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Abstract— Control of wheeled vehicles is a difficult problem
due to nonholonomic constraints. This problem is compounded
by sensor limitations. A previously developed control scheme
for a wheeled robot, which keeps a target in the view of a
mounted camera, is one solution to the problem. In this paper,
we prove the controllability and stability of the control scheme.
We present an implementation of the controller, as well as
present the results of simulations and physical experiments.

I. I NTRODUCTION

Many mobile robots fall into the category of nonholo-
nomic vehicles, which are typically underactuated and have
constraints on derivatives of the configuration variables.
Typical feedback control methods offer poor results or may
not work at all.

The field of nonholonomic motion planning has grown
to address these issues [1]. Path planning is difficult under
the best of circumstances, and becomes more difficult when
limitations of sensors are taken into account. In this paper
we focus on the situation of a kinematic unicycle vehicle
with an on board camera as the only sensor.

Since the velocities available to a nonholonomic system
are limited, one popular solution is to use piecewise continu-
ous control to move in a series of steps. Keeping a landmark
in the field of view effectively constrains direction and size
of these steps.

Pissard-Gibollet and Rives [2] detailed the problems of
using vision-based control with nonholonomic vehicles and
overcome these problems by adding additional degrees of
freedom to the camera. Ma et al. [3] established vision-
based feedback control of a unicycle and car-like robots
using advanced techniques in nonholonomic path planning.
Fang et al. [4] controlled a mobile robot using Position Based
Visual Servoing techniques based on planar homography.
Kantor and Rizzi [5] independently designed a vision-based
controller that produces oscillating velocites to follow very
similar trajectories to those presented here using .

Bhattacharya et al. [6] developed a control scheme to pro-
vide a continuous, piecewise smooth trajectory to a unicycle
robot while keeping a landmark in the field of view. That
paper focused on proving the least distance optimality of
the control scheme. This paper proves controllability and
stability of the scheme, i.e. the robot can be regulated to any
point in the task space. Furthermore, this paper details theuse
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of the control scheme with a real robot system. The scheme
in [6] required 3D information such as depth to the landmark.
In an effort to make this an entirely vision-based algorithm
(for instance no distance sensors are used), some adaptions
are made to the algorithm. In light of these adaptions, it
can be claimed that the implementation approximates the
controller. Nevertheless, simulated and experimental results
are very promising.

In Section II we provide background information on the
kinematic unicycle and the method developed by [6]. In
Section III we offer a proof of controllability, and in Section
IV we give a proof of asymptotic regulation to a goal pose. In
Section V we detail a implementation of the controller using
a camera as the only sensor, and simple feedback control
laws. Finally, in Section VI we provide results of simulations
using the newly introduced vision-based controller.

II. BACKGROUND

A. Keeping a landmark in the field of view.

Bhattacharya et al. introduced a novel scheme to move a
kinematic unicycle while keeping a landmark within the field
of view of a camera mounted on the robot [6]. This paper
primarily focused on the properties of the paths generated
by the scheme, especially optimality of path length. We
will focus on a vision-based implementation of this control
scheme and properties of reachability and stability.

Consider a mobile robot in the plane. A landmark consist-
ing of a point is located at the origin. At timet = 0 the robot
lies within an annulus centered at the origin and defined by a
minimum and maximum radii,rmin and rmax, respectively.
For simplicity, assume the camera is mounted such that the
optical center is above the origin of the robot body reference
frame, and the optical axis is parallel to the robotx axis. The
angleφ measures the angle from the optical axis to the line
from the origin of the world frame to origin of the body
frame. This is seen in Fig. 1.

To keep a landmark at the origin within the field of view,
the robot must be pointed toward the landmark. This adds a
constraint

ψ + φ = π + tan−1
y

x
= π + θ. (1)

The maximum viewable angle on the right side of the camera
is defined as -̃φ, as measured from the robot x-axis, and
maximum viewable angle on the left as̃φ. If φ ∈ [−φ̃, φ̃]
then a point at the origin is visible in the image. Again, this
can be seen in Fig. 1.

The control scheme in [6] features two modes of operation.
Rotating the robot until the image of the landmark (in this



Fig. 1. Coordinate assignments for a kinematic unicycle robotwith camera
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Fig. 2. An S-curve forφ =
π

6

case, a single point at the origin) was on the edge of the
image (φ = ±φ̃), and driving the robot forward or backward
while keeping the image point on the edge of the image.
This gives rise to a curved path, which was labeled aT-
curve. From any point there are two available T-curves
depending on ifφ = ±φ̃ and the robot can drive forward or
backwards upon either. The T-curve through a point[r0, θo]

T

is described by the equation [6]

r = r0 exp

{

(θ0 − θ)

tanφ

}

. (2)

By introducing the maximum and minimum value for the
radiusr, and alternating between the available T-curves each
time the robot reachesrmin andrmax, it is possible to move
about an annulus centered on the landmark. This collection
of T-curves was named anS-curve, and is illustrated in
figure II-A. As will be shown in Section III, an S-curve is
available to move between any two points in the annulus
while maintaining the landmark in the field of view.

B. The Kinematic Unicycle

We adopt the familiar kinematic unicycle model [1] for our
nonholonomic vehicle. The local coordinates of the unicycle
are [x, y, ψ]T , wherex and y are the position of the robot
in plane andψ is the angle from the worldx-axis and robot

x-axis. This is illustrated in Fig. 1. The equations of state
can be written in matrix form as
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ẋ
ẏ
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wherev andw are linear and angular velocity, respectively,
and are inputs to the system.

It will ease future calculation to use polar coordinates
in place of Cartesian coordinates. Under this change of
coordinates, the system can be described by
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III. PROOF OFCONTROLLABILITY

In this section, we will prove that the kinematic unicycle
is controllable when constrained to drive along S-curves. It is
known that a driftless system is small-time controllable ifand
only if the vector space spanned by the family of vector fields
available to the system, along with their Lie brackets, is of
full rank everywhere. This is also known as the Lie Algebra
Rank Condition (LARC) or Chow’s Theorem [7], [1], [8].
It can be shown that the kinematic unicycle is small-time
controllable given the equation of motion (3)[1]. We now
explore the case when the kinematic unicycle is constrained
to the available T-curves.

The two T-curves available at each point provide two
vector fields,f1 and f2. Combining equations (4) and (1)
gives

cos(θ − ψ) = − cos(φ) (4)

sin(ψ − θ) = sin(φ). (5)

Keeping the landmark at the edge of the image setsφ ∈
{−φ̃, φ̃}. Taking the derivative of (1) along a T-curve then
yields

ψ̇ = θ̇. (6)

Equations (4),(5) and (6) are used to define the two vector
fields

f1 =

[

− cos(φ̃)v,
1

r
sin(φ̃)v,

1

r
sin(φ̃)v

]T

(7)

f2 =
[

− cos(−φ̃)v, 1

r
sin(−φ̃)v, 1

r
sin(−φ̃)v

]T

.(8)

These two vector fields describe the velocities available by
following T-curves.

We add a third vector field described by equation (3)

f3 = [0, 0, ω]
T
. (9)

Vector fieldf3 rotates the robot to obtain a desired value of
ψ.

We consider the admissible configuration space to be the
collection of points satisfying{r, θ, ψ|r ∈ [rmin, rmax], θ ∈
(−π, π], ψ ∈ S

1}, which can be viewed as a manifold with
boundary and an embedded submanifold ofR

2 × SO(2).
The configuration space is the Cartesian product of an



annulus andSO(2), and we will refer to this space as
A ⊂ R

2 ×SO(2). In an abuse of terminology, we will refer
to a stateX = [r, θ, ψ]T ∈ A as beingin the annulusif
r ∈ [rmin, rmax].

The span of the vector fields{f1, f2} loses rank when
φ̃ = nπ/2 for n ∈ Z. A typical video camera has a cone of
view much less than90◦, so the family will not lose rank
due to this condition (we do not consider the case of fish
eye lenses or catadioptric cameras, and in any event they are
not subject to the same problems of field of view). Due to
the mapping from Cartesian to polar coordinates, the fields
f1, f2 experience a singularity atr = 0. However, since
the annulus has a minimum radiusrmin bounded away from
zero, so this too can be discounted.

Thus, using the span of the vector fields{f1, f2, f3} is full
rank, and satisfies the LARC for all points inA. Therefor
the system using T-curves is small time controllable from
any point inA. For any goal value of the bearingψ such
thatφ /∈ [−φ̃, φ̃], (1) (i.e. the landmark is not visible for the
goalψ), the robot can be brought to the desired values ofr
andθ, then rotated to the desired orientation. However if the
landmark leaves the field of view, feedback control cannot
be used and final angular error is likely.

IV. STABILITY ANALYSIS

In this section we prove that a controller which drives
a system along a series of T-curves is bounded and able
to regulate the position of a vehicle to a goal pose from
anywhere in the annulus. To this end we show that the error
in the position variableθ is strictly decreasing and the system
will reach the goal valueθ∗ in finite time and switch to a
controller that moves to the goal value ofr∗; ψ(t) = ψ∗

can then be obtained by a rotation after the goal position is
obtained. This is a weaker condition than asymptotic stability
in the sense of Lyapunov.

The controller will be based on switched system control
theory. The task space isA , {r, θ, ψ|r ∈ [rmin, rmax], θ ∈
(−π, π], ψ ∈ S

1} ⊂ SE(2). Given a goal poseX∗ =
[r∗, θ∗, ψ∗]T ∈ A, there are three switching surfaces given
in polar coordinates:

S1 , {r, θ, ψ} s.t. r = rmax

S2 , {r, θ, ψ} s.t. r = rmin

S3 , {r, θ, ψ} s.t. θ = θ∗.

Without loss of generality, we can assumeθ∗ = 0. These
surfaces are illustrated in Fig. 3. The system has initial
poseX(0) = [r(0), θ(0), ψ(0)]T ∈ A. We present a set of
switching control laws for that the case thatθ(0) > θ∗, i.e.
the robot must move clockwise about the annulus.

The controller begins following the flow of the vector field
described by

f0 =

[

cos(φ̃)ṽ, −
1

r
sin(φ̃)ṽ, −

1

r
sin(φ̃)ṽ

]T

(10)

whereṽ > 0 is a constant velocity input. The state variables
r(t) increases andθ(t) decreases. If the state contacts surface

Fig. 3. Switching Surfaces for the Kinematic Unicycle Controller

S1, the controller switches to follow the vector field

fs1 =

[

− cos(−φ̃)ṽ,
1

r
sin(−φ̃)ṽ,

1

r
sin(−φ̃)ṽ

]T

(11)

which decreasesr(t) and θ(t). If the state contacts surface
S2, the controller switches to follow the vector field

fs2 = f0. (12)

If the state contacts the surfaceS3, the controller switches
to follow the vector field

fs3 =

[

cos(0)λ(r(t) − r∗), −
1

r
sin(0)ṽ, −

1

r
sin(0)ṽ

]T

= [λ(r(t) − r∗), 0, 0]
T (13)

whereλ is a positive scalar gain. While not technically a
T-curve (φ is not saturated), we will refer to the trajectory
resulting fromfs3 as a third available curve. Additionally,
note thatfs3 is in the span offs1 andfs2.

A set of control laws forθ(0) < θ∗ follows a similar
development. The sets of laws forθ(0) > θ∗ andθ(0) < θ∗

together provide a switched system controller to regulate
the state.

Theorem:Given initial poseX(0) and goal poseX∗, the
switched system controller is bounded and regulates the
position such that

lim
t→∞

X(t) = X
∗ (14)

Proof: First we prove that the state is bounded. The variable
θ remains in (−π, π] since the switching laws allow the
robot to move CCW or CW to the goal. From equation (1),
θ bounded ⇒ ψ bounded. Thus, to prove that the state is
bounded, it suffices to prove thatX is always in the annulus.

Hespanha showed that a region is invariant to a hybrid
switched system control if at each pointX on the switching
surfaces, the vector fielḋX at that point points toward the
interior of the set [9].

For X ∈ S1, Ẋ = fs1. From any point onS1, the vector
field points to the interior of the annulus if|ṽ| < rmax−rmax

and if the T-curve is anything less than tangent to the circle.



This is true if φ̃ < 90◦, which is not feasible for a standard
camera. A similar analysis holds forS2. For the surface
S3 ⊂ A, Ẋ = [λ(r(t)−r∗), 0, 0]T points toward the interior
of the annulus. Therefor, if̃v is sufficiently small the state
never leaves the annulus, and the state is bounded.

Define the error signals

eθ(t) = θ(t) − θ∗ (15)

er(t) = r(t) − r∗. (16)

We define a Lyapunov-like function

Vθ =
1

2
e2θ. (17)

It is easy to see thatVθ > 0,∀eθ 6= 0.
When following vector fieldfs1, combining (11) and (17)

gives

V̇θ = eθ θ̇

= eθ

ṽ

r
sin(−φ̃) < 0. (18)

where r(t) is bounded from below and above. Similarly,
when following vector fieldfs2,

V̇θ = eθ θ̇

= eθ

−ṽ

r
sin(φ̃) < 0. (19)

Thus isVθ is strictly decreasing along both vector fieldsfs1

andfs2, andθ → θ∗ in finite time.
When theθ(t) = θ∗, the state is on the surfaceS3 and the

system switches to followfs3. Define a new Lyapunov-like
function

V =
1

2
(e2θ + e2r). (20)

While following the flow offs3 we have

θ̇ = 0 (21)

ṙ =
ṽ

r
sin(−φ̃). (22)

Equations (20)- (22) give

V̇ = er

ṽ

r
sin(−φ̃) < 0 (23)

Thusθ(t) = θ∗ andr(t) → r∗ along the vector fieldfs3, and
the system is regulated to the goal position. At this point,ψ
can be regulated by following the vector fieldf3 given in
(9) to the desired orientation.

V. V ISION-BASED IMPLEMENTATION

The controller discussed in Sections II-IV assumes a
landmark of a single point, that the distance to the origin is
known at all time, and the ability to instantly switch between
T-curves. In this Section we detail a controller for kinematic
unicycle robots that uses a camera as the only input sensor.
This controller will approximate the T-curves of the of the
ideal controller while. While we do not prove the stability
of this implemented controller, simulation and experimental
results indicate it is capable of regulating the vehicle to a
goal pose in the annulus.

By definition, a T-curve is being followed if the viewed
landmark is kept on the edge of the field of view while
the robot drives, i.eφ ∈ {−φ̃, φ̃}. An additional curve is
available for driving on a radial line ifφ = 0. A real robot
cannot switch instantaneously between the vector fieldsfs1,
fs2, andfs3 since it cannot instantly obtain arbitrary values
of φ. We must introduce modes of control that rotate the
robot between the key values ofφ ∈ {−φ̃, 0, φ̃}. Noting
that φ̇ = ψ̇, a control signal of the form (9) will rotate the
robot to obtain the desired value ofφ.

Assume, without loss of generality, that a visible landmark
is located at the origin of the task spaceSE(2). Given the
goal poseX∗ and current poseX(t), it is necessary to define
an annulusA ⊂ SE(2) such thatX∗, X(t) ∈ A. We use
the goal radiusr∗ for rmin. Choosingrmin = r∗ insures that
X

∗ is in front of the robot when the robot is on the radial
line θ(t) = θ∗. The choice ofrmax is somewhat arbitrary,
but a multiple ofrmin is effective. In the results that follow
we have usedrmax = 2r∗.

For the case thatθ(0) ∈ [θ∗, π] the robot should move
clockwise around the annulus. A sequence of motions that
will approximate T-curves to move clockwise from an initial
pose in the annulusX(0) to the goal poseX∗ is are outlined
as follows:

1) Increaseψ until the landmark is on the extreme left
edge of the image.

2) Whenφ = φ̃, drive backward and steer such that the
image of the point remains on the left edge.

3) When r = rmax at the outside edge of the annulus,
decreaseψ to place the landmark on the right edge of
the image.

4) Whenφ = −φ̃, drive forward and steer such the point
remains on the right edge of the image.

5) When robot is on the radial line described byθ = θ∗,
rotate such thatφ = 0 and drive towardr∗ .

A similar sequence is used for the case thatθ(0) ∈ (−π, θ∗],
to move counterclockwise around the annulus.

We will henceforth refer to these as the five modes of
operation. Modes 1 and 3 rotate the robot, allowing the
choice of T-curves defined byφ = −φ̃ or φ = φ̃, and the
third curve whereφ = 0. Modes 2 and 4 drive the robot along
a T-curve by applying linear velocity while maintaining the
constraint on saturatingφ. Mode 5 first rotates untilφ = 0
and regulates the remaining radial error.

The minimum and maximum radii of the annulus describe
two switching surfaces. When the robot is in mode 2 and
crossesrmax the system switches to mode 3. When the robot
is in mode 4 and crossesrmin the system switches to mode
1. The radial lineθ = θ∗ defines a third switching surface.
When this line is contacted under modes 2 or 4, we switch
to mode 5. Withrmin = r∗, X∗ is in front of the robot when
the robot is on the radial lineθ(t) = θ∗.

It typically is not feasible to consider a point for a land-
mark, since vision-based control methods require three or
more points [10], [11], [12]. If we now consider a collection
of points centered at the origin, to approximate a T-curve the
system must keep the rightmost point on the right edge of



Fig. 4. Example Image

the image or the leftmost point on the left edge of the image.
This effectively reduces̃φ and makes it dependent onr as
the image of the landmark will be larger whenr is small
and less rotation will be feasible without points leaving the
image. The vehicle trajectories will stray from true T-curves
for large landmark objects and smallrmin.

We define several feedback control laws to accomplish
the five modes of operation described at the beginning of
this section. Defining the robot state space as in equation
(4), with inputsv andω, we use vision data and the current
depth r(t) in feedback loops. Given a collection of image
points, define the rightmost point asu1 = [u1, v1]

T and the
leftmost point asu2 = [u2, v2]

T in pixel coordinates. It is
desired to keep the points near the edge of the image, thus
define widthsα, −α near the edges. This is illustrated in
Fig. 4.

Feedback control laws

ω = λω(−α− u1) (24)

ω = λω(α− u2), (25)

where andλω is a positive scalar gain, will rotate the robot
such that the landmark is regulated to the right or left the
edge of the image, respectively. Control laws

v = λv(2r∗ − r(t)) (26)

v = λv(r∗ − r(t)), (27)

whereλv is a positive scalar gain will drive the robot toward
the outer and inner radius of the annulus, respectively.

Given these basic feedback control laws, a series of
proportional control laws to perform the modes of operation
are presented. A similar set of controls is defined for moving
counterclockwise about the annulus.

1) Increaseψ:
v = 0
ω = λω(−α− u1) + εω

2) Whenφ = φ̃, drive back and steer:
v = λv(2r∗ − r(t)) − εv

ω = λω(−α− u1)
3) Whenr = rmax, decreaseψ:

v = 0
ω = λω(α− u2) − εω

Fig. 5. Finite State Diagram for Moving Counter Clockwise Around the
Annulus

4) Whenφ = −φ̃, drive forward and steer:
v = λv(r∗ − r(t)) + εv

ω = λω(α− u2)
5) Whenθ = θ∗, rotate s.t.φ = 0

ω = λω((θ + π) − ψ(t)) + sgn(θ + π − ψ(t))εω

then drive forward:
v = λv(2r∗ − r(t))
ω = 0

In these feedback control laws, andεω and εv are small,
positive constant scalars to insure the state reaches the
switching surfaces in finite time.

It is necessary to determine in which state the system
begins. After that, switches occur when crossing a switching
surface. Ifr(0) < rmax, begin at step 1 to move backwards.
If r(0) > rmax begin at step 3. Note that this also allows
for cases whereX(0) is not in the annulus. These steps are
illustrated in a finite state diagram Fig. 5.

A final limitation of the vision-based implementation
concerns the ability to estimate the pose given the visible
landmark. It is likely that the points on the landmark are
visible only within a subset of the annulus. A nonplanar
landmark can occlude parts of itself. Even given a planar
landmark, the points are likely visible only from half the
annulus. While most any pose reconstruction method could
be used to get the stateX(t) (e.g. [12], [13], [14]), we use the
well known Euclidean Homography matrix between images
of planar points [14], [15].

There are numerous issues that can influence performance.
We will discuss them briefly but leave them to future work.
Signal noise, robustness of the robot model and camera
and robot calibration clearly can have adverse affects. Also,
outside of an ideal environment, it is possible for the robotto
leave the lineθ = θ∗ when in mode 5. This would necessitate
a return to modes 1 or 3, which could result in chattering
effects. A better solution would entail using a more advanced
controller for mode 5 to reject disturbances ofθ.

VI. EXPERIMENTAL RESULTS

Simulations were performed using the implementation of
Section V. The landmark is a square of coplanar points.
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Fig. 6. Simulation Results

We assume an image of the landmark taken atX
∗ and

knowledge of the feature point at the goal are known. With
this information we use the homography between images
of planar points to estimate the robot’s coordinatesX(t).
See the Appendix for details on this pose reconstruction
technique.

The robot starts from position [r, θ, ψ]T =
[2.75, π/3, 5π/6]T , and the goal position is[−1.2, 0, 0]T .
Fig. 6(a) shows the path taken by the robot along with
the switching surfaces; Fig. 6(a) shows the values of
eθ = θ(t) − θ∗ and er = r(t) − r∗ over time. The distance
error, er is bounded and periodic, while values ofeθ tends
to zero as time increases. The robot eventually reaches the
radial line whereeθ = 0. Then the remaining error inr(t) is
regulated to zero. These results agree with what is expected
from the proof of stability for the ideal system in Section
IV.

We have implemented the control scheme with a robot
for real experiments. At the time of publication, the true
robot position values were unavailable, and position esti-
mates from encoder values was too noisy to be insight-
ful. Video of the system is informative, and an example
can be found in the video proceedings and at http://www-
cvr.ai.uiuc.edu/˜ngans/segbotvideo.wmv. The robot uses a
Texas Instruments TMS320 DSP for all signal processing
and motor control. An OmniVision OV6620 Color CMOS
camera provides vision data. No other environmental sensors
were used. The landmark is a square of four LED’s. The
controller works well, especially considering the coarse
camera resolution and the low processor bandwidth.

VII. C ONCLUSION

Control of nonholonomic systems, such as wheeled vehi-
cles, is a difficult problem, especially when sensor limitations
are taken into account. Bhattacharya et al. [6] developed
control scheme for a wheeled robot which can keep an
landmark in the field of a mounted camera. We have also
demonstrated the controllability and stability of the control
scheme in that the robot can move to any point in an annulus
surrounding a visible landmark. We have further developed
the scheme for a vision-based implementation of this control
scheme using a system of feedback controllers. Simulations
of the implemented controller are provided, along with video
of experiments using a mobile robot.

Future work will focus on establishing the stability and
controllability of the vision-based implementation of the
motion scheme. Additionally, alternative implementations
could be devised, including ones that do not require a priori
knowledge of the goal pose, but rely only on data directly
available from image data.
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