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Abstract— Vision-based control of wheeled vehicles is a difficult
problem due to nonholonomic constraints on velocities. This is
further complicated in the control of vehicles with drift terms
and dynamics containing fewer actuators than velocity terms.
We explore one such system, the wheeled inverted pendulum,
embodied by the Segway. We present two methods of eliminating
the effects of nonactuated attitude motions and a novel controller
based on partial feedback linearization. This novel controller
outperforms a controller based on typical linearization about an
equilibrium point.

I. INTRODUCTION

Many mobile robots fall into the category of nonholonomic
vehicles, which are typically underactuated and have con-
straints on derivatives of the configuration variables. Typical
feedback control methods offer poor results or may not work
at all. The field of nonholonomic motion planning has grown
to address these issues [1].

The use of computer vision to control nonholonomic sys-
tems has been explored. Pissard-Gibollet and Rives [2] detailed
the problems of using vision-based control with nonholonomic
vehicles and overcome these problems by adding additional
degrees of freedom to the camera. Ma et al. [3] established
vision-based feedback control of a unicycle and car-like robots
using advanced techniques in nonholonomic path planning.
Fang et al. [4] controlled a mobile robot using Position Based
Visual Servoing techniques based on planar homography.
The authors developed a stable, vision-based controller for
unicycle-like robots utilizing a switched system approach [5],
[6].

Problems are compounded when a system with nonholo-
nomic constraints must be described by a set of dynamic
equations. In this case, drift terms generally exist and motions
along the nonactuated degrees of freedom may accompany
desired, actuated motions. For a system using vision, drift and
motions along nonactuated degrees of freedom are particularly
troublesome, as small unwanted camera motions can dramat-
ically alter the image.

In this paper we focus on the situation of a wheeled inverted
pendulum (WIP), similar to the Segway vehicle, using angle

sensors to control the pitch and camera data to control pose and
velocity. The motion of the WIP is described by a set of second
order differential equations and is subject to nonholonomic
constraints. To implement a vision based controller we must
deal with the problem of nonactuated motions affecting the
image.

We explore and implement three methods to counter this
problem. These methods can be used in conjunction with each
other to improve performance. First is to simply design a better
controller to reduce drift and undesired motions. To this end
we design a controller through partial feedback linearization
that provides strong regulation of the WIP balance.

A second method is to find a set of features that are not
affected by motions along nonactuated degrees of freedom.
Hamel and Mahony [7] take this approach to control the pose
of a helicopter-like robot. We present a set of features that are
not strongly affected by pitch rotations, such as when the WIP
tips and rocks during normal operation. The third method is
to subtract the effects of unwanted motions from the features.
Given an angle sensor, such as a rate-gyro, it is possible to
sense the pitch angle of the camera attached to the WIP and
correct the features as if there was no pitch.

In Section II we introduce the WIP and present two con-
trollers, one involving linearization about an equilibrium, and
one using a novel partial-feedback linearization. In Section
III we discuss methods of handling the effects of nonactuated
pitch angle on the image. In Section IV, we present simulations
of the above method for a vision-based control task along a
complicated trajectory.

II. WHEELED INVERTED PENDULUM

A. Background

Vehicles characterized as wheeled inverted pendulums
(WIP’s) have received recent attention in the robotics com-
munity [8], [9]. A WIP is a body above two wheels with
no balancing support. We define a world frame with the z-
axis oriented up. We define a body frame, denoted with the
subscript b, with origin at the midpoint between the wheels
and oriented such that the yb-axis is colinear with the wheel
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Fig. 1. Diagrams of the Wheeled Inverted Pendulum Robot

axle and the zb-axis is always parallel to the world z-axis (the
body frame does not tip with the WIP). Under the assumption
that the tires do not slip, the xb-axis of this frame points in
the direction of linear velocity v. This is illustrated in Figure
1.

The WIP has state variables [x, y, ψ, ρ]T where x and y
are the position of the robot in the plane, ψ is the bearing
angle measured from the world x-axis to the body x-axis, and
ρ is the attitude, or pitch, angle measured from the z-axis.
However, the distribution of available velocities is of rank two.
The WIP has three degrees of freedom but only two actuators.

The motion of the WIP is described by a set of second
order differential equations that include the constant influence
of gravity. Due to nonholonomic constraints, there does not
exist a smooth feedback control for asymptotic stabilization to
a point in the state space. Physical characteristics of interest
in the sequel include: wheel radius, R; wheel base length, W ;
length to mass center, L; body mass Mb and moment of inertia
in the pitch direction, Iρ. The WIP is diagrammed in Figure
1(a) and (b).

To implement the switched system controller, we first need
a controller for the WIP which can drive and steer while
regulating the attitude around zero. Our design is based upon
the work of Baloh and Parent[9]. We will not reproduce their
work here, but refer to their paper for the full derivation of the
equations of motion. They take three generalized coordinates

qT = [θlw, θrw, ρ]T (1)

where θlw and θrw are the angles of the left and right wheel,
respectively.

Following standard practice, the dynamic equations can be
written as

H(q)q̈ + C(q̇,q) + G(q) = Qu. (2)

H(q) is the inertia matrix, C(q̇,q) is a vector containing
damping terms, GT = [0, 0, MbgL sin(ρ)]T collect external

forces, g is the acceleration of gravity and

Qu = β


 1 0

0 1
1 1




[
τlw
τrw

]
(3)

where β incorporates various characteristics of the motors, and
τlw and τrw are the torques on the right and left wheel.

B. Control Through Linearization About a Point

The simplest approach is to multiply both sides of (2) by
H−1 and linearize about the point q = [0, 0, 0]T . This was
investigated by Chen, et al. in a technical report [10].

The linearized system can be expressed in a state-space
model by




θ̇rw

θ̈rw

θ̇lw

θ̈lw

ρ̇
ρ̈




=




0 1 0 0 0 0
0 0 0 0 a1 0
0 0 0 1 0 0
0 0 0 0 a1 0
0 0 0 0 0 1
0 0 0 0 a2 0







θrw

θ̇rw

θlw

θ̇lw

ρ
ρ̇




+




0 0
b1 b2
0 0
b2 b1
0 0
b3 b3




[
τrw

τlw

]
(4)

Where a1, a2, b1, b2 and b3 depend on physical characteristics
and will vary between different WIP robots.

Assuming full state feedback, feedback gains can be solved
by using LQR optimal design techniques. The system will be
stabilized about the the optimal point q = [0, 0, 0]T . To drive
and steer, desired velocities in the robot frame v and ω can
be mapped to desired values of q and q̇

v = R/2(θ̇lw + θ̇rw) (5)

ω = R/W (θ̇lw − θ̇rw) (6)

θlw = −θrw (7)

θ̇lw = v/R+ ωW/2R (8)

θrw = −θlw (9)

θ̇rw = v/R− ωW/2R (10)

C. Control Through Feedback Linearization

Improved performance was sought using partial feedback
linearization [11], [12]. Pathak, et al. developed a WIP control
using partial feedback linearization, however they followed a
different development tactic and used a world reference frame.
Our system expresses equations in a reference frame attached
to the robot. Subsequently our equations are simpler and well
suited to control schemes that involve on board sensors such
as mounted cameras.

We note that the generalized coordinates, q, are not partic-
ularly intuitive for velocity control. Equations (1),(5) and (6),



ẋb = v, and ψ̇ = ω can be combined to give
 ẋb

ψ̇
ρ̇


 =


 R/2 R/2 0
R/W −R/W 0

0 0 1





 θ̇lw

θ̇rw

ρ̇


 (11)

ẋ = Jxq̇ . (12)

Since Jx is a constant matrix, we also have

ẍ = Jxq̈ (13)

We can use this Jacobian to transform (2) to

Hx(x)ẍ + Cx(ẋ,x) + Gx(x) = ux, (14)

where Hx = JxHJ−1
x , Cx = JxC, Gx = JxG = G, and

ux = β


 R/2 R/2
R/W −R/W

1 1




[
τlw
τrw

]
.

We note that the angle ρ is not independently actuated,
but is scaled from the input for xb. From the classic inverted
pendulum problem, it is seen that

(Iρ +MbL
2)ρ̈ = MbL cos(ρ)ẍb +MbgL sin(ρ).

The term (Iρ +MbL
2) is contained in the third diagonal term

of Hx and MbgL sin(ρ) is the only nonzero term of Gx. We
can thus augment the Hx and ux terms as

H′
x = Hx(x) +


 0 0 0

0 0 0
MbL cos(ρ) 0 0




u′
x =


 R/2 R/2
R/w −R/w

0 0




[
τlw
τrw

]

The system

H′
xẍ + Cx(ẋ,x) + Gx(x) = u′

x (15)

is finally in a form to which we can apply partial feedback
linearization. We separate the actuated variables xb and ψ from
the nonactuated variable ρ by separating the top two rows of
the matrices from the bottom row. We rewrite Equation (15)
as

H11

[
ẍb

ψ̈

]
+ H12ρ̈+ C1 = u′

x (16)

H21

[
ẍb

ψ̈

]
+H22ρ̈+ C2 +G = 0. (17)

Where terms that evaluate to scalars are no longer in bold.
Solving for ρ̈ as

ρ̈ = −H−1
22

[
H21

[
ẍb

ψ̈

]
+ C2 +G

]

and substituting into (16) gives

H̄(x)
[
ẍb

ψ̈

]
+ F̄(x, ẋ) = u′

x (18)

where

H̄ = H11 −H−1
22 H12H21

F̄ = C1 −H−1
22 H12(C2 +G).

Using the feedback control law

u′
x = H̄

[
a
α

]
+ F̄, (19)

where a and α are desired linear and angular velocity, respec-
tively, and using the fact that the second element of H21 is 0,
we rewrite Equations (16) and (17) as[

ẍb

ψ̈

]
=

[
a
α

]
(20)

ρ̈ = −H−1
22 (H21(1)ẍb + C2 +G) (21)

We can regulate ρ through xb. A simple, but highly effective
method is to use proportional state feedback with ρ̇ and ρ.
Assuming, for the moment, that [ẍb, ψ̈]T = [ẋb, ψ̇]T =
[0, 0]T , we use

ρ̈ = −K1ρ̇−K2ρ⇒
ẍb = −H21(1)−1 [C2 +G−H22 (K1ρ̇−K2ρ)] ,(22)

where K1 and K2 are gains.
Combining , (20),(21), (22) and = [a, α]T = [0, 0]T gives

the final, zero-input state equations
 ẍb

ψ̈
ρ̈


 =


 −H21(1)−1 [C2 +G−H22 (K1ρ̇−K2ρ)]

0
−K1ρ̇−K2ρ


 .

(23)
When = [a, α]T �= [0, 0]T the state is described by the
equations
 ẍb

ψ̈
ρ̈


 =


 a−H21(1)−1 [C2 +G−H22 (K1ρ̇−K2ρ)]

α
−K1ρ̇−K2ρ




(24)
When ρ is small the state acceleration is very close to the
input acceleration, and ρ regulated to 0 as well.

To illustrate the superior attitude control of the partial-
feedback linearized system, see Figure 2. This graph shows
a simulation of attitude of the robot under both controllers
while balancing in place. The partial-feedback linearize system
is clearly much better regulated about ρ = 0. The attitude was
simulated again under a constant requested input of v = .5
m/sec and ω = 1 rad/sec to show regulation during motion,
and is shown in Figure 3. The feedback linearized system is
much smoother, but there is an additional interesting feature.
The feedback linearized system has a positive ρ, meaning it
keeps WIP tilted forward, which accommodates a steady state
ρ at a steady v. The typically linearized system has a negative
ρ, meaning the WIP leans backwards and is ”dragged” behind
the wheels. There is no steady state ρ associated with this
configuration, so the robot must repeatedly alter its speed to
keep the WIP from falling. However, the average magnitude
of the attitude is less for the linearized system, which could be
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Fig. 2. Values of ρ for both WIP control systems with zero input
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a consideration. The feedback linearized system also allows
for closed loop control of the velocity, while the traditional
linearized system is effectively an open loop velocity control.
Further comparisons will be given in Section IV, after a vision
based control task has been introduced.

III. VISION BASED CONTROL OF A TWO-WHEELED

INVERTED PENDULUM ROBOT

Vision-based control of mobile robots is a continually
growing field. Cameras can be used to provide data that is
used in path planning. Alternately, camera data can be used in
the feedback loop of a controller, a process known as visual
servoing (VS) [13], [14], [15], [16]. Visual servoing generally
assumes a kinematic model, and is ill suited for control of
dynamic systems that do not have control over all degrees of
freedom.

Consider a camera mounted on a WIP. The camera frame is
fixed such that the horizontal axis of the image plane is always
parallel to yb of the WIP, and when ρ = 0, the optical axis
is aligned with xb and the image vertical axis is aligned with
zb. A 3D point P will project to a point p in the image with
horizontal and vertical coordinates p = [h, n]T , as described

by the pinhole camera model.
The WIP has three degrees of freedom, with velocity vector

ξ = [v, ω, ρ̇]T . (25)

Motion of the WIP will cause motion of p in the image
according to

[
ḣ
ṅ

]
=




−h
z

λ2 + h2

λ
−hn
λ

−n
z

hn

λ

− λ2 − n2

λ





 v
ω
ρ̇


(26)

ṗ = Liξ (27)

where z is the depth of the point in the image frame, λ is the
focal length of the camera, and Li is the interaction matrix or
image Jacobian[14], [13], [15], [16].

The first concern when using visual servoing to control an
underactuated, dynamic system is motion along the uncon-
trolled degrees of freedom. In the case of the WIP, changes
in the system attitude ρ will occur due to the constant effects
of gravity and will accompany any linear accelerations. Small
changes in attitude can cause large motions of features in the
image space. This is particularly troublesome to image-based
visual servo controllers. There are several ways to address this
concern, which can be used in conjunction.

The first method is to insure that nonactuated motions
are as small and infrequent as possible. In Section II-C we
introduced a controller, based on partial feedback linearization,
that regulates ρ̇ very well. At zero input, ρ̇ is very near zero,
and during accelerations the motion of ρ is smooth.

A second approach is to subtract the image error that corre-
sponds to motion along the uncontrolled degrees of freedom.
This can be done so long as such motions can be independently
sensed. In the case of the WIP, ρ can be sensed through the use
of a rate-gyro and/or tilt sensor. A “corrected” feature point
is given by

p′ = p −




−hn
λ

− λ2 − n2

λ


 ρ (28)

Figure 4 demonstrates removing the effects of pitch from
an image. Figure 4(a) shows a side view demonstrating a
collection of feature points in front of the WIP robot, which is
pitching forward. The camera is mounted 3/4 of the way up the
robot body. Figure 4(b) shows the camera’s view. Circles are
the feature points in the image if there was no pitch. Diamonds
show the current camera view of the points, and squares are
the current view with the effects of pitch removed.

Another approach is to choose features, possibly other than
points, that are not affected by the uncontrolled motions. This
method lends itself particularly to image-based methods which
can use a wide variety of features. Hamel and Mahony take this
approach in developing a visual servo control for a helicopter-
like vehicle [7]. One drawback to this approach is that often
such a set of features cannot offer control over all degrees of
freedom, and non-image-based information must be used as
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Fig. 4. Example of Subtracting the Effects of Pitch from an Image

well. In the case of Hamel’s and Mahony’s helicopter, constant
knowledge of the direction of gravity was necessary.

For the WIP, one possible alternate set of features is to use
only the horizontal coordinates, h, of a set of feature points.
This is feasible since we are controlling only two degrees
of freedom, so the horizontal position in the image of two
feature points is sufficient for IBVS methods, so long as the
horizontal coordinates are not equal. The horizontal coordinate
is invariant to translation along the vertical camera axis, and
highly invariant to rotation about the horizontal camera axis.

In Figure 5 we show the coordinates of image points
over time for a camera mounted on a WIP balanced through
standard linearization about ρ = 0, which shows more pitch
than the feedback linearization. The top graph shows the h
and n coordinates for typical feature points. The h component
remains small, as it is not affected strongly by pitch, while
the n component moves by over 150 pixels. The second graph
shows the same points after being corrected by removal of the
motion due to the pitch. The n components now never move
more than 5 pixels, the h components show some motion due
to drift of the WIP, which was not noticeable in the first graph
due to the scale. The third graph shows just the h coordinates.
Naturally, it is very similar to the h component of the corrected
points.

IV. RESULTS

We have performed simulations to test the above ideas. Our
task is based on a vision-based control algorithm we have
previously developed [5], [6]. This algorithm is simialr in spirit
and form to one independently developed by Kantor and Rizzi
[17].

The robot performs a series of motions to move around an
annulus while keeping a landmark in the field of view, similar
to a parallel parking problem.
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Fig. 6. Trajectory and Error Values for Simulation of Kinematic Unicycle

We refer the reader to our other publications for details
on the control algorithm. Suffice to say, it involves a series
of rotations and driving along curves. These velocities are
based on image feature errors and a distance measurement to
the landmark, similar is spirit to classical image-based visual
servo methods. The algorithm was developed for a kinematic
unicycle type robot. The kinematic unicycle is similar to a
WIP, but there is no ρ motion and dynamics can be neglected.
This also means there is no drift or nonactuated motion. When
implemented on a WIP, we look to see how well the controller
can match the performance of the kinematic system.

Graphs of the task for a kinematic model are shown in
Figure 6. Figure 6(a) shows a top-down view of the trajectory
of the robot around the annulus from a start position at the
lower right to a goal position in front of a landmark consisting
of dots in the center of the figure. Figure 6(b) shows the
position error in term polar coordinates r and θ.

Results of the same task with the traditionally linearized
WIP controller, with pitch removed from the feature points
is shown in Figure 7. Figure 7(a) shows the trajectory of the
WIP robot over time; Figure 7(b) shows the error in r and θ
over time. The trajectory appears very similar to that for the
kinematic model, but the pose error differs quite a bit. It also
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takes almost twice as long as the kinematic model to complete.
Simulations have been conducted for the partial-feedback

linearized model as well. Figure 8(a) shows the trajectory of
the WIP robot over time, and Figure 8(b) shows the error in
r and θ. Comparing these results to those of the kinematic
unicycle, the trajectories of the systems are very similar. The
error functions are much closer to the kinematic model than
those of the traditional linearized model. It outperforms the
traditional linearized system in control of the attitude and the
time needed to complete the task.

V. CONCLUSION

Vision-based control of mobile robots is made more difficult
in the presence of nonholonomic constraints, particularly when
the system must be described by a dynamic model. In this
case there will often be nonactuated motions that will affect
the image. We have presented two methods of reducing the
effects on nonactuated motions on the image. These methods
can generally be applied to dynamic vehicle if certain pose
sensors or assumptions on the vehicle motions can be met.

For the specific case of a wheeled inverted pendulum, we
have also presented a novel controller using partial feedback
linearization. This model provides dramatic improvement in
control over a controller designed with traditional linearization
about an equilibrium point. This improvement is particularly
strong in regulating nonactuated motions, which improves
vision-based control.

We have presented simulations to demonstrate the strengths
of our proposals with a visual servoing control task that

involves several changes of direction. Further work should be
done to compare the merits of each proposals individually.
Implementation of these controllers on a WIP robot could
follow as well.
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