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This paper presents an approach for system reliability analysis where a tail model is used 

for computing the reliability constraints.  The tail model is an adaptation of a powerful 

result from extreme value theory in statistics related to the distribution of exceedances.  The 

conditional excess distribution above a certain threshold is approximated using the 

generalized Pareto distribution (GPD).  The shape and scale parameters in the GPD are 

estimated using either maximum likelihood or the least square method.  The tail modeling 

technique is utilized to approximate the probability of failure in reliability analysis.  The 

proposed method does not approximate the functional expression of the model output; 

rather approximates the tail of the cumulative distribution.  Thus, it has an advantage of the 

system reliability analysis in which no single form of functional expression is available. The 

effectiveness and efficiency of the proposed approach are demonstrated using benchmark 

problems in structural design with multiple performance measures. 

I. Introduction 

ELIABILITY analysis involving system performance has been challenging because traditional methods, such 

as moment-based methods and response surface methods, cannot evaluate the system reliability accurately 

when the correlation between multiple performance functions is unknown.  In addition, Monte Carlo methods for 

these tasks often fail to meet constraints (computational resources, cost, time, etc.) because the relatively high 

number of simulations required for evaluating the reliability constraints typically present in industrial environments.  

In reliability analysis, the interest lies in the occurrence of rather exceptional events (tail part of probability 

distribution).  In that regard, the moment-based method and the response surface method are not suitable because 

they are focused on the central part of the probability distribution.  It is generally accepted that using central models 

(e.g., response surfaces) for estimating large percentiles such as those required in reliability constraint calculations 

can lead to significant inaccuracies in the RBDO results (e.g., Maes and Huyse
[1]
). 

This paper presents a reliability analysis approach with the system reliability constraint.  The reliability 

constraint is computed from rather general tail models available from extreme value theory in statistics (Castillo
[2]
).  

The conditional excess distribution above a certain threshold is approximated using the generalized Pareto 

distribution (GPD).  The parameters in GPD are calculated using either the maximum likelihood function or the least 

square method.  By incorporating the tail modeling technique with the probability of failure, the reliability analysis 

can be carried out for a structure with the system reliability constraint.  The proposed method does not approximate 

the functional expression of the performance function; rather approximates the tail of the cumulative distribution.  

Thus, it has an advantage of the system reliability analysis and design in which no single form of functional 

expression is available. 
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The paper is structured as follows.  In Section 2, the tail of the cumulative distribution function is modeled using 

the generalized Pareto distribution.  The RBDO framework using the tail modeling technique is presented in Section 

3.  Two numerical examples are presented in Section 4, followed by conclusions in Section 5. 

II. Tail Modeling and Generalized Pareto Distribution 

The cumulative distribution of a random variable can be decomposed into three parts: a lower tail, a central part, 

and an upper tail.  Identifying a probabilistic model for large (extreme) values of the random variable is a key for a 

more accurate evaluation of the reliability constraints.  The extreme value theory in statistics can be used for this 

purpose, as it provides a powerful result related to the distribution of exceedances called generalized Pareto 

distribution (Pickands
[3]
) that can be adapted for solving reliability constraints. 

The fundamental idea of the tail–modeling technique stems from the property of tail equivalence.  Two 

distribution functions ( )F x  and ( )G x  are called tail equivalent (Maes and Breitung[4]) if 

 
1 ( )

lim 1
1 ( )x

F x

G x→∞

−
=

−
 (1) 

As far as the extreme behaviors of the two distributions are equivalent, the tail–model of ( )F x  can be used to 

approximate the upper (or lower) tail of ( )G x .  This approach does not take into account the central behavior of the 

distribution.  Rather, it focuses on the tail behavior, which fits for the purpose of structural reliability analysis. 

In reliability analysis of structural systems, the cumulative distribution of a performance function is the most 

important criterion to determine the safety of the system.  Let x  be the vector of input random variables.  Due to the 

uncertainty propagation, the performance function, ( )y x , also shows random distribution. Let the performance 

function, ( )y x , be a random variable and g  be a large threshold of y  (see Figure 1).  For the region that y  is 

greater than g , the GPD represents a general approximation of the conditional excess distribution ( )gF z  where 

z y g= − ; that is, the distribution of values of a random variable y  above a certain threshold g .  Specifically, a 

theorem from extreme value theory establishes that for large values of g , ( )gF z  can be well approximated by: 

 ,
ˆ( ) ( )gF z F zξ σ≈ , (2) 

where 
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Figure 1: Tail–modeling of ( )F y  using the threshold value of g . 
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In Eq. (3), max(0, )A A+ =  and 0z ≥ .  ,
ˆ ( )F zξ σ  in Eq. (3) is called the generalized Pareto distribution (GPD), 

and ξ  and σ  are the shape and scale parameters, respectively, which need to be determined. 

Note that the conditional excess distribution ( )gF z  is related to the cumulative distribution of interest ( )F y  

through the following expression: 

 
( ) ( )

( )
1 ( )g

F y F g
F z

F g

−
=

−
. (4) 

The flexibility of the GPD in Eq. (3) can be examined by changing its parameters and plotting the distribution 

above the threshold.  Figure 2 shows the different cumulative distributions that are generated from the GPD when 

the scale parameter, σ , is fixed to one, and the threshold, g , is selected such that ( ) 0.98F g = .  When the shape 

parameter 0ξ > , it represents the heavy tail behavior, such as Pareto distribution.  On the other hand, when 0ξ < , 

it represents the light tail behavior, such as the beta distribution.  Note that the uniform distribution can also be 

modeled using 1ξ = − . 

The appropriate value for g , that is, the specification of the beginning of the upper tail, has been the subject of 

extensive research, and empirical values for it has been proposed (e.g., Boos
[5]
; Hasofer

[6]
; Caers and Maes

[7]
).   In 

Hasofer’s study, for example, the use of 1.5gN N≈  is suggested where gN  is the number of tail data and N  is 

the total number of data.  On the other hand, the shape and scale parameters in the GPD can be estimated using 

either maximum likelihood (Prescott and Walden
[8]
; Hosking

[9]
) or least-square method. 

In general, two sources of errors are involved in tail–modeling: (a) lack of modeling capability, and (b) errors in 

random sampling and in the empirical CDF.  The former is related to the flexibility of the tail–model in representing 

various tail behaviors, and the latter is related to the number of samples and to the appropriate selection the 

threshold.  The effects of these two sources of errors will be discussed in the numerical examples. 

III. Reliability Analysis Using Tail–Modeling 

Reliability analysis in structural problems often means the evaluation of the probability of failure.  In this 

section, the tail–model will be used to calculate the probability of failure analytically.  In addition, the inverse 

reliability analysis can easily be performed because the analytical expression of the reliability is available.  The 

accuracy and convergence of the tail–model will be discussed using various distribution types. 

A. Probability of Failure 

In structural reliability analysis, the probability of failure, fP , is often used as a constraint, so that it should be 

less than the prescribed target probability of failure, ,targetfP .  An analytical expression for the constraint value is 

Figure 2: Generalized Pareto distributions for different shape parameters 
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now developed in three steps based on the GPD approximation and the available data.  First, an explicit expression 

for ( )F y  is obtained from Eq. (4), as 

 ( ) [1 ( )] ( ) ( )gF y F g F z F g= − + . (5) 

Second, in the above expression ( )gF z  is substituted by the corresponding GPD in Eq. (3), and for the prescribed 

( )F g , the threshold is interpolated using 

 ( ) 1
1 1

1

( ) j
j j j

j j

F g p
g y y y

p p

−
− −

−

−
= + −

−
, (6) 

where jp  is the empirical CDF.  After the substitutions, ( )F y  can be written as 

 ( )

1

( ) 1 1 ( ) 1 ( )F y F g y g
ξξ

σ

−

+

= − − + − . (7) 

When the performance function, y , is defined such that the structural system is failed when 0y >  and safe 

when 0y ≤ , the probability of failure can be written as 

 ( )

1

: 1 ( 0) 1 ( ) 1 )fP F y F g g
ξξ

σ

−

+

= − = = − − . (8) 

Equation (8) provides an analytical expression of the probability of failure, which can be directly used in evaluating 

the constraints in RBDO. 

The estimation of the probability of failure in Eq. (8) is only valid when the threshold 0g < , which means that 

1 ( )fP F g< − .  Equivalently, the limit state ( 0)y =  must belong to the tail part.  When the safety margin of the 

structural system is small, the probability of failure does not belong to the tail part, and the above formula cannot be 

used for estimating the probability of failure.  The requirement of the structural safety is usually given in the range 

of small probability of failure so that the above requirement is satisfied.  During the process of design optimization, 

however, it may be possible that a design may produce a relatively unsafe configuration.  In such a case, a special 

treatment is required to estimate the probability of failure below the threshold.  However, the estimation does not 

have to be accurate because it is not the final design. 

B. Reliability Index and Inverse Reliability Analysis 

In reliability–based design optimization, two methods are often referred: the reliability index approach and the 

performance measure approach, or often called the inverse measure approach.  An inverse measure is the value of 

the performance function that corresponds to the given value of the probability, while a reliability index is the index 

of the standard normal distribution, corresponding to the specific value of the performance function.  These two 

approaches work well with the first–order reliability method (FORM), where the performance function is assumed 

to be normally distributed after linearization. 

For the estimated probability of failure in Eq. (8), the reliability index, β , can be calculated using 

 1( )fPβ −= −Φ , (9) 

where ( )Φ i  is the CDF of the standard normal random variable.  The reliability constraint is then imposed using the 
reliability index, as 

 1
target ,target: ( )fPβ β −≥ = −Φ , (10) 

where targetβ  is the target reliability index that corresponds to the target probability of failure, ,targetfP . 
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On the other hand, the inverse measure approach calculates the value of the performance function, *y , 

corresponding to the target probability of failure. Using tail–modeling in Eq. (8) with ,targetf fP P= , the inverse 

measure can be obtained by 

 
,target*( , ) 1

1 ( )
fP

y g
F g

ξ
σ

σ ξ
ξ

−   = + −   −  
. (11) 

The reliability constraint is then imposed using the performance function as 

 * 0y ≤ . (12) 

When the tail is heavy, i.e., 0ξ > , the above formula can be used to find the value of the performance function 
* ( )y g≥  that has probability of failure fP .  On the other hand, when the tail is light, i.e., 0ξ < , the value of the 

performance function can be found up to * /y g σ ξ= − , at which 0fP = . 

In the literature (Lee et al.
[10]
; Youn et al.

[11]
), it has been presented that the inverse measure approach is more 

stable than the reliability index approach.  When the probability of failure is zero, the latter shows a singularity.  The 

difficulty in the reliability index approach is related to the transformation in Eq. (9).  The reliability index 

approaches to the value of infinity as the probability of failure is reduced.  Thus, it is difficult to calculate the 

reliability index when the target reliability is far from the failure surface.  On the other hand, the inverse reliability 

analysis always yields a finite value of performance function that satisfies the target reliability.  Ramu et al.
[12]
 

presented an inverse measure, called probabilistic sufficiency factor (PSF), when sampling–based methods are used. 

 The inverse measure used here is the probabilistic sufficiency factor (PSF) introduced by Qu and Haftka
[16]
.  PSF 

is a safety factor with respect to the target probability of failure and hence combines the concepts of safety factor 

and the probability of failure. Let the capacity of the system be gc (e.g., allowable strength) and the response be gr.  

For the given vector x of input variables, the traditional safety factor is defined as the ratio of the capacity to the 

response, as 

 
( )

( )
( )
c

r

g
S

g
=

x

x

x

 (13) 

The system is considered to be failed when 1S ≤  and safe when 1S > . 

When the vector x  of input variables is random, gc(x) and gr(x) are random in nature, resulting in the safety 

factor being a random function.  In such instances, the safety of the system can be enforced by using the following 

reliability constraint: 

 ( ) target: Pr ( ) 1f fP S P= ≤ ≤x , (14) 

where Pf is the failure probability of the system and Pf target is the target failure probability, which is the design 

requirement. 

 The last inequality in Eq. (14) can be converted into equality, if the upper bound of the safety factor is relaxed 

(in this case it is one).  Let the relaxed upper bound be s
*
.  Then, the last part of the reliability constraint in Eq. (14) 

can be rewritten, as 

 *
targetPr( ( ) ) fS s P≤ =x . (15) 

The relaxed upper bound s
*
 is called the Probabilistic Sufficient Factor (PSF).  Using PSF, the goal is to find the 

value of PSF that makes the CDF of the safety factor equals to the target failure probability.  Finding s
*
 requires 

inverse mapping of CDF, from which the terminology of inverse measure comes. A unique advantage of PSF is that 

design engineers, who are familiar to the deterministic design using the safety factor, can apply the similar notion to 

the probabilistic design 

C. System Reliability Analysis 
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In the case of system reliability analysis, let there are k  performance functions involved such that the system is 

failed when one of the performance functions is failed.  Thus, the probability of failure is defined as the union of 

individual failure modes, as 

 [ ]1 2Pr ( 0) ( 0) ( 0)f kP y y y= ≥ ∪ ≥ ∪ ∪ ≥⋯ . (16) 

Then, the system performance function can be defined as 

 ( )sys 1 2max ky y y y= ⋯ , (17) 

The function sysy  in Eq. (17) is a non-smooth function in general.  Thus, the moment-based methods or response 

surface methods will be inaccurate.  The system failure probability can be estimated using bounding technique
[13]
, 

but for a complex system the bounds would be wide
[14]
.  

 In the tail modeling, however, the cumulative distribution of the safety factor is estimated, in stead of sysy . Thus 

the system PSF is defined as 

 ( )sys 1 2min kS S S S= ⋯ , (18) 

Then, the same reliability constraint in Eq. (15) can be used by substituting sysS  into ( )S x . The advantage of the 

system PSF is that all the output functions are automatically scaled into the safety factor. 

IV. Numerical Examples 

A. Beam Problem 

The cantilever beam shown in Fig. 32 (Wu et al.
[15]
) is a commonly used demonstration example for reliability 

analysis and optimization. The length L of the beam is 100". The width and thickness is represented by w and t. It is 

subjected to end loads FX and FY in the axial and transverse directions. The general design problem involves 

minimizing the weight or equivalently the cross sectional area: A w t= ⋅  subject to two reliability constraints, 

which require the failure probabilities to be lesser than a prescribed target failure probability. The two failure modes 

are expressed as two limit state functions: 

Strength:  ( )2 2

600 600
s X Yy R R F F

w t wt
σ= − = − +  (19) 

Tip deflection:  ( ) ( )
2 23

2 2

4 Y X
d O O

L F F
y D D D

Ewt t w
= − = − +  (20) 

where R is the yield strength, E is the elastic modulus, and w and t are the design parameters. R, FX, FY, and E are 

random in nature and are defined in Table 1. 

  

L=100" FY 

t FX 

w 

Figure 3. Cantilever beam subjected to horizontal and vertical random loads. 
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In this example, the discussion is limited to the estimation of failure probability in terms of PSF, with much less 

number of samples. Three different cases are discussed. Case 1 discusses the estimation of PSF for the strength 

failure mode using the tail modeling approach at different threshold values. Similarly the PSF estimation for the 

deflection failure mode is investigated in Case 2 and the system failure case where both the failure modes are 

considered simultaneously is discussed in Case 3. For all the cases, the convergence of PSF with respect to different 

thresholds and accuracy of PSF at different number of samples are investigated. Two methods, namely the 

maximum likelihood method and the least square regression method are used to estimate the parameters. The results 

from these methods are compared. 

 

Case 1: 

The first case considers the stress failure mode. The optimal values of the design variables w = 2.4526; t = 

3.8884 for a target failure probability of 0.00135 are adopted from Qu and Haftka
[16]
. The corresponding value of 

PSF for this design is 1.0. 500 samples based on the distribution of the random variables are generated and the PSF 

is estimated for different thresholds as discussed in Section 2. This procedure is repeated 100 times and the mean, 

5%, 95% confidence intervals are estimated. The results are presented in Figure 4. 

It can be observed from Figure 4 that the PSF estimated by regression approach is very unstable whereas the 

median of PSF estimated by the ML approach is relatively stable. There is instability towards higher threshold like 

0.98 but the corresponding exceedance data are very less, which explains the instability. The estimated mean of the 

PSF in the ML approach is close to 0.99 which is about 1% error in estimating the actual value of the PSF. 

 

Case 2: 

The deflection failure mode is addressed here. In the earlier case, the limit state function was linear. The limit 

state function for the deflection failure mode is a slightly nonlinear function in terms of x and y. The allowable 

deflection is chosen to be D0=2.25. Similar to the stress failure case, the PSF is estimated at different thresholds for 

the optimal combination of the design variables. The results are presented in Figure 5. 

 

     Table 1: Random variables for the cantilevered beam problem 

 

Random 

Variable 
FX FY R E 

Distribution 
Normal 

(500,100)lb 

Normal  

(1000,100)lb 

Normal  

(40000,2000) psi 

Normal  

(29E6,1.45E6) psi 

 

 
      (a) Regression             (b) MLE 

 

Figure 4. Convergence of PSF at different thresholds for the stress failure mode. 500 Samples. 100 

Simulations. 
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Case 3: 

Both the failure modes are considered simultaneously in this case. The safety factor for each failure mode is 

evaluated. For each realization, the critical of the two safety factor is considered the system safety factor. Once, the 

system safety factor is obtained for 100 simulations, the tail modeling approach is carried out and the corresponding 

system PSF is estimated. Here the design variables are w = 2.6041; t = 3.6746 and the allowable deflection 

D0=2.145. This combination of the variables allows equal contribution of the modes to the total failure. The 

contribution of the modes are: Pf1 = 0.00099; Pf2 = 0.00117; Pf1 ∩ Pf2 = 0.00016. The convergence plots of PSF for 

the system failure case is presented in Figure 6. Figure 6 shows that the PSF estimated through parameters estimated 

by the regression method is unstable in contrast to the PSF estimated through parameters from the ML method. This 

behavior was observed in the other two cases too. 

The number of samples used in the above studies is 500. The PSF is expected to converge to the actual value 

when the number of samples is increased. In order to understand the effect of number of samples on the PSF 

estimate, the convergence of PSF with respect to number of samples is studied for all the cases. The trend of 

convergence in all the cases was identical for both the methods. In order to avoid repetition, convergence plots for 

 
      (a) Regression             (b) MLE 

 

Figure 5. Cantilever beam deflection failure mode. 500 Samples. 100 Simulations. Convergence of PSF at 

different thresholds. 

 

 
      (a) Regression             (b) MLE 

 

Figure 6. Cantilever beam system failure mode. 500 Samples. 100 Simulations. Convergence of PSF at 

different thresholds. 
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the system case are alone presented in Figure 7. It is clearly depicted by the figure that there is essentially 

convergence in the accuracy of PSF as the 

number of samples is increased. 

It is to be noted that in all the cases 

discussed, the accuracy of PSF at different 

thresholds were more or less uniform for the 

ML method. The mean excess plot was used as 

a tool to study effect of threshold and to choose 

the optimal threshold. The plot is presented in 

Figure 8. It can be clearly seen that the mean 

excess plot is almost linear for the entire range 

of the threshold values. This dictates the reason 

for the accuracy of PSF remaining stable at 

different thresholds. In this example, choosing 

a threshold as low as 0.70 also would have 

allowed us to estimate PSF with good accuracy. 

From the above discussions, it can be 

concluded that the tail modeling approach using 

GPD to model the tails and estimating the 

failure probability therein is capable of 

modeling the tails of responses in structural applications 

adequately. It is possible to estimate PSF with an error of 

1% with only 500 samples. 

B. Tuned Mass-Damper Example 

The tail modeling approach to estimate the failure 

probability is demonstrated here with the help of a tuned 

mass damper example. The tuned mass damper problem in 

Figure 9 is taken from Chen et al.
[17]
. The problem involves 

the failure probability estimation of a damped single degree 

of freedom system with dynamic vibration absorber. Figure 

9 illustrates the tuned damper system consisting of the 

single degree of freedom system and a dynamic vibration 

absorber to reduce the vibrations. The original system is 

 
 

Figure 8. Cantilever beam system failure. Mean excess 

plot. 500 Samples. 

 

 

 

n2,  m ω  

n1,  M ω  

Absorber 

Original 

system 

c1k1 

     y  

 

cos( )F tω====  

k2 

Figure 9. Tuned vibration absorber 

 
      (a) Regression             (b) MLE 

 

Figure 7. Semilog plot. Cantilever beam system failure. Fu=0.90. Convergence of PSF at different number of 

samples. 100 Simulations at each number of samples. 
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externally excited by a harmonic force. The absorber serves to reduce the vibration. The amplitude of vibration 

depends on 

1. /R m M= , the mass ratio of the absorber to the original system 

2. ζ, the damping ratio of the original system 

3. 1 1 /nβ ω ω= , ratio of the natural frequency of the original system to the excitation frequency 

4. 2 2 /nβ ω ω= , ratio of the natural frequency of the absorber  to the excitation frequency 

The amplitude of the original system y is normalized by the amplitude of its quasi static response and is a 

function of four variables expressed as: 

 

2

2

2 22 2 2
2

2 2 2
1 1 2 11 2 1 2

1
1

1 1 1 1 1 1
1 4

y

R

β

ζ
β β β ββ β β β

 −   
=

                 − − − + +  −                        

 (21) 

This example treats 1 2 and β β  as random variables. They follow a normal distribution N(1,0.025) and 

0.01,  =0.01R ζ= . The normalized amplitude of the original system is plotted in Figure 10. There are two peaks 

where the normalized amplitude reached undesirable vibration levels.  The corresponding contour plot is presented 

in Figure 10. The failure region is denoted by the red band. This failure region is an island. That is, the failure region 

has safe regions on either side of it. This introduces additional challenges of not being able to use analytical 

approaches like FORM because the failure region is not a half plane. The objective of the problem is to reduce the 

risk of the normalized amplitude being larger than a certain value. The limit state for this case is expressed as: 

 1 2 1 2 0( , ) ( , )g y yβ β β β= −  (22) 

where 0y  can be considered as the allowable level of vibration. When the limit state in Eq. (22) is greater than 0, 

failure is said to occur. Increasing or decreasing 0y  will help in decreasing or increasing the failure probability 

respectively. 0y  = 27 is considered for the discussion. The corresponding failure probability with 1E5 sample MCS 

is estimated to be 0.0103.  The tail modeling approach with 500 samples and 100 simulations are used to study the 

convergence and accuracy estimates of PSF. The plot for PSF at various thresholds is presented in Figure 11. From 

the plots, it seems that regression behaves better compared to the ML method. There is a discrepancy in the plot 

corresponding to the ML method. The PSF estimated at 0.96 threshold is accurate than the PSF estimate at a 

threshold of 0.98. In order to understand the behavior of the tail of the tuned mass damper, a log plot of the CDF 

with 1E5 samples is examined. The plot is presented in figure 12. 

 
Figure 10: Normalized amplitude of vibration absorber with respect to β1 and β2 

Failed region 
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It is evident from the plot that there are two curvatures in the tail which are difficult to model. And, the GPD has 

to capture this shape with less exceedance data. This is the reason for the discrepancy in the ML plot, the shape of 

the tail at the area of interest (S=1) modeled by ML with a threshold of 0.96 was better than the tail model with a 

threshold of 0.98. In order to further explore the tail models from each method, the tail model from each method is 

superimposed on each other and the comparative plots are presented in Figure 13. It is clearly observed that the tail 

modeled based on ML approach denoted by the broken line attempts to capture the second curvature and in the 

process introduces error in the PSF value corresponding to a failure probability level of 0.01. On the other hand, the 

model obtained based on regression parameters represented by the solid line, approximates the tail in a linear 

fashion and is accurate compared to the tail based on ML method for a failure probability of 0.01. However, the ML 

method is expected to perform better when the failure probability to be estimated is low. When the failure 

probability is low, it becomes necessary to model the second curvature adequately to estimate the PSF with 

reasonable accuracy. The ML method can perform better than the regression approach in modeling the second 

curvature. 

  

 

 

Figure 12: CDF of normalized amplitude.  Figure 13: Comparison of tail models using  

1e5 Samples.  regression and ML method. 

 

  (a) Regression      (b) MLE 

 

Figure 11: Tuned Mass Damper. Convergence of PSF at different thresholds. 500 samples. 100 Simulations 
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This type of CDF might not be encountered in structural applications often and solving this problem with less 

number of samples is very challenging. It was shown that it is possible to estimate the PSF close to 1% error. With 

more insight on the problem, it is possible to select the suitable parameter estimation method depending on the 

requirements. Here, if one needs to estimate PSF corresponding to failure probabilities lesser than 1e-3, then the 

second curvature has to be modeled well and hence ML method is a good choice. Else, for higher failure 

probabilities, regression can perform better. 

V. Conclusions 

A tail modeling technique is utilized to estimate the system reliability with multiple modes of failure.  The tail 

modeling allows focusing on the behavior of the tail with equivalent tail behavior.  The generalized Pareto 

distribution provides a convenient tool for estimating high probability data with much less number of samplings than 

the conventional Monte Carlo simulation. The upper tail of the probabilistic sufficient factor is modeled using tail 

modeling, which allows a convenient way of modeling system failure mode. Two numerical examples show that the 

both regression and maximum likelihood function provide accurate estimation of parameters.  The effect of 

threshold and the accuracy tail estimation are investigated in detail. When 500 samples are used, in the numerical 

examples, the accuracy of tail estimation was with thin 1% error. 
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