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Abstract 

Nonlinear transient dynamic problems exhibit structural responses that might be discontinuous due to 

numerous critical points. The discontinuous behavior hinders classical gradient-based or response surface-

based optimization. However, these discontinuities help to classify the system’s responses and identify 

regions of the design space corresponding to distinct dynamic behaviors. In this paper, data mining techniques 

are employed to group the responses into clusters. The regions of the design space corresponding to the 

clusters of unwanted behaviors are delimited with convex hulls. This allows an explicit definition of the 

boundaries of the failure region in terms of the design variables. In addition, the identification of response 

clusters, within which the responses might be considered continuous, enables the use of traditional response 

surface approximation for optimization. The proposed approach is applied to the reliability-based design of a 

tube impacting a rigid wall, which is optimized for a prescribed dynamic behavior. 

 

Keywords:  Reliability-based design optimization, nonlinear transient dynamic problems, data mining, 

discontinuities, convex hull 

 

I. Introduction 

Currently, large-scale structural optimization problems can be solved efficiently with commercially available 

Finite Element software. However, these problems are often limited to linear and simple nonlinear behavior. 

There are no systematic and efficient methods to perform optimization of highly nonlinear problems such as 



  2 

 

 

those encountered in nonlinear transient dynamic problems (e.g., crash). They typically involve many 

difficulties such as: 

 

• The computational expense associated with repetitive costly finite element analysis (Kurtaran et al., 

2002) 

• The difficulty in computing the sensitivity, due to the presence of numerical noise and the often 

encountered convergence uncertainties in explicit dynamic codes. 

 

In view of the aforementioned difficulties, researchers (e.g., Gu.,2001, Yang et al.,2001, Kurtaran et al., 2002, 

Sobieszczanski-sobieski et al., 2000) have used metamodels and design of experiments (DOE), to optimize 

(or simply improve) their design, especially for crashworthiness. The metamodel (or response surface) is used 

to replace the responses extracted from expensive simulations by a simple analytical model. The model, 

which is a function of the design variables, is built based on sampling points selected from the design space 

with a chosen design of experiments. In addition, approximation techniques allow the removal of the 

numerical noise inherent to the computer simulations. 

 

Another key aspect of most highly nonlinear problems is the presence of numerous critical points (limit and 

bifurcation points).  These points are often characterized with drastic changes in the structural behavior. These 

sharp changes reflect discontinuituies in the response (Braibant et al., 2002, Missoum et al., 2004). As a 

result, the use of traditional gradient-based or response surface approximation techniques becomes difficult, 

as most approximation methods do not handle discontinuous functions. In addition, the discontinuities can be 

triggered by very small variations in loading conditions and design imperfections. 

 

However, the discontinuous response can be used as a tool to identify regions of the design space that 

correspond to specific dynamic behaviors. This is achieved by identifying clusters in the discontinuous 

response space through data mining techniques. In particular, this allows the identification of clusters 
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corresponding to “unwanted” behaviors that are considered as failure. The clusters in the response space 

translate into specific regions in the design space.   

 

The boundaries between these various regions can be distinctly represented using explicit separation functions 

expressed in terms of the design variables. This allows an analytical definition of the boundaries of a failure 

domain that corresponds to an infeasible space for optimization. Also, the boundaries serve as limit state for 

reliability based design. Since the response within each cluster is assumed to be continuous, it is possible to 

use traditional response surface approximation techniques.  

 

Moreover, as the regions in the design space are associated with various dynamic behaviors, the identification 

of specific regions permits the designer to specify a particular behavior. This aspect, along with the 

decomposition of the design space based on a cluster analysis of the responses, is one of the main objectives 

of this research. In particular, this work addresses the optimization of nonlinear transient dynamic problems 

that exhibit discontinuous behaviors. 

 

The regions in the design space are separated by so-called decision functions that can be constructed in 

various ways. The response data classification is achieved through linear or nonlinear decision functions. 

Missoum et al. (2004) used hyperplanes and ellipsoids for the definition of a failure region for the reliability-

based optimization of a nonlinear transient dynamic problem. The example problem included two design 

variables, so the decision functions were simple straight lines and ellipses. However, due to the fact that the 

data is generally non-separable, the linear and quadratic separation functions were shown to be over-

conservative. That is, the failure region thus defined might contain points corresponding to an acceptable 

dynamic behavior. 

   

In this paper, an approach is presented where the decision functions are the faces of a convex hull. A convex 

hull, is the smallest convex set containing a group of points. The faces of the convex hull represent a set of 

piecewise linear decision functions defined analytically with respect to the design variables. This makes the 
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convex hull fundamentally distinct from the hyperplanes in Missoum et al. (2004) that were defined over the 

whole design space. This convex set leads to a more accurate and less conservative assessment of the failure 

region. It is to be noted that a convex hull is not limited to two dimensions and can be easily extended to 

several dimensions (Barber et al., 1996). 

Another advantage of the convex hull is the straightforward inclusion of uncertainties in the design process. 

The analytical expressions of the multiple faces that define the boundaries of the convex hull can be 

considered as limit-state functions. Therefore, the assessment of a probability of failure in the context of 

reliability-based design optimization (RBDO) can be performed efficiently through, for instance, Monte-Carlo 

Simulations (Melchers, 1999).  Due to the high sensitivity of nonlinear responses to uncertainties, the 

inclusion of reliability in the optimization process is essential. Probabilistic approaches such as RBDO are 

proven to address similar situations well. [e.g., Kharmanda et al., 2004, Royset et al., 2003, Koch et al., 2001, 

Youn et al., 2004] 

 

This paper presents an approach to decompose the design space based on a convex hull. The convex hull is 

constructed by using the information provided by a clustering technique applied to structural responses. As a 

demonstrative example, the methodology is applied to the reliability-based design optimization of a tube 

impacting a rigid wall. The problem is to minimize the weight of the tube so that no global buckling appears 

with a given probability, while maintaining good energy absorption. The design variables are the length and 

the thickness of the tube, which is considered as a normal random variable. The reliability index and the 

absorbed energy are approximated with response surfaces. The optimum results are compared to those 

obtained based on linear separation functions. 

 

Sections II to IV provide a background on discontinuities, clustering, decision functions, and reliability-based 

design optimization. Section V discusses the illustrative example. The results are followed by a discussion 

section and possible avenues for improvement of the proposed method. 
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II. Discontinuities and clusters 

II.1 Discontinuities: a simple example 

As an illustrative example exhibiting discontinuities, the classical symmetric shallow two-bar truss (Figure 1) 

with geometric nonlinearities is used (Crisfield M.A., pp 3-7). The member cross-sectional area is A and the 

applied force is F. The displacement under the point of application of the force is u. The truss exhibits the 

typical snap-through behavior as depicted in the force / deflection (F(u)) diagram on Figure 2. Two curves are 

plotted corresponding to trusses with cross sectional areas A and A + ∆A. It can be seen that for the same load 

F, the system might exhibit snap-through (displacement u2) or not (displacement u1).  This can happen for 

infinitesimally small variation ∆A, hence the displacement u is a discontinuous function of A. This might be a 

serious limitation if traditional techniques for optimal design are considered. 

 

II. 2 Response study and clusters: Two-bar truss 

In order to study the behavior of the response further, the design space is sampled. The Latin Hypercube 

Sampling (LHS) technique (Wang., 2003, Butler., 2001)  is  used with the following ranges for the two 

variables:  

A ∈ [70 , 150 mm2] 

F ∈ [-700, -400 N ] 

The design of experiments is constituted of 404 points. The couples (F, A) used are represented on Figure 3 

with the axes scaled based on the maximum values Fmax and Amax. 

 

LHS is a space filling technique that generates points within the domain. However, there might be a lack of 

information on the boundaries of the sampling space. In order to enhance the quality of the sampling, the four 

vertices of the design space were also included in the design of experiments. 

 

The corresponding values of the displacements, u, are plotted on Figure 4. As the displacement is 

discontinuous with respect to the force and the area, two clusters are generated. The cluster that contains the 

circled dots is associated with a snap-through behavior. Every point in each cluster corresponds to a point in 
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the design space (Figure 3). The set of points corresponding to the two clusters is represented in Figure 5. The 

clusters result in two regions in the design space that can be separated, in this case, by a straight line. If we 

want to optimize the two-bar truss enforcing no snap-through, then the design space is limited to the R region. 

The function separating the two regions can be used as a constraint for optimization and/or a limit state 

function if uncertainties are considered. 

 

III. Identification of clusters and definition of decision functions 

III.1 Cluster identification 

In order to identify the regions of interest in the design space, the clusters created by the discontinuities in the 

response space need to be identified. Statistical methods are available to find clusters within a cloud of points. 

This work uses one of the most widely used method, the K-means algorithm (Hartigan J.A., 1979). The basic 

idea of the method is to minimize the sum of the Euclidean distances of the points of a cluster to its centroid.  

The number of clusters to be identified is an input parameter, which makes K-means a non-supervised 

approach. 

 

In the two-bar truss example, the cluster separation as depicted on Figure 4 is obvious. In most cases, the data 

points are not easily separable, as will be shown in the examples treated in this paper.  

 

III.2 Decision functions 

Once the clusters are identified in the response space, the corresponding points in the design space can be 

isolated to form regions. In order to achieve this, simple geometric entities such as lines and convex hulls can 

be used that confine the points that belong to a cluster in a simply shaped domain.  

 

III.2.1 Linear decision functions 

Linear decision functions such as hyperplanes can be used to define the boundaries of the failure regions in 

the design space. There are several approaches that can be used to create such hyperplanes through 

classification techniques. In Missoum et al. (2004), linear decision functions were used for two dimensional 
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problems. An algorithm based on two parallel lines was presented. Also, the decision functions were extended 

to the use of quadratic functions (ellipses). An example of the definition of linear decision function in the 

design space (x, y) of an arbitrary problem is provided in Figure 6. The slopes of the two parallel separation 

lines gr1 and gr2 is defined by the slope of the line joining the two most distant points A and B. The lines gr1 

and gr2 are then defined as being the closest parallel lines enclosing all the unacceptable points. It was shown 

in Missoum et al (2004) that the use of linear and quadratic decision functions might be too conservative and 

hence over-estimate the failure region. This work extends the idea by defining the boundaries of the failure 

region using a convex hull which leads to a less conservative approach by defining more precisely the 

boundaries of the failure region. 

 

III.2.2 Convex hull decision function 

A convex hull of a set of points is the smallest convex set that encompasses all the points. Several methods 

are available to construct a convex hull. This work uses the “convhulln” function available in Matlab which 

uses the Qhull program to compute convex hulls in arbitrary dimensions in a provably stable way. Qhull 

implements the Quickhull algorithm (Barber et al., 1996). An example of definition of convex hull in a design 

space (x, y) of an arbitrary problem is provided in Figure 7. 

 

IV. Reliability-based design optimization (RBDO)  

The general form of an RBDO problem is formulated as follows: 

 
x

Min        : f(x) 

              Such that: gd  (x) ≤ 0            

   Pf =P(gr(x) ≤ 0 ) ≤Pftarget         (2)  

with, x={xd, xr} 

where xd and xr are vectors of deterministic and random design variables respectively. gd is a vector of 

deterministic constraints and gr is a limit state function. P(gr(x)≤0) is the probability of failure and Pftarget is the 
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maximum allowed or target probability of failure. The limit state function   (gr(x)=0) divides the design space 

into a failure domain (gr(x)≤0) and a safe domain (gr(x)>0) and hence serves as a safety criterion. 

IV.1 Failure probability computation 

Reliability-based design involves the computation of a failure probability as shown in Eq (2). The widely used 

methods to compute the failure probability are Monte Carlo Simulations (MCS) or moment-based methods 

such as the First Order Reliability Method (FORM). Here, we use MCS to estimate the failure probability. 

MCS involves the generation of sample points depending on the statistical distribution of the variables. The 

sample points that violate the safety criterion are considered failed. The failure probability is computed as: 

 Pf = 
N

x 0))ˆ(gnum( r ≤
   (3) 

Where, x̂ is the randomly chosen sample point, 0))(num( r ≤x̂g is the number of samples for which 

0)(r ≤x̂g and N is the total number of samples.  

Another widely used measure of safety is the reliability index. It can be directly computed from the failure 

probability using the following inverse relationship: 

  β = - Φ-1 
(Pf )  (4) 

Where, Φ is the standard normal cumulative distribution function and β is the reliability index.  

The convex hull presented in Figure 7 represents graphically the boundaries of the failure region. Each facet 

of the hull can be replaced by explicit equations in terms of the design variables. This allows representing the 

failure domain with explicit boundaries. Each equation is a limit state equation and a point is considered to be 

failed if it violates all the limit state functions simultaneously. The notion of violation is defined by assigning 

an inequality to each facet of the convex hull. When a point belongs to the failure region, all the inequalities 

have a definite sign. In order to find the sign of each inequality corresponding to failure, the computation of 

each limit state function at a single point in the convex hull is sufficient. For example, the centroid of the 

cluster can be chosen. For every realization during MCS, the sign of each inequality is compared to the sign 
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of the same inequality evaluated at the centroid. If all the signs are identical, then the point belongs to the 

failure domain. This procedure is summarized in Figure 8. 

IV.2 Response surface approximations     

MCS often generates numerical noise due to limited sample size. Numerical noise in failure probability or 

reliability index eventually leads the optimization to converge to a spurious optimum. The accuracy of the 

MCS is dependent on the number of samples. When the target failure probability is very low and only limited 

sample size is used to perform MCS, it approximates the failure probability to zero which hinders the 

sensitivity computations in gradient-based optimization. These difficulties motivate the use of response 

surface approximations which employ lower order polynomials to approximate the failure probability or 

safety index in terms of design variables. These response surfaces are termed as design response surface and 

are widely used by researchers performing RBDO (Sues et al., 1996, Qu et al., 2004).  

In the design space, failure probability changes by several orders of magnitude. This steep variation in the 

failure probability introduces additional challenges in requiring to fit response surfaces of higher order. This 

increases the computational expense. Alternatively, response surface can be fit to the reliability index as it 

does not suffer abrupt changes in magnitude. This work uses response surfaces to approximate the reliability 

index. 

The widely used metrics to measure the accuracy of the response surface are the R square and the Relative 

Maximum Absolute Error (RMAE).  R square is used to check the global accuracy while RMAE gives a 

measure of the maximum local error. The expressions for these measures are given as: 
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where yi is the actual response value and iŷ is the corresponding predicted value. y is the mean of the actual 

response and STD  is the standard deviation of the actual response values. 

 

V. Nonlinear transient dynamic example  

The proposed approach to define the boundaries of the failure domain is applied to a nonlinear transient 

dynamic problem. 

V.1 Problem description 

The problem considered is a tube impacting a rigid wall with a velocity of 15 m/s (Figure 9). The objective of 

this work is to optimally design the tube so that no global buckling appears. That is, a constraint on the 

dynamic behavior has to be defined to enforce a crushing of the tube following its axis. The thickness t and 

the length L of the tube are chosen as design variables.. A fixed rectangular section of height 50 mm and 

width 40 mm has been used. The analysis is performed with the explicit software ANSYS/LS-DYNA and the 

simulation time is 40 ms. Four masses of 15 Kg are located at the four corners at the rear of the tube. The tube 

is meshed with 3600 reduced integration Belytschko-Tsai shell elements.  

 

The tube can deform in various ways after impact onto the rigid wall. Here, the dynamic behavior is divided 

into two main categories: crushing (deformation along its axis) and global buckling. Two examples of these 

behaviors are given in Figures 10 and 11. 

 

V.2 Design of experiments 

LHS is used to sample the design space. The ranges of the two variable are: 

L ∈ [300mm , 1000 mm] 

t ∈ [1.0 mm, 5.0 mm] 

The design of experiments, constituted of 100 points, is depicted in Figure 12. As presented in section II.2, the 

four vertices of the domain were added to the design of experiments. Therefore, the total number of sampling 

points is 104 
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V.3 Deletion of invalid analysis  

The reduced integration Belytschko-Tsai shell elements exhibit spurious modes. The work done by 

artificial forces to overcome these modes is termed as hourglass energy (Belytckso et al., 2004). In order to 

study the response, FE simulations are performed for the 104 points from the DOE. For each experiment 

performed, the ratio of hourglass energy over the total energy is stored.  If the ratio is higher than 10%, the 

analysis is considered failed. Out of the 104 experiments, 7 failed this criterion and were not considered. 

 

V.4 Response study and clusters 

To detect the design for which global buckling occurs, the absolute values of the maximum transverse 

displacements |Uxmax| and  |Uymax|  are stored. 

 

The sum |Uxmax| + |Uymax| is used as a response that encompasses the buckling in the x and y directions. 

This quantity should clearly exhibit a discontinuity in the global buckling case compared to the case when 

there is crushing of the tube. 

 

The response is plotted in a 3D diagram with respect to the values of length and thickness (Figure 13).For a 

clearer visualization of the response behavior, it is projected on the (response, length) subspace (Figure 14). 

The points with the highest response value (i.e., sum of displacements) correspond to designs with global 

buckling. At this stage, one could impose an arbitrary limit on the response to select the points that “seem” 

without buckling. However, the use of the cluster identification technique (K-means) as described in Section 

III is a less arbitrary way of selecting the points. When using K-means with two clusters, the clusters 

identified are represented in Figure 14. The circled dots correspond to points with potential global buckling. 

The clusters in the response space translate into corresponding sets of failure and acceptable points in the 

design space as represented in Figure 15. 
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V.5 Construction of decision functions 

Decision functions are constructed in the design space to define the boundaries of the failure domain. Here, 

the convex hull is used as the decision function. In addition, the linear decision function is studied for 

comparative purpose. The use of linear decision functions reduces to straight lines in case of a two-

dimensional problem such as the tube impacting a  rigid wall. Based on the algorithm described in Missoum 

et al. (2004), the resulting separating functions are depicted in Figure 16. The two corresponding line 

equations are: 
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Based on the convex hull approach, the boundaries of the failure domain are defined as presented in Figure 

17. Comparison of figures 16 and 17 clearly shows that the convex hull provides a much more precise and 

less conservative definition of the failure domain. 

 

V.6 RBDO problem 

The RBDO problem considered consist of finding the length L and the thickness t of the tube so that: 

tL
Min

,
    : V 

              Such that: E/ET ≥ 0.99            

  Pf =P (L, t ∈ Ωf ) ≤Pftarget         (9)  

Where V is the volume, E is the internal (absorbed) energy and ET is the total energy. Ωf is the failure domain 

as defined by equations (7) and (8) or the region enclosed by the convex hull as shown in Figure 17. L and t , 

the mean of thickness t are the design variables. While L is deterministic, t follows a normal distribution with 
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a mean defined as the current iterate of the optimization process and a standard deviation of σ=0.06× tmax 

mm. The target failure probability is 10
-3
. Note that the objective function and the energy constraint are 

functions of the deterministic length and the mean of the thickness only. 

 

The total energy, as computed by LS-Dyna, is the sum of the strain, kinetic, sliding, and hourglass energies. 

The two last quantities are usually small in comparison to the two other terms. Therefore, the energy ratio 

allows quantifying the amount of kinetic energy that has been transformed into strain energy. The energy 

constraint is important in the field of crashworthiness in order to limit the amount of kinetic energy 

transmitted to passengers. 

 

The RBDO problem presented in (9) involves the computation of a failure probability to evaluate the 

probabilistic constraint. Since the boundary of the failure domain is represented analytically, the failure 

probability can be computed. This section discusses the RBDO performed by using linear decision functions 

or a convex hull approximating the failure domain. 

 

V.6.1 Approximation of the energy constraint using a quadratic response surface 

In order to include the energy ratio as a constraint in the RBDO problem, it is approximated with a response 

surface that not only removes the numerical noise but also prevents the repetitive calls to costly transient 

dynamic simulations. The response surface is fitted with second order polynomials.  

 

The response surface chosen is a second order polynomial in the (L/Lmax, t/tmax) space and is depicted in 

Figure 18. The blue dots represent the values of exact energy ratio. The sampling data used to build the 

response surface are the points that belong to the cluster with no global buckling behavior. Therefore, the 

points used, cover the entire design space.   The metrics providing information on the quality of the 

approximation are given in Table 1.  
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V.6.2 Estimation of the probability of failure based on linear decision functions 

If linear decision functions are used, the computation of the failure probability is rather simple.  Since L is 

deterministic, the probabilistic problem is one-dimensional, and the failure domain is a segment. This 

situation is represented in Figure 19 for a given value L0 of L and scaled thicknesses t1 and t2  that limit the 

failure domain. In this case, the failure probability can be expressed analytically as: 

Pf= 




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


 −
−








 −

σ

tt

σ

tt 12 ΦΦ    (10) 

where,Φ  is the standard normal cumulative function. 

 

V.6.3 Estimation of the probability of failure based on the convex hull 

In the case where the boundaries of the failure domain are approximated by the facets of the convex hull, 

MCS is used to estimate the failure probability. As discussed in section IV.1, the facets of the convex hull are 

replaced by inequalities and the sample points that violate all the inequalities are considered to be failed. 

Based on this, the failure probability is computed from (3). The number of samples used is 10
6.
 Note that in 

the special case of a two-dimensional convex hull, the probability of failure could be calculated using (10), 

however, for the sake of generality (higher dimensions and nonlinear decision functions), Monte Carlo 

simulations are used. 

 

As explained in IV.2, it is recommended to approximate the reliability index instead of the probability of 

failure directly. A second order polynomial in terms of L/Lmax and t/tmax is used and is presented in Figure 

20. The blue dots are the values of the actual reliability index. The approximated surface for the reliability 

index seems to represent the actual value well in the central part of the design space. A more precise 

description of the accuracy is given by the error statistics in Table 1.  
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V.6.4 Results  

The approximated reliability index and the energy ratio can now be used to solve the optimization problem 

defined in (9). Note that the energy ratio response surface is identical for the linear and convex hull cases. The 

results are presented in Table 2 with a target probability Pftarget  =1.0×10
-3
 (reliability index of 3.090). In both 

cases the energy and the probability of failure constraints are considered active. 

 

For the convex hull approach, the transient dynamic simulation was run for the optimal values of the design 

variables presented in Table 2. It was observed that the energy ratio value of 0.999 computed from the 

simulation was accurately approximated by the response surface as 0.99. It can be observed that there is an 

error of 1% in the energy ratio response surface. The corresponding actual value of the probability of failure 

at the optimum is estimated using equation 10 and Monte Carlo simulation as 0.001342 and 0.0014 

respectively. This indicates that the obtained final design in both cases is less conservative that the target 

design. The relative errors between the approximated and the actual values of the probability of failure, 

reliability index for the two cases are gathered in Table 3.  

 

The error on the predicted reliability is of course dependent on the quality of the response surface 

approximation. However, it is also important to quantify the variability of the calculated probabilities at the 

points used for the construction of the response surface. In the case of MCS, the probability of failure based 

on 10
6 
samples varies from one run to another. These variations can be quantified using the following relation 

which provides the standard deviation σ of the estimated probability of failure: 

(1 )f fP P

N
σ

−
=  (11) 

where Pf  and N are the probability of failure and the number of samples respectively. The MCS is subjected 

to an error of 
1

2
f

N
−
 where Nf  is the number of failed samples. In this case, the error is close to 3% which is 

indeed confirmed by the relative error of reliability index in Table 3. The 3% error in reliability index is 

translated as 40% error in the failure probability.  
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Also, note that in the course of optimization based on the convex hull, it was observed that the optimization 

algorithm converged to different optimal designs for different starting points. In an attempt to understand this, 

the optimization problem stated in (9) was treated graphically and presented in Figure 21. The constraints are 

represented by dashed lines with a shaded feasible domain. The contours of the objective function are 

presented in the solid lines.                

 

The optimal solution is such that both constraints are active. It can be noted that there are two local minima, 

and the results reported in Table 2 corresponds to the better of the two.  

 

It can be clearly observed that the optimal design obtained using a convex hull presented in Table 2 is lighter 

than the design obtained using linear decision functions. This is due to the fact that the probabilistic constraint 

pushes the design away from the boundaries of the failure domain that is already somewhat conservative 

compared to the convex hull. 

 

VI. Discussion 

In the nonlinear transient dynamic example discussed in this paper, the convex hull approach seems to define 

the boundaries of the failure region more accurately than the two line separation functions. However, this is 

valid only around the optimum found. In fact, parts of the actual failure region might not be represented by 

the convex hull. The most stringent example of this phenomenon is given by the two bar truss. The convex 

hull defining the boundaries of the failure region for the two bar truss is presented in Figure 22. In this case, 

the failure region is actually a half plane bounded by a single line as represented in Figure 5. However, it can 

be observed in Figure 22 that the convex hull leaves the region above the topmost facet as safe whereas 

failure occurs in this region. Moreover, the facets of the convex hull which are common to the boundaries of 

the sampling space are artificial. Hence, the area of the failure region may be highly underestimated. For 

example, inspection of figure 22 shows that a reduction of the area ratio to  0.4 would lead to a safe design. 

Clearly this is not possible as the design would buckle for such an area. This example shows how the bounds 

on the design variables might dictate the geometry of the convex hull.  
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For the impact problem, investigation of the region above the facet formed by endpoints (16, 30) of Figure 17 

shows that parts of the failure regions might also be missed. The reason for this is that the convex hull is 

constructed based only on the sampling points. As the set of sampling points is fixed, no other information is 

provided. Hence, the definition of the failure domain by the convex hull is very dependent on the initial 

design of experiments. For this particular problem, the bounds on the design variables do not artificially limit 

the failure domain because of the location of the optimum and the fact that the length is deterministic.  

 

In order to minimize the impact of these difficulties and to improve the use of the convex hull approach, the 

following improvements could be investigated: 

 

• A solution to reduce the error in the definition of the failure region would be to remove some of the 

inequalities defining the convex hull which are artifacts of the fixed design of experiments. Despite the 

fact that for two dimensional cases, the physics of the problem and a graphical inspection might help to 

decide which inequality should be dropped, the procedure discussed in the appendix, extendable to higher 

dimensions, can be employed to identify the artificial facets of the convex hull. 

 

• Since the convex hull is based on the samples generated by the DOE, it is recommended to use a space 

filling technique in which the samples are spaced as uniformly as possible. For instance, the Optimal Latin 

Hypercube Sampling (OLHS) where the minimum distance between points is maximized can be used 

(Butler, 2001). However, this improves the distributions of sample points inside the domain and special 

care should be taken for the boundaries. In this paper, the vertices of the domain were added, but other 

points on the boundaries could be added to the design of experiments.  

 

VII. Conclusion 

A convex hull approach to handle discontinuous response in nonlinear structural problems is proposed. The 

method consists of identifying regions of the design space that encompasses points corresponding to 
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unwanted behaviors. These points are obtained through the identification of response clusters originating from 

discontinuous behaviors. The boundaries of the failure region are defined explicitly based on a convex hull. 

 

The explicit knowledge of the failure domain can be used for reliability-based optimization. The facets of the 

convex hull are transformed into explicit limit state inequalities that must be violated simultaneously for 

failure to occur. Based on Monte Carlo Simulations, this allows an efficient calculation of the failure 

probability. The proposed method, which allows the prescription of a given mechanical behavior, is applied to 

the optimal design of a tube impacting a rigid wall.  

 

The next stages of this research involve the improvement of the techniques used for the definition of the 

failure region for two and three dimensional problems. Also, the methodology should be applied to other 

types of uncertainties such as material properties, loads and presence of defects. 
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Appendix  

Identifying the suspicious facets: 

Method 1: 

1) For every point in the design space, evaluate all the inequalities of the convex hull 

  

2) If there exist a facet such that no point satisfies it while violating all the other facets, then this particular 

facet is suspicious as it might be artificial. In the impact problem, it is the case for the facets with end points 

(16, 30) and (27, 25). Note that facets (3, 9), (9, 15) and (15, 27) also fall into this category. 
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This method is a conservative approach to identify the suspicious facets. In case of a convex hull with small 

convexity, the facets are almost aligned and are likely to be flagged as suspects even with points rather close 

to a facet. Instead, the method can be slightly modified as follows: 

 

Method 2: 

1) For all the points lying outside the convex hull in the design space, compute the perpendicular distance to 

the facets of the convex hull. 

 

2) If there exist a facet such that no point’s projection (shortest distance) is on the facet considered, then it is 

suspicious. For the transient dynamic problem, this procedure will only flag facets with end points (25,27), 

(30,16) as suspicious.  

 

It is noteworthy that the artificial facets lying on the boundaries of the design space would be automatically 

flagged as suspicious with any of the two approaches. 

 

Generating Test Points and checking for artifacts:  

Once the suspicious facets are identified using either of the above methods, test points that are 

samples satisfying the suspicious facets can then be generated. For example, for a two dimensional problem, it 

could be generated at the centre of the candidate facet at an eccentricity away from the convex hull (Figure 

23). The test point can be chosen at a small distance (function of the facet’s main dimension) from the facet 

on the outwards normal at the middle of the facet.  

 

This sample is tested for its response. If it fails, the facet is an artificial facet and the corresponding inequality 

can be removed from the approximation of the failure region. If the response corresponding to the generated 

sample exhibits acceptable behavior, then the facet is a natural facet of the convex hull.  
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Based on the test point results, the convex hull can be updated. The suspicious facet identification technique 

followed by the test point check can then be repeated iteratively until convergence. 
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Figure 1. Symmetric two-bar truss 

 

 

 

 

 

 

 

Figure 2. Force – deflection diagram. Two-bar truss. Snap-through occurs for a small variation ∆A of 

the cross-sectional area A. 

 

 

Figure 3. LHS design of experiments for the two bar truss problem. 404 points. Variables: area(A) and 

force(F). 
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Figure 4. Displacement u with respect to force and area for the two bar truss problem. Two clusters 

corresponding to stable and buckling behaviors. 

 

 

Figure 5. Decomposition of the two bar truss design space into two regions. The R region corresponds 

to a stable behavior. 
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Figure 6. Example of linear decision functions in a design space (x, y), based on the algorithm in 

Missoum et al. (2004). 

 

Figure 7: Example of convex hull in a design space (x, y) 
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gr2 
A 

B 



 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Procedure to identify points belonging to the failure region defined by convex hull 

 

 

 

 

 

 

 

 

Figure 9. Tube impacting a rigid wall. 

For any point x 

x belongs to the convex hull if 

For j = 1 to p 

sgn (gi(x))=sgn(gi(x)) 

 

Convex hull 

p: number of facets 

For i = 1 to p 

Find the hyperplane equations (gi) based 

on the vertices of the convex hull 

xc= Centroid of  failed points 

For i =1 to p 

Find the sign of gi  at = sgn (gi (xc)) 
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Figure 10. Crushing of the tube 

 

Figure 11. Global buckling of the tube 

 

 

Figure 12. LHS design of experiments for the transient dynamic problem. The vertices of the design 
space are added. 104 points 
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Figure 13. Response plot (sum of the absolute transverse displacements) with respect to the length 

and thickness for the transient dynamic problem 

 

 

 

Figure 14. Response projected on the (response, length) subspace. Transient dynamic problem. 
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Figure 15. Distribution of failure and acceptable points in the design space (length, thickness)  for the 

transient dynamic problem 

 

 

Figure 16. Linear decision  functions used to define the failure domain for the nonlinear transient 

dynamic problem. Approach used in Missoum et al (2004). 
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Figure 17. Convex hull used to define the failure domain for the nonlinear transient dynamic problem 

 

Figure 18. Response surface of approximated energy ratio with respect to thickness and length. 

Failure points are excluded form the approximation. 

 

Figure 19. Failure domain (thick line) when t is the random variable. Linear decision functions from 

Missoum et al. (2004). 
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Figure 20. Response surface for the reliability index. Failure domain delimited using the convex hull. 

 

 

Figure 21. Graphical representation of the RBDO problem using the convex hull approach. 
 
 

 

Figure 22. Two bar truss. Failure region approximated by a convex hull. 
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Test point 
 

 

 

 

Figure 23. Example of test point generated to check whether a suspicious inequality is to be removed. 

Transient dynamic problem. 

 

 

 

Table 1: Error metrics for the response surfaces. 

See Eqs. (5) and (6) for definition of metrics. 

Metrics Reliability 

index 

Energy 

ratio 

R
2
 (Eq. 5) 0.8524 0.8992 

RMAE(Eq. 6) 1.03 0.7639 

 

 

 

 

Table 2. Optimal design for the transient dynamic problem –Comparison between linear separation 

function and convex hull 

Optimum  

t /tmax L/Lmax V(mm3) 

Convex 

hull 

0.948 0.558 423014.5 

Linear 0.98 0.665 522024.7 
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Table 3. Relative errors between predicted and actual probability of failure, reliability index estimated 

from Eq 10 and MCS (1e6 samples).  Convex Hull. 

Method Probability Reliability Index 

Response Surface 0.001 3.0902 

Actual   (Eq. 10) 0.001342 3.00169 

Relative Error (%) 34.2 2.9 

Actual  (MCS) 0.0014 2.9924 

Relative Error (%) 40 3.2 

 


