, or translation.  Though geometric hashing 
can be used to search for 3D objects under all kinds of 
transformations, this project will only focus on searches for 
2D objects under rotations, translations, and scaling that may 
or may not be partially covered by other objects in an image. 

 
 
 

 
Fig. 4.  Input image that will be searched for object match. 

 
 
 

 
Fig. 5.  Searched image with labeled feature point matches 
and basis formed from points 1 and 2. 

Geometric hashing is implemented as follows.  First a 
collection of objects that need to be found in other images are 
searched for key features such as lines, curves, or points.  
Every combination of the discovered features in a particular 
object is used to define a unit-length basis which is then used 
to describe the position of the other features in reference to the 

coordinate system defined by the basis.  The object number 

and reference basis are placed in hash table bins defined by 
the feature position.  This information is pre-computed and 
used when searching the images for the objects at runtime.  

When it is time to search an input image for an object it is 
only necessary to search the image for key features rather than 
the entire object.  With a list of all key features present in the 
image (which should be considerably less than the total 
number of pixels in the image) every combination of two 
features is used to define a unit-length basis using the same 
process that the object bases were calculated with.  Once 
again the basis is used to describe the position of every other 
feature but now the calculated position is used to access the 
hash table rather than populate it.  If an object is present in the 
image, the positions should map to the hash table bins that 
hold information for that object; if an object is not present it is 
highly unlikely that all or even a significant number of the 
bins containing the object information will be accessed.  If the 
feature coordinates map to a full bin then the object and basis 
information in that bin is used to “cast a vote” for the object 
and basis by incrementing a counter. Once all of the 
coordinates have been checked, the counters are compared 
against some threshold and considered as potential object 
matches if they exceed it. 

Suppose it is necessary to find the computer mouse from 
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Fig. 2 in another image.  In order to use geometric hashing the 
mouse’s key features must be placed in the hash table.  One 
way to describe the mouse is to take certain points such as P1, 
P2, P3, P4, and P5 as feature points for the object.  Every 
combination of these points is used to define a unit length-
basis.  Fig. 3 depicts an example of possible points P1-P5 with 
the basis formed from P1 and P5 shown.  Using the basis 
shown in Fig. 3 will result in

 
 
 

Fig. 6.  Flow chart describing the general structure of the serial implementat-
ion of the geometric hashing algorithm. 
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program begins to cycle through all of the images until there 

, -0.5) and (-1.1, -0.6). 
Once the feature information is loaded into the hash table, 

any image can be searched for the presence of the mouse 
using the geometric hashing algorithm.  Say the image in Fig. 
4 is searched and 12 key features are found.  Every 
combination of the 12 points is used to define a basis which is 
then used to describe the position of every other point.  Shown 
in Fig. 5 is an example of the discovered features P1-P12 with 
the basis from P1 and P2 shown.  The basis formed from P1 
and P2 above should not yield a correct match with the mouse 
from Fig. 2 because the coordinates of P3-P12 with respect to 
the basis should not map to full hash bins.  Although, when 
the algorithm gets around to using other bases, like the basis 
formed from P1 and P4 or the basis formed from P4 and P6, 
there should be a match because these are bases formed fro
fe
 
 

ALGORITHM IMPLEMENTATION 

In our research, the geometric hashing algorithm was first 
implemented serially in the C language to integrate all the 
requirements of the algorithm necessary to detect an object 
within an image and provide a baseline to compare with the 
parallel implementation.  This serial program was used to test 
the functionality and debug the preliminary versions of our 
parallel program.  The parallel implementation was created 
using UPC which is supported by the Mu cluster.  Detailed 
explanations of both program implem

y are 
 
A.  Serial Implementation 

Full code for the serial implementation is provided in 
Appendix A.  The flow chart in Fig. 6 describes the general 
structure of the serial implementation.  In this subsection, the 
serial code will be explained in detail follow

ussion of several design choices and tradeoffs considered. 
The first thing the code does is load in a hash table and 

key features from a pre-populated DAT file (this corresponds 
to lines 65-76 in Appendix A).  The hash table is populated 
using a different program that has also been provided in 
Appendix C.  This program searches an input object for the 
most unique features and chooses a subset that is evenly 
distributed throughout the object.  The subset is then used to 
populate the hash table using the same algorithm that i

ad it (the algorithm will be discussed a little later). 
After the hash table data is stored in local memory the 

are none left.  If there are images left to be processed the code 
loads in the current image (78-92 in Appendix A). 

The current image is searched pixel by pixel and 
compared against a list of key features that were included in 
the hash table DAT file but are not actually entries in the hash 
table (96-113 in Appendix A).  When a match is found, its 
coordinates are recorded in a list.  The code in Appendix A 
searches for individual pixels as key features but the features 
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searched for could be anything.  The choice of feature type is 
an accuracy to computation tradeoff.  For a pixel feature type 
there are at most M*N*NumOfKeyFeatures comparisons for 
an MxN image but it is more likely to find stray pixels that 
match a key feature possibly leading to false positives.  For a 
five pixel cross feature type, there is a significantly less 
chance of a false match (due to 120 bits uniquely identifying 
the feature rather than 24bits), however, there are now at most 
5*4*M*N*NumOfKeyFeatures comparisons for an MxN 
image (this number of comparisons increases dramatically if 
object scaling is considered).  The extra comparisons are not 
only due to the additional pixel values but also due to their 
orientation.  As you can imagine, this gets a lot worse as the 
complexity of the feature type increases such as lines and 
curves.  In an attempt to reduce the number of features found 
the coordinates for a large contiguous block that just so 
happens to be the same color as a key feature are omitted (i.e. 
the next pixel is checked only if it is different than the 
previous pixel).   

With a complete list of all key features present in the 
image (which should be considerably less than the total 
number of pixels in the image) every combination of two 
features is used to define a unit-length basis (points P1 and 
P2) and every combination of that two point unit-length basis 
and every other feature point (point P3) is used to calculate 
the inputs to the hash function (114-151 in Appendix A).  This 
is implemented in code with a triple nested for loop.  The Y 
input to the hash function is computed by finding the shortest 
distance between P3 and the line formed from P1 and P2, then 
dividing that by the distance between P1 and P2 in order to 
normalize it (line 127 in Appendix A).   Mathematically this is 
equivalent to calculating the cross product of the two vectors 
P2 and P3 with P1 as their origin (actually equivalent to the 
area of the parallelogram formed from the two vectors), 
dividing it by the distance between P1 and P2 (dividing by the 
length of the parallelogram leaving the height), and finally 
dividing it again by the distance between P1 and P2 in order to 
normalize the value.  The X input to the hash function is 
computed by finding the shortest distance between P3 and the 
line passing through P1 and perpendicular to the line formed 
from P1 and P2.  Once again the distance is then divided by 
the distance between P1 and P2 in order to normalize it (line 
126 in Appendix A).   Mathematically this is equivalent to 
calculating the dot product of the two vectors P2 and P3 with 
P1 as their origin, dividing it by the distance between P1 and 
P2 (equivalent to finding the projection of the P3 vector onto 
the P2 vector), and finally dividing it again by the distance 
between P1 and P2 in order to normalize the value.  The 
normalization is done in order to accommodate object scaling.  
If an object is present in the image, the X and Y values should 
map to the hash table bins that hold information for that 
object; if an object is not present it is highly unlikely that all 
or even a significant number of the bins addressed by X and Y 
will contain object information.  If the feature coordinates 
map to a full bin then the object and basis information is used 
to “cast a vote” for the object and basis by incrementing a 

local counter variable addressed by the object number and 
basis number.  Once all of the coordinates for a particular 
basis have been checked, the local counts are compared 
against some threshold and considered as potential object 
match if they exceed it; if the local count exceeds the 
threshold then a global counter for that object is incremented.  
The threshold is determined by the number of key features per 
object and some precision variable that adjusts the accuracy of 
the algorithm. 

Every source read discussed calculating the inputs to the 
hash function by finding the rotation and scaling 
transformations about the midpoint between points P1 and P2 
that send P1 to the coordinate (-1/2, 0) and P2 to the 
coordinate (1/2, 0).  The transformations are then applied to 
P3 and its new X and Y coordinates are used as inputs to the 
hash function. This involves several floating point additions 
and multiplications when implemented in computer programs.  
With knowledge of mathematics, we were able to derive the 
much more computationally efficient technique described in 
the previous paragraph.  When implemented in code many of 
the computations needed to find the dot product for input X 
can be reused to find the cross product for input Y.  Also, 
because of the way we have implemented the hash table, all 
but one of the multiplications and divisions needed per input 
calculation are integer operations rather than floating point 
operations.  

Once all of the 2 point bases have been cycled through, 
the global counts are compared against some global threshold 
and the object is considered present if its counter exceeds the 
threshold (lines 152-156 in Appendix A).  If an object is 
discovered in an image, the program reports “Object X found 
in Image Y.”  At this point if the program has exhausted its 
list of input images the program terminates, otherwise it 
continues with the next image. 

There are many different design choices that affect the 
performance of this geometric hashing implementation.  Some 
of the most important are the feature type, the number of 
features used to describe the object, the threshold precision, 
and the number of features found in an input image.  As 
mentioned previously, the choice of feature type leads to an 
accuracy to computation tradeoff.  The more complex the 
feature type the greater amount of computation needed to find 
that feature in an image.  Also, the feature type greatly 
impacts the number of features found in an input image which 
above all other factors increases the total execution time by 
increasing the number of iteration performed in the triple 
nested for loop.  Both the number of features used to describe 
the object and the threshold precision affect the accuracy of 
the implementation.  If the number of features used to 
describe the object is too low then the probability of finding 
stray feature points that may map to full hash bins and trigger 
increments of the vote counters increases dramatically.  This 
problem is magnified when the threshold precision is set too 
low reducing the number of false hits required to trigger a 
vote.  If the number of features used to describe the object is 
too high then the number of features found would increase.  
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Fig. 7.  Flow chart describing the general structure of the parallel implement-
ation of the geometric hashing algorithm. 

Also, the hash table size would increase due to the increased 
number of hash table entries and bits required to store a single 
hash table entry; for N features and O objects there are 
O*N*(N-1)*(N-2) hash table entries and O*(2Log2N+ Log2O) 

bits required per entry.  If the threshold precision is too high 
then the probability of missing an image that is present 
increases.  This is due in part to the fact that sometimes the 
feature data is not properly found or the data may be corrupted 
during transformations such as scaling or rotations.  If an 
object within an image is partially occluded by some other 
object then some of the feature points may be covered and 
therefore will not be discovered when the image is searched.  
Due to the discrete nature of pixels it may be impossible to 
completely preserve the features of an object under certain 
transformations. 

These design choices are at odds with each other making 
it impossible to determine the optimum configuration without 
knowing the input to the program a priori.  The design choices 
were left as variables to the program, allowing for program 
tweaking after testing. 
 

B. Parallel Implementation 

The serial implementation was modified to run on a 
variable number of processors using the Unified Parallel C 
extension to the C programming language.  The final version 
of the parallel implementation reads in a collection of images 
at runtime and processes them one at a time like the serial 
implementation does, but the work is evenly distributed 
amongst multiple processors rather than one.  Each image is 
equally distributed amongst all of the processors and each 
processor searches its own section of the image for key 
features; this is done rather than sending each processor its 
own image to improve load balancing (an image with 10 
objects in it would require much more work than an image 
with absolutely no key features in it).  Once all processors 
have completed searching the image, each processor then 
collects the discovered feature coordinates from each other 
processor to populate a local list.  This amounts to all-to-all 
communication assuming all processors find at least one key 
feature.  With a complete list of the found features, all 
processors perform the search algorithm on an equally 
partitioned subset of the required loop iterations.  Each 
processor keeps a local vote counter.  When all processors 
have completed their subset of the computation, the local vote 
counters are accumulated in a global variable and a single 
processor reports if an object has been discovered. 

Full code for the parallel implementation is provided in 
Appendix B.  The flow chart in Fig. 7 describes the general 
structure of the parallel implementation.  The next few 
paragraphs describe the parallel code in detail. 

The first thing the code does is load in a hash table and 
key features from a pre-populated DAT file in the same 
manner as the serial implementation (lines 68-78 in Appendix 
B).  Since each processor requires extensive use of the hash 
table, each processor loads its own copy.  The load is 
implemented using standard C file I/O; an attempt to 
implement the file reading using parallel UPC-IO was quickly 
abandoned when it was discovered that the Mu cluster does 
not support it. 
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After the hash table is stored on each processor, the 
program begins to cycle through all of the images until there 
are none left but not in the same way used in the serial 
implementation (lines 78-108 in Appendix B).  Once again, 
because the Mu cluster does not support UPC-IO, the image 
file read must be implemented using standard C file I/O.  If 
the image read was implemented the same way in the parallel 
version as in the serial version, only one processor could load 
in an image while the others remain idle.  In order to fully 
utilize all of the processors, assuming there are enough images 
left to be processed, each processor loads a separate image 
into shared memory every THREADS iterations so that no 
images need to be loaded for the next THREADS-1 iterations.  
On the iterations where images are loaded, the image loaded 
by Thread 0 will always be the next image to be processed.  
Because of this, it is only necessary to wait for Thread 0 to 
finish loading the image rather than waiting for all processors 
to finish.  This is realized with the strategic use of upc_notify 
and upc_wait statements. 

In an earlier implementation of the parallel code, a 
different image load scheme was tested.  The code was set up 
so that only one thread was responsible for loading images 
and the rest of the threads were responsible for processing the 
images.  This is a classic producer/consumer implementation.  
This scheme was eventually abandoned because of load 
balancing; it was discovered that the image loading thread was 
usually idle due to the unbalanced workload. 

With the current image in shared memory, each processor 
searches its section of the image pixel by pixel for the key 
features loaded from the hash table DAT (112-133 in 
Appendix B).  The search algorithm used here is the exact 
same algorithm used in the serial implementation but for a 
subsection of the image.  The subsection searched is 
determined by its affinity to a processor which is ultimately 
determined by the block distribution in shared memory.  The 
image data was distributed equally into THREADS number of 
blocks with a blocksize equal to image size divided by 
THREADS.  That is, the data is striped horizontally across the 
image.  When matches are found, their coordinates are 
recorded in a local list. 

In order to proceed, each processor needs access to all 
discovered feature coordinates.  Since each processor stores 
the coordinates of discovered feature points from its own 
section of the image in a block of shared memory with affinity 
to itself, the program could continue after a barrier 
synchronization but every other processor would have to 
perform a remote read when trying to read these coordinates 
for calculation.  This would be acceptable if the other 
processors only read the other coordinates on occasion but 
that is not the case for the geometric hashing algorithm; for N 
feature points, the parallel implementation requires each 
coordinate pair be accessed at least N*(N-1) times by each 
processor.  This is an unacceptable number of remote accesses 
for even a small number of features found.  One solution to 
this problem is to have each processor transfer each remote 
block of feature coordinates from the other processor’s shared 

memory to its own local memory (Lines 134-144 in Appendix 
B).  This is implemented with a loop of upc_memget 
statements that transfer blocks of shared memory to blocks of 
local memory.  upc_memget was used because it is far more 
efficient than transferring data one element at a time.  This 
amounts to all-to-all communication assuming all processors 
find at least one key feature but is better than the alternative 
assuming even a few found features.  The execution of two 
versions of code, one with the transfer of shared memory to 
local memory and one without, confirms these observations; 
the code with the transfer executes a lot faster assuming the 
input image has at least a few feature points.  This section of 
code is complete overhead not required in the serial 
implementations but necessary to implement the parallel 
algorithm efficiently. 

With a local list of all of the found feature coordinates, 
the processors begin to execute the same triple nested for loop 
that the serial implementation did with the exception that the 
iterations are equally distributed amongst all of the processors 
(lines 145-182 in Appendix B).  This is implemented by 
replacing the outer for loop with a simple upc_forall loop 
containing the loop counter as the affinity expression.  The 
global vote counter is handled differently as well; instead of 
having only one global vote counter per object, each processor 
now has its own global vote counter in local memory.  This is 
done because there would be too much contention for access 
to a single counter and would result in a lot of CPU cycles 
wasted waiting on a lock.  Lines 183-194 in Appendix B are 
added overhead not present in the serial implementation 
responsible for combining all of the global counters in local 
memory into a single counter on a single processor (thread 
THREADS-1) 

Once all other processors have finished updating the 
global counter on thread THREADS-1, the other threads 
continue onto the next image while thread THREADS-1 prints 
the object discoveries to the screen (lines 195-202 in 
Appendix B).  When an object is discovered the same 
message, “Object X found in Image Y,” is printed to the 
screen. At this point, if the program has exhausted its list of 
input images, the program terminates otherwise it continues 
with the next image.  As mentioned previously, only on one 
out of THREADS iterations does continuing with the next 
image involve loading the image from file.  On the other 
THREADS-1 out of THREADS iterations loading the image is 
not required. 

The same design choices important for the serial 
implementation are important for the parallel implementation.  
As in the serial implementation, the design choices were left 
as variables to the program, allowing for program tweaking 
after testing. 
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Fig. 8.  These are the three target objects searched for in the test batch of images 

V.  EXPERIMENT 

To carry out the performance analysis, the serial and 
parallel implementations explained in the previous section 
were executed on the Mu cluster of the HCS lab.  This 
allowed both programs to run on the same AMD 2.0 GHz 
Opteron processor platform and system architecture.  More 
information on the Mu cluster can be found on the website in 
[7].  The serial implementation will be compared against the 
parallel implementation run on a variable number of threads.  
Also included in our experiment are extra tests that validate 
several design decisions. The total execution time and 
accuracy of the algorithm were used as metrics for validation.  
Additionally, the PPW analysis tool was used to measure the 
relative performance of the parallel implementation on 
multiple thread configurations.  The results of our experiment 
will be discussed in the next section. 

In order to analyze the performance of our 
implementations, a test batch of fifty 840x600 2-D 24-bit 
BMP images was used to detect the three different 2-D target 
objects shown in Fig. 8.  This test batch is a load 
representative of a realistic input to the system and was kept 
constant from test to test.  The three target objects were placed 
randomly among fifty images under various transformations 
where each image contained either all three, a combination of 
two, just one, or no objects at all.   Supported transformations 
are rotations, translations, and scaling.  Also, objects may or 
may not be partially covered by other objects in an image.  
Each image contained a random amount of extra target feature 
points added in an attempt to trick the algorithm into 
producing false positives and vary the workload produced by 
each image.  This random amount varied from having no extra 
feature points in certain images to a few images containing a 
heavy load of extra feature points aside from those detected in 
the target objects.  Each image also contained a mixture of 
different geometric shapes with dissimilar colors.  All images 
were then saved on the cluster and loaded into the program at 
runtime.  

The reason for choosing the number 840 as the pixel 
height of the images was because the largest number of 
threads used in this study is 8.  To balance the workload in the 
parallel implementation, each image is divided horizontally 
into equal block sizes for each thread running in the particular 

execution.  Using a height of 840 pixels allows the program to 
evenly divide the block sizes by any number of threads up to 
eight.  The width dimension of 600 pixels was not significant 
in this study, however, it was arbitrarily chosen as an amount 
that together with the height would not cause the partitioning 
of the entire image in the algorithm to exceed the maximum 
block size.    

The intention of using 2-D images in our work, as 
opposed to 3-D images, was to avoid inaccuracies and 
misdetections introduced by the azimuthal angle present in 3-
D imagery.  An object shown in one picture may appear in a 
second picture at a different angle from the reference plane 
and vector of the first picture.  For the 2-D geometric hashing 
algorithm to perform accurately, it is important for this angle 
to remain constant.  In our work, attempts to run 2-D image 
recognition on 3-D images such as license plates or stop signs 
failed to find any objects at all; a problem attributed to 
capturing images at different angles. 

The following subsections explain the different 
experimental setups for our work.  
 

A. Hash Table Population   

The three objects from Fig. 8 were used as inputs to the 
hash table creation code in Appendix C.  This program 
searched the objects for the most unique features and chose an 
equally distributed subset.  The subset was then used to 
populate the hash table using the same algorithm used to read 
it. 
 

B.  Serial Baseline Run 

The serial algorithm was considered the baseline 
performance metric and used to compare with the 
performances of the other algorithm executions.  This 
program was executed on one of the processors in the Mu 
cluster.  The total execution time along with gathered profile 
data from PPW was collected and recorded. 
 

C.  Parallel Run 

The parallel algorithm was executed on the Mu cluster 
with a varied number of threads ranging from 1 to 8.  Each 



TEAM NUMBER 11 
 

9

time, the total execution time and profile data from PPW was 
collected and recorded. 

TABLE 1: Total Execution Times 

TABLE 2: Speedup

 
 
 

 
Fig. 9.  Pie chart of profile data for the parallel implementation 
executed on 8 threads. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10.  Pie chart of profile data for an early version of the parallel 
implementation executed on 8 threads. 

 
D.  Load Balancing Test 

To illustrate the importance of load balancing, the 
performance of our parallel implementation was compared to 
the performance of an alternative parallel implementation that 
essentially runs the serial code on multiple threads.  Minimal 
parallelization overhead exists in this alternative implemen-
tation, however, the workload in each thread varies depending 
on the input images fed into the program.  

 
 
VI.   RESULTS 
 

Before experimentally 
comparing the performance 
of the serial and parallel 
implementations, their 
accuracies were tested using 
the test batch of fifty 
images.  After execution of 
each implementation, the 
output was used to observe 
the number of successes and 
failures.  It is considered a 
success when an object is 
detected within an image 
and the object is present as 
well as when it is not 

detected when the object is not present.  In contrast, it is 
considered a failure when an object is detected within an 
image and it is not present as well as when it is not detected 
within an image and it is present.  Since there are three objects 
to search for, each image processed has the possibility of three 
successes or failures; with a test bench of fifty images, this 
leads to a total of 150 possible successes.  In our tests, the 
execution of all implementations reported the same number of 
successes and failures which totaled 142 successes and 8 

failures equivalent to a 94.7% success 
rate.  One of the failures was due to 
not detecting an image when it was 
actually present and is because too 
many of the object feature points were 
covered by another object.  The other 
7 out of 8 failures were due to 
detecting an object when it was not 
present and can be attributed to an 
excessively high number of feature 
points found.  Subjectively, we believe 
it is better to falsely detect an object 
when it is not present than to miss an 
object when it is present. 

The total execution times for each implementation are 
shown in Table 1.  The execution times in the table show that 
the parallel code outperforms the serial code as the number of 
threads increases.  Except for the parallel implementation run 
on a single processor, the execution times of each parallel 
execution are increasingly lower than the serial 
implementation time.   The best case performance achieved 
was 54.7 seconds with the parallel implementation executed 
on 8 processors which is significantly faster than the 203 
second time achieved by the serial baseline.  The execution of 
the parallel code run on 1 processor achieved a slower total 
execution time than the serial execution due to the negative 
impact of increased overhead due to parallelization without 
the added benefit of extra processors.  It is also important to 
note that as the number of threads increased, the performance 
gained due to adding one additional processor decreased.  The 
reason for this is that with each added processor, additional 
overhead is added but the amount of useful work remains 
constant.  Table 1 also shows the execution time for the 
alternative parallel implementation that runs the serial code on 
multiple threads and will be discussed later in this section.  

The execution times from Table 1 were used to calculate 
the relative speedups of the parallel executions using the serial 
implementation as the baseline.  Those calculated values are 
listed in Table 2.  As expected from our previous discussion, 

Implementation 
w/ P Processors 

Total 
Execution 
Time (s) 

Serial - P=1 203.0 
Parallel - P=1 276.1 
Parallel - P=2 181.5 
Parallel - P=3 134.8 
Parallel - P=4 100.2 
Parallel - P=5 81.3 
Parallel - P=6 72.1 
Parallel - P=7 61.3 
Parallel - P=8 54.7 

Serial 
Distributed - 

P=8 
160.7 

# of 
Threads 

Speedup 
Over 
Serial 

2 1.12 

3 1.51 
4 2.03 
5 2.50 

6 2.82 

7 3.31 
8 3.71 
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Fig. 11.  The bar graph depicting the accumulated execution times of each thread per program execution. 

the speedup due to parallelization increases as the number of 
threads increases but at a decreasing rate.  

 
 
 

 
Fig. 12.  Graphs showing execution time of each thread for the parallel 
implemention (top) and alternate parallel implementation (bottom). 

In addition to collecting the execution times and 
calculating the speedups, the profile data collected from the 
Parallel Performance Wizard was used to analyze where time 
was being spent in each implementation. The pie-chart in Fig. 
9 shows a breakdown of the time spent performing certain 
functions in the final version of the parallel code executed on 
8 threads.  The green, blue, and small purple portions of the 
pie represent the amount of time spent taking care of 
overhead.  The green slice corresponds to having a single 
processor loading images into shared memory.  This overhead 
should be drastically reduced if the use of UPC-IO was 
possible.  The blue slice corresponds to the time wasted 
implementing barrier synchronizations.  The red portion 
represents the amount of time spent executing useful code.  
Overhead associated with the purple sliver is time spent doing 
everything else.  Fig.9 clearly shows that approximately 70% 
of the execution time was spent doing useful work while 30% 
was spent on overhead. 

Profile data from PPW was also used to optimize our 
original parallel code into the final code used for our tests.  
Testing of the original implementation showed that a large 
percentage of time was spent notifying under small loads and 
an even larger percentage was spent in a lock under high 
loads.  The pie-chart in Fig. 10 corresponds to profile data 
from one of the first versions of our parallel implementation 
run with the same number of processors and same load as the 
execution in Fig. 9.  By observing the chart, it can be clearly 
seen that approximately 57% of the execution time was spent 
dealing with lock issues.  Before running PPW, we did not 
expect this to be an issue but viewing this information brought 

the problem to our attention.  The resulting modifications in 
our code led to more efficient use of synchronization and lock 
statements which improved parallel performance and led us to 
the final distribution in Fig. 9. 

Another feature of PPW allows further analysis of our 
implementation by accumulating the time spent in each 
section of the code by each thread and displaying it in an easy 
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to understand bar graph.  Fig. 11 displays a comparison 
between the serial implementation and our parallel 
implementation run with a varying number of threads.  It also 
shows a comparison between the un-load-balanced 
implementation that will be discussed in the next paragraph.  
Overall, it can be observed from Fig. 11 that the amount of 
useful work remains relatively constant among parallel 
executions with varying processors while the overhead 
increases as the amount of threads increases.  This however 
does not mean that the overall execution time increases as the 
number of threads increases; the sum total of all processor’s 
work increases but the average work per processor decreases, 
and assuming a balanced workload, leads to a decrease in the 
total execution time.  Our observations from testing echo this. 

An imbalance in the workload per thread prevents the 
execution time from being faster than the thread with the most 
work.  This is illustrated in Fig. 11 with the comparison 
between the bar of the 8 thread parallel execution and the bar 
of the alternative parallel 8 thread execution with an 
unbalanced workload (second to last and last bar 
respectively).  The last bar shows that the sum total of work 
on each processor for the alternate parallel implementation is 
less than that of the 8 thread parallel implementation, although 
the later executed far more quickly.  The explanation for this 
can be seen in Fig. 12.  The top graph in Fig. 12 shows that all 
threads finished executing at approximately the same time 
while the bottom graph shows that under the same batch of 
input images, the majority of threads finished their executions 
at relatively the same time while a single thread continued to 
execute.  The top graph was taken from our parallel 
implementation and shows an almost perfectly balanced 
workload across each thread.  The bottom graph, taken from 
the alternate parallel implementation, shows that one 
processor ended up doing more work than the others.  Fig. 11 
shows less parallelization overhead exists in this alternative 
implementation, however, the workload in each thread varies 
depending on the input images fed into the program and leads 
to the poorer performance. 
 
 
VII.   CONCLUSIONS AND FUTURE WORK 

Applications that require analysis of every image in a 
stream of incoming images are limited by the speed of the 
hardware they are utilizing.  The example applications 
mentioned in Section II have the need for fast data processing 
and that need may exceed the performance capabilities of a 
single processor.  Implementing the object recognition 
algorithm on a parallel architecture will simply improve the 
performance; that means the ability to search for a larger 
number of objects at an increased rate. 

We have shown that running the 2-D geometric hashing 
algorithm on a parallel architecture can provide a speedup of 
3.71 over a serial implementation when executing the parallel 
algorithm on 8 processors.  In this study, the test batch of 
images was kept constant while the number of threads and 

implementations were varied.  As more threads were used in 
the execution of the parallel algorithm, a decrease in overall 
execution time was observed.  Our results lead towards the 
conclusion that running the geometric hashing algorithm on a 
well-balanced, efficiently designed parallel implementation 
executed on multiple processors performs better than a serial 
implementation executing on only one. 

Potential future work includes modifying the 
implementations to realize the 3-D geometric hashing 
algorithm, changing the feature type searched for, and running 
the current implementations on more of the 8 threads available 
on to us on the Mu cluster. 
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