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Abstract 

Nonlinear problems such as transient dynamic problems exhibit structural responses that can be discontinuous due to 
numerous bifurcations. This hinders gradient-based or response surface-based optimization. This paper proposes a 
novel approach to split the design space into regions where the response is continuous. This makes traditional 
optimization viable. A convex hull approach is adopted to isolate the points corresponding to unwanted bifurcations 
in the design space. The proposed approach is applied to a tube impacting a rigid wall representing a transient 
dynamic problem. Since nonlinear behavior is highly sensitive to small variations in design, reliability-based design 
optimization is performed. The proposed method provides the designer an optimal design with a prescribed dynamic 
behavior. 

 
I. Introduction especially for crashworthiness. The metamodel (or 

response surface) is used to replace the responses 
extracted from expensive simulations by a simple 
analytical model. The model, which is a function of 
the design variables, is built based on sampling points 
selected from the design space with a chosen design 
of experiments. In addition, response surfaces allow 
the removal of the numerical noise due to the 
simulations. 

Currently, large-scale structural optimization 
problems can be solved efficiently with commercially 
available Finite Element software. However, these 
problems are often limited to linear and simple 
nonlinear behaviors. There are no systematic and 
efficient methods to perform optimization of highly 
nonlinear problems such as those encountered in 
transient dynamic problems (e.g., crash). They 
typically involve many difficulties such as:  

An important aspect of most nonlinear problems is 
that the structural behavior is extremely sensitive to 
small variations in design or imperfections. As an 
implication, some responses may be discontinuous 
due to the presence of bifurcations and limit points 
(Braibant et al., 2002, Missoum et al., 2004). This 
hampers the usage of gradient-based methods or 
response surface approximations to perform 
optimization. 

 
• The computational expense associated with 

repetitive costly finite element analysis 
(Kurtaran et al., 2002) 

 
• The difficulty in computing the sensitivity, 

due to the presence of numerical noise and 
the often encountered convergence 
uncertainties in explicit dynamic codes. 

  
Traditionally, safety factors are used to account for 
uncertainties in deterministic optimization 
approaches.  The use of safety factors assists in 
pushing the optimal design from the boundary of the 
infeasible domain. Hence, safety factors are a 
measure of safety in deterministic approaches. 
Alternatively, probabilistic approaches such as 
reliability-based design optimization can be used. 
They incorporate information about the uncertainties 
that typically appear in material properties, loading 
conditions, geometry and simulation. Therefore, they 
provide more accurate measures of safety. Another 

In view of the aforementioned difficulties, 
researchers (Gu.,2001, Yang et al.,2001, Kurtaran et 
al., 2002, Sobieszczanski-sobieski et al., 2000) have 
used metamodels and design of experiments (DOE) 
to    optimize    (or   simply   improve)   their   design, 
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hull in defining the boundaries of the failure domain 
explicitly, the proposed method also includes the 
possibility of using response surface and gradient-
based optimization and the avoidance of repeated 
costly finite element simulations.  

advantage of this approach is that a particular 
reliability level can be specified. Due to its 
advantages, reliability-based design optimization 
(RBDO) has triggered a strong interest in the 
optimization community [Kharmanda et al., 2004, 
Royset et al., 2003, Koch et al., 2001, Youn et al., 
2004] 

 
Section II discusses the discontinuities and clusters in 
the response for a simple shallow truss with 
geometric nonlinearity. Section III discusses the 
cluster formation in the response space, regions in the 
design space, and the definition of the separation 
functions (lines and convex hull). Reliability-based 
design optimization and response surface 
approximations are discussed in Section IV. Section 
V demonstrates the proposed method on a column 
impacting a rigid wall. Discussions on the results and 
the possible enhancements on the proposed method 
are presented in Section VI and concluding remarks 
are provided in Section VII. 

 
In this research, we investigate an approach to 
identify regions in the design space where the 
dynamic response is continuous. This is achieved by 
identifying clusters in the discontinuous response 
space. The cluster corresponding to “unwanted” 
behaviour can be identified. Each cluster translates 
into specific region in the design space. The 
boundaries between the different regions can be 
distinctly represented using explicit separation 
functions in terms of the design variables. This 
allows defining the boundaries of the failure domain. 
Then, response surface techniques can be used in the 
region of interest to perform optimization. In 
addition, as the regions in the design space are 
associated with various dynamic behaviours, the 
identification of specific regions allows the designer 
to specify a particular behaviour (e.g., no global 
buckling).  

 
II. Discontinuities and clusters: a simple example 

As a demonstrative example exhibiting 
discontinuities, the classical symmetric shallow two-
bar truss (Figure 1) is used (Crisfield M.A., pp 3-7). 
The member cross-sectional area is A and the applied 
force is F. The displacement under the point of 
application of the force is u.  

The explicit functions in terms of design variables 
dividing the regions in the design space, serve as 
constraint for an optimization problem or as a limit 
state for reliability-based design. Missoum et al., 
(2004) used straight lines and ellipse to define the 
boundary of the regions in the design space. 
However, it was shown that straight lines and ellipses 
might be too conservative for some problems.  

 

 
Indeed, among the set of points in a design space, a 
specific region of failure points is identified. The 
boundaries of this region when defined using straight 
lines or ellipse encloses all the failure points but it 
might also encompass many acceptable points. In 
order to overcome this difficulty, this work proposes 
the use of a convex hull to define the boundary of the 
region corresponding to failure points. A convex hull 
of failure points is the smallest convex set containing 
all these points. In the design space, the separation 
functions are the explicit boundaries that define the 
failure domain. 
 
 In the context of reliability-based design 
optimization (RBDO), once these functions are 
defined, the failure domain is known explicitly and 
hence failure probability can be computed easily 
based on the randomness of the design variables. 
 
In addition to the advantages provided by the convex  

 
 

 
 

Figure 1. Two-bar truss 
 
The truss exhibits the typical snap-through behavior 
as depicted in the force / deflection (F(u)) diagram on 
Figure 2. Two curves are plotted corresponding to 
trusses with cross sectional areas A and A + ∆ A. It 
can be seen that for the same load F, the system  
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Figure 2. Force – deflection diagram. Two-bar truss 
 

might exhibit snap-through (displacement u2) or not 
(displacement u1).  This can happen for 
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infinitesimally small variation ∆A, hence the 
displacement u is a discontinuous function of A. This 
might be a serious limitation if optimal design is 
considered. 
 
II. 2 Design of experiments and response study 
In order to study the behavior of the response, the 
design space needs to be sampled. The Latin 
Hypercube Sampling (LHS) technique (Wang., 2003, 
Butler., 2001) is  used to achieve this. The ranges of 
the two variables are:  

A ∈ [70 , 150 mm] 
F ∈ [-700, -400 N ] 

The design of experiments is constituted of 404 
points. The couples (F, A) used are represented on 
Figure 3 with the axes scaled based on the maximum 
values Fmax and Amax. 
 
LHS is a space filling technique that generates points 
within the domain. However, there might be a lack of 
information on the boundaries of the sampling space. 
In order to enhance the quality of the sampling, the 
four vertices of the design space are also included in 
the design of experiments. 

 
Figure 3. LHS design of experiments for the two bar 

truss problem. 404 points 
 
The corresponding values of the displacements, u, are 
plotted on Figure 4. As the displacement is 
discontinuous with respect to the force and the area, 
two clusters are generated. The cluster that contains 
the circled dots is associated with a snap-through 
behavior. Every point in each cluster corresponds to a 
point in the design space (Figure 3). The set of points 
corresponding to the two clusters is represented in 
Figure 5. The clusters result in two regions in the 
design space that can be separated, in this case, by a 
straight line. If we want to optimize the two-bar truss 
enforcing no snap-through, then the design space is 
limited to the R region. The function separating the 
two regions can be used as a constraint for 

optimization and/or a limit state function if 
uncertainties are considered. 

 
Figure 4. Displacement u with respect to force and 

area for the two bar truss problem. Two clusters 
corresponding to stable and buckling behaviors 

 

 
Figure 5. Division of the two bar truss design space 

into two regions. The R region corresponds to a 
stable behavior  

 
III. Identification of clusters and definition of 

separating functions 
 
III.1 Cluster identification 
In order to identify the regions of interest in the 
design space, the clusters created by the 
discontinuities in the response space need to be 
identified. Statistical methods are available to find 
clusters within a cloud of points. This work uses one 
of the most widely used methods, the K-means 
algorithm (Hartigan J.A., 1979). The basic idea of the 
method is to minimize the sum of the Euclidean 
distances of the points of a cluster to its centroid.  
The number of clusters to be identified is an input 
parameter. 
 
In the two-bar truss example, the cluster separation as 
depicted on Figure 4 is obvious. There are cases 
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where the separation is not as clear as will be seen in 
the other example treated in this paper. 

It is noteworthy that when the two linear functions 
are defined as constraints, they cannot be used at the 
same time since the feasible space they define is 
disjoint.  Two optimization problems have to be 
created with gr1 and gr2 as constraint respectively. The 
solutions of these two problems must be compared to 
find the optimum. 

 
III.2 Separating functions 
Once the clusters are identified in the response space, 
the corresponding points in the design space can be 
isolated to form regions. In order to achieve this, 
simple geometric entities such as lines and convex 
hulls can be used that confine the points that belong 
to a cluster in a simply shaped domain. The 
construction of the separating functions is explained 
in the sequel with the following notation: 

 
Missoum et al (2004) used simple geometric entities 
such as lines and ellipses to define the separation 
function. It is shown that the simplest separation 
function, the straight line, is suitable for fairly simple 
problems like the two bar truss but the ellipse is too 
conservative for problems where the clusters are not 
that distinct as in the two bar truss problem. This 
work extends the idea by using a convex hull to 
define the separation function. 

 
Ns: Total number of sampling points 
S : Set of points with “unwanted” bifurcation points 
D: Maximum Euclidean distance in S 

{ }2
i j i j2

max P P ;(P ,P ) SD = − ∈   
III.2.2 Convex hull separation function  

A, B: two most distant points in S 

      { }( )2
i j i j2

(A,B) Arg max P P ;(P ,P ) S= − ∈  

Several methods are available to construct the convex 
hull in the design space. This work uses the 
“convhulln” function available in Matlab to construct 
the convex hull. This function is based on Qhull  
which is a program to compute convex hulls in 
arbitrary dimensions in a provably stable way. Qhull 
implements the Quickhull algorithm (Barber et al., 
1996) which starts with three vertices that are known 
to be in the final convex hull, and creates two faces 
with these three points (one facing in each direction). 
Then, recursively for each face, the farthest vertex 
from that face is determined. The three faces formed 
by this point and the three edges on the first face are 
created, and the algorithm repeats on all vertices 
outside of these new three faces. The key idea is that, 
given a triangle of three points of the original set, the 
points inside this triangle do not belong to the facet 
of the convex hull. Hence, they can be discarded. An 
example of the definition of convex hull separation 
function in the design space (x, y) of an arbitrary 
problem is provided  in  Figure 7. 

 
III.2.1 Linear separation function 
In a two dimensional space, the algorithm used for 
the linear separating functions is: 
Step 1: Find the maximum distance D and the 
corresponding points A and B. 
Step 2: Define the equation g(x, y) = 0 of the line (L) 
going through A and B.  
Step 3: Create two lines (L1) of equation gr1(x, y) = 0 
and (L2) (gr2(x, y) = 0) with the same slope as (L) so 
that: 
             ∀  and      (1) 0)(PS,P ir1i ≤∈ g 0)(Pir2 ≥g
 
An example of the definition of linear separation 
function in the design space (x, y) of an arbitrary 
problem is provided in Figure 6. 
 

 
     

gr1 

gr2 

Figure 6. Example of linear separation functions in a 
design space (x, y) Figure 7: Example of convex hull separation function 

in a design space (x, y) 
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IV. Reliability-based design optimization (RBDO) 
Generally, RBDO problems are formulated as 
follows: 

        : f(x) 
x

Min

              Such that: gd  (x) ≤ 0            

   Pf =P(gr(x) ≤ 0 ) ≤Pftarget         (2)  

with  x={xd, xr} 

where xd and xr are vectors of deterministic and 
random design variables respectively. gd is a vector 
of deterministic constraints and gr is a limit state 
function. P(gr(x)≤0) is the probability of failure and 
Pftarget is the maximum allowed or target probability 
of failure. The limit state function   (gr(x)=0) divides 
the design space into a failure domain (gr(x)≤0) and 
a safe domain (gr(x)>0) and hence serves as a safety 
criterion. 

IV.1 Failure probability computation 
Reliability-based design involves the computation of 
a failure probability as shown in Eq (2). The widely 
used methods to compute the failure probability are 
Monte Carlo Simulations (MCS) or moment-based 
methods such as the First Order Reliability Method 
(FORM). Here, we use MCS to estimate the failure 
probability. MCS involves the generation of sample 
points depending on the statistical distribution of the 
variables. The sample points that violate the safety 
criterion are considered as failed. The failure 
probability is computed as: 

 Pf = 
N

x 0))ˆ(gnum( r ≤    (3) 

Where, is the randomly chosen sample point, 
is the number of samples for which 

and N is the total number of samples.  

x̂
)(x̂

0
0)num( r ≤g

)(r ≤x̂g

Another widely used measure of safety is the 
reliability index. It can be directly computed from the 
failure probability using the following inverse 
relationship: 

  β =  - Φ-1 (Pf )  (4) 

Where, Φ is the standard normal cumulative 
distribution function and β is the reliability index.  

The convex hull presented in Figure 7 represents 
graphically the boundaries of the failure region. Each 
facet of the hull can be replaced by explicit equations 
in terms of the design variables. This allows 
representing the failure domain with explicit 
boundaries. Each equation is a limit state equation 
and a point is considered to be failed if it violates all 

the limit state functions simultaneously. The notion 
of violation is defined by assigning an inequality to 
each facet of the convex hull. When a point belongs 
to the failure region, all the inequalities have a 
definite sign. In order to check the sign of each 
inequality for a point within the hull, the computation 
of each limit state function at a definite point in the 
convex hull is sufficient. As a particular point, the 
centroid of the convex hull can be chosen. For every 
realization during MCS, the sign of each inequality is 
compared to the sign of the same inequality evaluated 
at the centroid. If all the signs are identical, then the 
point belongs to the failure domain. This procedure is 
summarized in Figure 8. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Find the s  
based on  

F

x belo

sg

Convex hull 
p: number of facets 

 
Figure 8. Procedu

failure regi

In the case where t
by straight lines, a
sign of the inequal
the points A or B.  

IV.2 Response sur
MCS often generat
sample size. Nume
reliability index ev
converge to a spuri
MCS is dependent 
the target failure p
limited sample siz
approximates the 
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hinders the sensitivity computations in gradient-based 
optimization. These difficulties motivate the use of 
response surface approximations which employ lower 
order polynomials to approximate the failure 
probability or safety index in terms of the design 
variables. These response surfaces are termed as 
design response surface and are widely used by 
researchers performing RBDO (Sues et al., 1996, Qu 
et al., 2004).  
 
In the design space, failure probability changes by 
several orders of magnitude. This steep variation in 
the failure probability introduces additional 
challenges in requiring to fit response surfaces of 
higher order. This increases the computational 
expense. Alternatively, response surface can be fit to 
the reliability index as it does not suffer abrupt 
changes in magnitude. This work uses response 
surfaces to approximate the reliability index. 

The widely used metrics to measure the accuracy of 
the response surface are the R square and the Relative 
Maximum Absolute Error (RMAE).  R square is used 
to check the global accuracy while RMAE gives a 
measure of the maximum local error. The expressions 
for these measures are given as: 

∑

∑

=

=

−

−

−=
s

s

N

i
i

N

i
ii

yy

yy

R

1

2

1

2

2

)(

)ˆ(

1   (5) 

STD
yyyyyy

RMAE nn )ˆ,...ˆ,ˆmax( 2211 −−−
=  (6) 

where yi is the actual response value and is the 
corresponding predicted value. 

iŷ
y is the mean of the 

actual response and STD  is the standard deviation of 
the actual response values. 

 

V. Transient dynamic example  
The proposed approach to define the boundaries of 
the failure domain is applied to a transient dynamic 
problem. 
  
V.1 Problem description 
The problem considered is a tube impacting a rigid 
wall with a velocity of 15 m/s (Figure 9). The 
objective of this work is to optimally design the tube 
so that no global buckling appears. That is, a 
constraint on the dynamic behavior has to be defined 
to enforce a crushing of the tube following its axis. 
The thickness t and the length L of the tube are 
chosen as design variables. Note that the section of 

the model has also been parameterized. However, a 
fixed rectangular section of height 50 mm and width 
40 mm has been used. The analysis is performed with 
the explicit software ANSYS/LS-DYNA and the 
 
 
 
 
 
 

 
 
 
 

 
Figure 9. Tube impacting a rigid wall. 

 
simulation time is 40 ms. Four masses of 15 Kg are 
located at the four corners at the rear of the tube. The 
tube is meshed with 3600 reduced integration 
Belytschko-Tsai shell elements.  
 
The tube can deform in various ways after impact 
onto the rigid wall. Here, the dynamic behavior is 
divided into two main categories: crushing 
(deformation along its axis) and global buckling. 
Two examples of these behaviors are given in 
Figures 10 and 11. 

 
Figure 10. Crushing of the tube 

 
Figure 11. Global buckling of the tube 
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V.2 Design of experiments 
LHS is used to sample the design space. The ranges 
of the two variables are: 

L ∈ [0.3m , 1.0 m] 
t ∈ [1.0 mm, 5.0 mm] 

The design of experiments, constituted of 100 points, 
is depicted in Figure 12. As presented in section II.2, 
the four vertices of the domain are added to the 
design of experiments. Therefore, the total number of 
sampling points is 104. 

        
Figure 12. LHS design of experiments for the 

transient dynamic problem. 104 points 
 
V.3 Deletion of invalid analysis  
The reduced integration Belytschko-Tsai shell 
elements exhibit spurious modes. The work done 
byartificial forces to overcome these modes is termed 
as hourglass energy. In order to study the response, 
FE simulations are performed for the 104 points from 
the DOE. For each experiment performed, the ratio of 
hourglass energy over the total energy is stored.  If 
the ratio is higher than 10%, the analysis is 
considered failed. Out of the 104 experiments, 7 
failed this criterion and were not considered. 
 
V.4 Response study and clusters 
To detect the design for which global buckling 
occurs, the absolute values of the maximum 
transverse displacements |Uxmax| and  |Uymax| were 
stored. 
 
The sum |Uxmax| + |Uymax| is used as a response 
that encompasses the buckling in the x and y 
directions. This quantity should clearly exhibit a 
discontinuity compared to the case when there is 
crushing of the tube following its axis. 
 
For a clearer visualization of the response behavior, it 
is projected on the (response, length) subspace 
(Figure 13). The points with the highest response 
value (i.e., sum of displacements) correspond to 
designs with global buckling. At this stage, one could 
impose an arbitrary limit on the response to select the 
points that “seem” without buckling. However, the 

use of the cluster identification technique (K-means) 
as described in Section III is a less arbitrary way of 
selecting the points. When using K-means with two 
clusters, the clusters identified are represented in 
Figure 13. The circled dots correspond to points with 
potential global buckling. The response and the 
clusters are also plotted in a 3D diagram with respect 
to the values of length and thickness (Figure 14). The 
clusters in the response space translate into 
corresponding sets of failure and acceptable points in 
the design space as represented in Figure 15. 

 
Figure 13. Response projected on the (response, 
length) subspace. Transient dynamic problem 

 

 
Figure 14. Response plot with respect to the length 

and thickness for the transient dynamic problem 

 
Figure 15. Distribution of failure and acceptable 

points in the design space for the transient dynamic 
problem 
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V.5 Separation function   Min       : V 
tL,Separating functions can be constructed in the design 

space to define the boundaries of the failure domain. 
When using straight lines, the resulting separating 
functions are depicted in Figure 16. The two 
corresponding line equations are: 

              Such that: E/ET ≥ 0.99            

   Pf =P(L,t ɛ Ωf ) ≤Pftarget         (9)  

Where V is the volume, E is the internal (absorbed) 
energy and ET is the total energy. Ωf is the domain 
limited by the two lines as defined by equations (7) 
and (8) or the region enclosed by the convex hull as 
shown in Figure 17. L and t are design variables. 
While L is deterministic, t follows a normal 
distribution with a mean defined as the current iterate 
of the optimization process and a standard deviation 
of σ=0.06*tmax mm. The target failure probability is 
1×10-3. 

01.4741.016),(r1 =+





−






−=

tmax
t

Lmax
LLtg  

            (7) 

00.9491.016),(r2 =+





−






−=

tmax
t

Lmax
LLtg  

 (8) 
 

  

 
The RBDO problem presented in (9) involves the 
computation of a failure probability to evaluate the 
probabilistic constraint. Since the boundary of the 
failure domain is available as straight lines or as 
facets of the convex hull, the failure probability can 
be computed. This section discusses the RBDO 
performed by using straight lines or a convex hull  
approximating the failure domain. 
 
V.6.1 Failure region bounded by straight lines 
Here, we consider the failure domain delimited by 
two lines as depicted in Figure 16. There are two 
methods by which the failure probability can be 
computed for the line separation function. One 
method is to use MCS. The other method employs 
equation (10).  

Figure 16. Linear separation functions used to define 
the failure domain for the transient dynamic problem 

 
Based on the convex hull approach, the boundaries of 
the failure domain are defined as presented in Figure 
17.  

When MCS is used to estimate the failure probability, 
the two lines are to be represented as inequalities. It 
can be observed that the feasible region is disjoint for 
each limit state. Any sample that violates both the 
inequalities is considered to be failed. Based on 
MCS, the failure probability is estimated using the 
relation in (3). 

     

 
To include the energy ratio as a constraint in the 
RBDO problem, it is approximated with a response 
surface that not only removes the numerical noise but 
also prevents the repetitive calls to costly transient 
dynamic simulations. Another response surface could 
be used to approximate the probability of failure 
which is also known to be very noisy. However, due 
to acute variations of the probability of failure, it is 
usually recommended to fit the reliability index 
instead, as mentioned in Section IV.2. Both response 
surfaces are fitted in the (L/Lmax, t/tmax) space with 
second order polynomials.  

Figure 17. Convex hull separation function used to 
define the failure domain for the transient dynamic 

problem 
 
V.6 RBDO problem 
The RBDO problem considered consist of finding the 
length L and the thickness t of the tube so that: 

 
The response surface for the energy ratio is presented  
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in Figure 18. The surface in the figure shows the 
quadratic surface and the blue dots represent the 
values of exact energy ratio. The fitted response may 
not capture the actual energy ratio exactly, but it 
follows the trend and represents the region of interest 
(E/ET ≥ 0.99) well. Similarly, for the reliability index, 
a second order polynomial is used and provides a 
rather good approximation of the exact reliability 
index.        

 

        
 Figure 19. Failure domain (thick line) when t is the 

random variable 
 

absorption requirement is met and the probabilistic 
constraint is active. The results are presented in Table 
1. 
 
V.6.2 Failure region bounded by a convex hull 
In the case where the boundaries of the failure 
domain are approximated by the facets of the convex 
hull, MCS is used to estimate the failure probability. 
As discussed in section IV.1, the facets of the convex 
hull are replaced by inequalities and the sample 
points that violate all the inequalities are considered 
to be failed. Based on this, the failure probability is 
computed from (3).  

Figure 18. Response surface of approximated energy 
ratio with respect to thickness and length for the 

transient dynamic problem.  

The approximated reliability index and the energy 
ratio are used in the optimization process. The results 
are presented in Table 1. The accuracy of the energy 
ratio and the reliability index response surfaces are 
given in Table 2 based on the error measures 
expressed in equations (5) and (6). 

 
Both, the energy ratio and failure probability suffer 
from numerical noise. Hence, response surface 
approximations are used to perform optimization. 
The response surface for the energy ratio is the same 
as the one fitted for the line separation function case. 
For the reliability index, a second order polynomial 
in terms of L/Lmax and t/tmax are fit and is presented 
in Figure 20.  

 
Alternatively, failure probability can be computed 
using (10). Since L is deterministic, the probabilistic 
problem is one-dimensional, and the failure domain 
is a segment. This situation is represented in Figure 
19 for a given value L0 of L and the scaled 
thicknesses t1 and t2  that limit the failure domain, the 
failure probability can be expressed as: 
 

Pf= 





 −

−






 −

σ
tt

σ
tt 12 ΦΦ     (10) 

where,  is the standard normal cumulative function. Φ
 
Table 1. Optimal design for the transient dynamic 

problem – Line separation function                                                                                                                                               

 

Optimum Method for Pf 
computation t/tmax L/Lmax V(mm3) 

Failure 
Probability 

MCS* 0.96 0.677 521640.3 0.001 
Eqn (15) 0.98 0.665 522024.7 0.001 

Figure 20. Response surface for the reliability index 100,000 samples 
  

The blue dots are the values of the actual reliability 
index. The approximated surface for the reliability 

Based on the allowable failure probability Pftarget  
=1×10-3, the result obtained is such that the energy 
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index seems to represents the actual value well. A 
more precise description of the accuracy is given by 
the error statistics in Table2. The approximated 
reliability index and the energy ratio can now be used 
to solve the optimization problem defined in (9). The 
results are presented in Table 3.  
 
Table 2: Error metrics for the response surfaces 

Metrics Separation 
function 

Reliability 
index 

Energy ratio 

Straight lines 0.9343 R2 
Convex hull 0.9104 

0.8992 

Straight lines 0.7552 RMAE 
Convex hull 0.9920 

0.7639 

 
It can be clearly observed that the optimal design 
obtained using a convex hull presented in Table 3 is 
lighter than the design obtained using straight lines 
presented in Table 1. This is due to the fact that 
probabilistic constraint pushes the design away from 
the separation function (line) that is already 
somewhat conservative compared to the convex hull. 
 
Table 3: Optimal design for the transient dynamic 

problem – Convex hull separation function 
Optimum 

t(mm) L(mm) V(mm3) 
Failure 

probability* 
4.74 563.8 430418.6 0.001 

    * Computed using MCS – 100,000 samples 
 
In the course of optimization, it was observed that the 
optimization algorithm converged to different 
optimal design for different starting points. In an 
attempt to understand this, the optimization problem            
    

 
Figure 21. Graphical representation of the transient 

dynamic optimization problem 
 
stated in (9) was treated graphically and is presented 
in Figure 21. The constraints are represented by 
dashed lines and the contours of the objective 
function is presented in the solid lines. The feasible 
domain is shaded. The optimal solution is such that 
the objective function is minimum and both 

constraints are active. It can be noted that there are 
two local minima, and the results reported in Table 1 
corresponds to the better of the two.  
 

VI. DISCUSSION 
In the transient dynamic example discussed in this 
paper, the convex hull approach seems to define the 
boundaries of the failure region more accurately than 
the two line separation functions. However, this is 
valid only around the optimum found. In fact, parts of 
the actual failure region might not be represented by 
the convex hull. The most stringent example of this 
phenomenon is given by the two bar truss. The 
convex hull defining the boundaries of the failure 
region for the two bar truss is presented in Figure 22.  
        

       

130
11

Figure 22. Two bar truss. Failure region 
approximated by a convex hull.  

 
In this case, the failure region is actually a half plane 
bounded by a single line as represented in Figure 5. 
However, it can be observed in Figure 22 that the 
convex hull leaves the region above the facet formed 
by endpoints 130 and 11 as safe whereas failure 
occurs in these regions. Moreover, the facets of the 
convex hull which are common to the boundaries of 
the sampling space are artificial. For the transient 
dynamic case, investigation of the region above the 
facet formed by endpoints (16, 30) of Figure 17 
shows that the same problem occurs. The reason for 
this is that the convex hull is constructed based on the 
sampling points generated by the design of 
experiments only. As the set of sampling points is 
fixed, no other information is provided. Hence, the 
definition of the failure domain by the convex hull is 
very dependent on the initial design of experiments.  
 
In addition, the bounds on the design variables might 
dictate the geometry of the convex hull as no samples 
is generated outside those bounds. Hence, the area of 
the failure region may be highly underestimated. For 
example, inspection of Figure 22 shows that a 

10 
American Institute of Aeronautics and Astronautics 

 



reduction of the area ratio to 0.4 would lead to a safe 
design. Clearly this is not possible as the design 
would buckle for this area. However, this problem 
does not occur for the transient dynamic problem as 
the length is deterministic and the failure region in 
the vicinity of the optimum is not limited by the 
bounds on the design variables.  

• For the facets of the convex hull that follow the 
boundaries of the sampling space (e.g., facet (3, 30) 
of the transient dynamic problem), the same 
procedure as described previously can be used. 
However, in this case, the test point will be generated 
outside the domain. Note that this type of facet would 
not be limiting the failure region artificially if the 
random variable distributions were forced to be 
within the boundaries of the sampling space. Hence, 
a solution to this difficulty would be to perform the 
optimization in a design space subset of the sampling 
space. While the design space would represent the 
means of the design variables, the sampling space 
would encompass the entire finite random variable 
distributions. An example of the design space being a 
subset of the sampling space is depicted in Figure 24. 
In the work presented in this paper, design and 
sampling spaces were identical. 

 
In order to minimize the impact of these difficulties 
and to improve the use of the convex hull approach, 
the following points can be considered: 
 
• A solution to reduce the error in the definition of 
the failure region would be to remove some of the 
inequalities defining the convex hull that are artefacts 
of the fixed design of experiments. Despite the fact 
that for two dimensional cases, the physics of the 
problem and a graphical inspection might help to 
decide which inequality should be dropped, the 
following procedure, extendable to higher 
dimensions, can be used to identify the artificial 
facets of the convex hull: 

 

 
1) For every point in the design space, evaluate all 
the inequalities of the convex hull 

  
2) If there exist a facet such that no point satisfies it 
while violating all the other facets, then this 
particular facet is suspicious as it might be artificial. 
In the transient dynamic problem, it is the case for 
the facets with end points (16, 30) and (27, 25). 
Note that facets (3, 9), (9, 15) and (15, 27) also fall 
into this category. Figure 24. Example of design space subspace of  a 

sampling space. The design space represents the 
values of the means of design variables. 

3) A sample satisfying this condition can then be 
generated. For example, for a two-dimensional 
problem, it could be generated at the centre of the 
candidate facet at an eccentricity away from the 
convex hull (figure 23). 

 
• Since the convex hull is based on the samples 
generated by the DOE, it is recommended to use a 
space filling technique in which the samples are 
spaced as uniformly as possible. For instance, the 
Optimal Latin Hypercube Sampling (OLHS) where 
the minimum distance between points is maximized 
can be used (Butler, 2001). However, this improves 
the distributions of sample points inside the domain 
and special care should be taken for the boundaries. 
In this paper, the vertices of the domain were added, 
but other points on the boundaries could be added to 
the design of experiments.  

 
 
 
 

 
 

Test point 

 
Figure 23. Example of test point generated to check 
whether a suspicious inequality is to be removed. 

Transient dynamic problem. 
  

VII. Conclusion 4) This sample is tested for its response. If it fails, 
the facet is an artificial facet and the corresponding 
inequality can be removed from the approximation 
of the failure region. If the response corresponding 
to the generated sample exhibits acceptable 
behaviour, then the facet is a natural facet of the 
convex hull.  

A convex hull approach to handle discontinuous 
response in nonlinear structural problems is 
proposed. The method consists of identifying regions 
of the design space that encompasses points for 
which the response is discontinuous. The boundaries 
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of the failure region are defined explicitly based on a 
convex hull.  
 
The explicit knowledge of the failure domain can be 
used for reliability-based optimization. The facets of 
the convex hull are transformed into explicit limit 
state inequalities that must be violated 
simultaneously for failure to occur. Based on Monte 
Carlo Simulations, this allows an efficient calculation 
of the failure probability. The proposed method is 
applied to the optimal design of a tube impacting a 
rigid wall.  
 
The next stages of this research involve the 
improvement of the techniques used for the definition 
of the failure region for two and three-dimensional 
problems. Also, the methodology should be applied 
to other types of uncertainties such as material 
properties, loads and presence of defects. 
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