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Abstract— In the recent past, many researchers have developed control al-
gorithms for visual servo applications. In this paper, we introduce a new hybrid
switched system approach, in which a high-level decision maker selects between
two visual servo controllers. We have evaluated our approach with simulations
and experiments using three individual visual servo systems and three candidate
switching rules. The proposed method is very promising for visual servo tasks in
which there is a significant distance between the initial and goal configuration,
or the task is one that can cause an individual visual servo system to fail.

I. INTRO

Visual servoing has proven to be a highly effective means to
control a robot manipulator through the use of visual data. It
provides a high degree of accuracy using even simple camera
systems and robustness in the face of signal error and uncer-
tainty of system parameters.

Visual servo methods have classically been divided into two
camps, Position Based Visual Servoing (PBVS) and Image
Based Visual Servoing (IBVS). There are extensive resources
detailing these methods [1–4]. In the late nineties, Chaummette
outlined a number of problems that cannot be solved using the
traditional local linearized approaches to visual servo control
[5]. This resulted in a variety of partitioned visual servo sys-
tems which used the image Jacobian linearization of IBVS for
specific degrees of freedom, and 3D techniques exemplified in
PBVS for the remainder [6–10].

Rather than combining systems, another approach is the use
of hybrid switched systems, i.e., systems comprised of a set of
continuous subsystems along with a discrete switching control
[11,12]. Hybrid switched systems can offer an increased region
of stability and increased rate of convergence, and there exists
the potential to switch between unstable systems in a pattern that
makes the total system stable.

Section II will provide an introduction to the theory behind
hybrid switched systems. In Section III, we discuss our individ-
ual visual servo systems. In Sections IV and V we will present
the two switched systems along with their simulated and exper-
imental results.

II. HYBRID SWITCHED SYSTEM CONTROL

The theory of hybrid switched control systems, i.e., systems
that comprise a number of continuous subsystems and a discrete
system that switches between them, has received notable atten-
tion in the control theory community [11–13]. In general, a
hybrid switched system can be represented by the differential

equation ��������	�
���������������� ��� (1)

where ��� is a collection of � distinct functions. For our pur-
poses, it is convenient to explicitly note that the switching be-
havior directly affects the choice of the control input ���������	���! � �"�#$�%�����&�'� ����� (2)

A useful interpretation is to consider � to be a discrete sig-
nal, switching among discrete values in 1..n. The value � at
time ( determines which function �)�
�	 � � � is used. The signal� is typically classified as state-dependent or time-dependent,
depending on whether switches are caused by the state of � or
the time ( , although overlap does exist between these classes.
In our research we explored state-dependent switching contin-
gent on the state of the image plane or camera pose, a time-
dependent switch induced by a random variable, and a combined
method where a random variable influenced by the state deter-
mined switches.

The systems we present are each comprised of two visual
servo controllers; each visual servo controller provides a veloc-
ity screw, � �+* ,	-� .,0/$ .,01� 32)-� 32)/� 32)15476 , and a switching rule
determines which is used as the actual control input at each con-
trol cycle.

The stability of a switched system is not insured by the sta-
bility of the individual controllers. Indeed, a collection of stable
systems can become unstable when inappropriately switched.
As an illustration, Figure 1 (from [13]) shows trajectories for
two asymptotically stable subsystems in (a) and (b). A set of
switches resulting in a stable system is shown in (c), while a
series of switches resulting in an unstable system are shown in
(d).

Stability of switched systems can be proven using Lyapunov’s
direct method [13, 14]. Generally this requires establishing a
common Lyapunov function that works for all subsystems. Al-
ternately, one can establish a family of Lyapunov functions for
the systems such that at each switch, the value of the function at
the end of that interval is less than the value of the function of
the interval that proceeded it, as illustrated for a one dimensional
family of two functions in Figure 2.

Stability of a switched system can be extremely difficult to
prove. However, we have performed extensive empirical eval-
uations that demonstrate the efficacy of our approach. We will
turn our attention to establishing stability in the near future.
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Fig. 1. trajectories of switched systems
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Fig. 2. stable family of Lyapunov function

III. THREE VISUAL SERVO CONTROLLERS

We present the three visual servo controllers used by our
switched systems.

A. Homography Based Controller

The homography method exploits the epipolar constraints be-
tween two images of planar feature points. The homography
matrix has been used previously for visual servoing in [6, 8] to
control a restricted set of degrees of freedom. We however, use
it to control all degrees of freedom.

Define 8�9 , 8 , as the homogeneous coordinates in two images
of a set of 3D points lying on a plane : , where * denotes features
in the goal image.. These are related by

8 9 ��; 8 (3)

where ; is the calibrated homography matrix. As shown in
[15, 16], ; can be decomposed as

;<��=��?>A@�B�CED 6F � (4)

where >G@ is a HJIKH identity matrix and = and C are the rota-
tion matrix and translation vector, respectively, relating the two
camera views. The parameter n is the the normal of the plane: and describes the orientation of : with respect to the current

camera view;
F

is the distance from the current camera origin to
the plane : . We calculate the vector L �M* , -  N, /  N, 1 4O6P�RQF C ,
where QF is an estimate of

F
. Given knowledge of the geometry of

the feature point locations it is possible to accurately estimate QF
and so determine C to the proper scale. From the rotation matrix= , we extract the roll, pitch and yaw angles, 2S1� 32T-U 32T/ , obtain-
ing the velocity screw � �WV!* ,!-� .,0/$ .,01� 32)-� 32)/� 32)1X4 in which V
is a scalar gain constant, or a YZIJY gain matrix..

Of the numerous methods to calculate H, we have used a lin-
ear solution since visual servoing, in general, requires quicker
calculations than iterative methods may provide. Decomposing
the homography as in (4) is not a trivial exercise and generally
cannot be solved to a unique solution. Additional information
pertaining to the use of the homography in visual servoing can
be found in [6]

Since this method provides rotation and translation vectors
to completely realize the camera’s goal position from its cur-
rent position, it shares many of the performance characteristics
of PBVS systems. Namely this system will perform optimally
in Cartesian space. The end effector will typically follow the
shortest path to the goal position. This, however, can lead to
large motions of the features in the image space. This can cause
the feature points to leave the field of view, resulting in system
failure. We will define system failure as any time that a system
cannot zero the error within 250 iterations.

B. Affine-Approximation Controller

For camera motions that do not involve rotation about the
camera � - or [ - axes, the initial and goal images will be re-
lated by an affine transformation. While this is a constrained set
of motions, it is common in many situations such as aligning
camera with a component on a conveyer belt.

Define \8�9 , \8 , as the calibrated pixel coordinates of two points
in the image plane. Again, * indicates the features are in the goal
image. Then these points are related by the affine transformation

\8 9 � ] \8�^K_� ` �bac �5d `fe�g cc eEh d `
i#j Blk jk j i j d ` ��-� / d ^ ` ( -( / d (5)

in which i j and k j denote respectively mGn$oUp and o3qOr�p ; � - and��/ are image point coordinates; a , e�s , and p describe the skew,
scale, and rotation respectively; and _ is the translation. Both ]
and _ can be obtained by solving a linear system of equations,
and QR decomposition can then be used to determine a" e s  andp .
\8 9 �t=vu 8#^w_ �x`7y�gNgby�g hc yAh.h d `?z h g{zEg hz gNg zGh.h d ` �&-� /Ad ^ ` ( -( /Ed (6)

The Q matrix is a permutation of the rotation matrix in (5),
and rotation p about the camera | -axis equals arcsine( z h g ). Dur-
ing an affine transformation, the rotations about the �!B and [ B
axes are, by definition, zero. The y gNg and yAh.h of (6) respectively
equal the e g and eEh parameters of (5) and provide | B axis trans-
lation to scale. Translation along the �!B and [ B axes are de-
fined to scale in the vector _ . Multiplying the scaled translations
by a depth estimate will provide true values. Again, knowledge
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of the feature point geometry will allow for the depth estimate
to be accurately derived.

Given a� e s  p  ( -  ( / we again have the position and orienta-
tion relating the initial and camera goal positions. This con-
troller provides the velocity screw � � V!* ( -� ( /� e h  c  c  p 4
where V is a gain constant or matrix. Note that if there is no
rotation about the �!B or [ B axes, we will have e g � eEh .
C. IBVS

There is a vast amount of literature regarding IBVS systems
[4, 5, 17, 18]. In IBVS systems, the control exists in the image
space. In the common case of a camera mounted on the robot
end effector, the motion of a two-dimensional feature point 8 �* }~ .�	4O� in the image is related to the velocity screw of the end
effector

�����* ,	-� N,	/� .,01& 32)-U 32)/$ 32T1G476 by the relation�8 �P�������
}~ .�S .������U (7)

where � ��� is the image Jacobian [1, 2]. Given at least three
feature points, it is possible to use (7) to construct the control
law }���V$������ �?�&� �8 (8)

where } will be the velocity screw and V is a scalar gain factor
or a YZIJY gain matrix.

Under this control, feature points tend to move in straight
lines to their goal positions. This provides desirable perfor-
mance in the image space, but as first reported by Chaumette
[5], it can lead to extraneous motions of the end effector in 3D
Cartesian space. These motions can lead to singular positions
for the robot or singularities in the image Jacobian, leading to
task failure.

IV. A IBVS/HOMOGRAPHIC HYBRID SWITCHED SYSTEM

Our first switched system presented here uses the IBVS and
homographic methods as sub-systems. A higher level decision
maker determines which system to use a each iteration. This
system was designed in hopes of maximizing the strengths IBVS
and PBVS systems as discussed in Section III.

As noted in Section II, we explored three switching signals:
State-Dependent Switching. We attempt to avoid the weak-
nesses of both systems by switching when the current system is
approaching a problematic state. We determine a threshold level
for how far the feature points will be allowed to stray from the
center of the image, as well as a threshold on the distance we
will allow the camera to move from the feature points. At each
iteration, we compare each switching parameter to its threshold.
If we are using IBVS and move past the threshold distance from
the feature point plane we switch to PBVS to bring us towards
the goal position and end camera retreat. If we are using PBVS
and the feature points move outside the threshold distance to
the image center we switch to IBVS to bring the image points
towards their goal configuration, which is commonly centered.
Random Switching. Random switching has been used in con-
trol systems for such tasks as task routing [19]. At each itera-
tion, We use a binary random variable to select between the two
systems with equal probability. This provides a strong test to
stability under arbitrary switching, and can tell us whether an
undesirable switching pattern may result in instability.

Biased Random Switching. The state-dependent levels dis-
cussed above are now inputs to a probabilistic function used
to determine the next system used. The farther the camera is
from the image plane, the more likely the system is to choose
the PBVS method. Likewise, the farther the feature points are
from the image center, the more likely the system is to choose
to use IBVS. The probability will be unity at either threshold.

We first present a series of simulations to show performance
under ideal conditions. Simulations were performed for an ideal
camera with a � �E� I�� �E� pixel array, with each pixel measuring� c�� m I � c�� m and a focal length of 7.8mm. We allowed perfect
depth estimation. Visual servoing was halted if the pixel error
was reduced below 1 pixel, or had converged to steady state for
ten iterations.

We simulate a goal image where the feature points are close to
the image border, and an error image where the camera is rotated
by 160 � about the optical axis. This is an extremely difficult task
for the individual subsystems. In our simulations, using only
the PBVS method would result in a loss of the feature points,
and using only the IBVS method induced a camera retreat of 10
meters. Either of these would likely cause failure in a physical
system. All three methods of switching were successfully able
to zero the error.

The first simulation was the state-dependent switching sys-
tem. Figure 3 hows the feature point errors, the velocity screw,
the value of our switching parameters and the feature point po-
sitions at each iteration. Tick marks at the bottom of the graphs
show the system currently being used: black for IBVS, cyan
for PBVS. The color of the position lines follow the same color
scheme regarding which system is determining the motion.

The feature points begin far from the center of the image, so
we begin in IBVS mode to bring the points towards the goal. In-
deed, the maximum error decreases, along with a sharp increase
in the distance of the camera from the feature points. We en-
forced a threshold of 1.75 meter for the camera distance, so the
camera switches to PBVS when camera retreat reaches this dis-
tance. The camera retreat is corrected along with completion of
the rotation.

Figure 4 shows results for the random switching method. The
feature points are kept within the image, and the camera retreats
less than under the state based switching method. This is due
to the large number of switches; since the switching is entirely
random, it is possible to select the IBVS method the major-
ity time and experience extreme camera retreat, although this
never happened during our simulations or experiments. It does
take slightly longer in this case to zero the error that state based
switching.

Our final simulation result is for probabilistic switching,
shown in Figure 5. The feature point trajectories closely resem-
ble those of the random method. The feature point excursion
is kept low, and the camera distance is also lower than that ex-
perienced under either the state-dependent method or random
method, and it is slightly faster than both other systems as well.

Our experiments were performed using a camera mounted on
the end effector of a PUMA 560 robot. The camera is a Sony
VFW-V500, which has a Y&� c IK�$� c color pixel display. The
lens focal length is 14.4mm. The feature points consisted of
four color dots on a black sheet. The image was thresholded in
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Fig. 3. State-Dependant Switching
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Fig. 4. Random Switching

RBG space to locate the center points of each dot. This provided
4 co-planar feature points.

The first experiments were very similar to the simulations.
They involved a goal image with the camera very close to the
feature points, and an initial offset consisting of a large rotation
about the optical axis. Two such images can be seen in Figure 6.

Naturally, the individual systems did not perform ideally in
our experiments due to the presence of camera calibration and
depth estimation errors. For instance, the the feature point error
did not strictly become smaller at every iteration under IBVS.
The systems do well however, and did perform expected mo-
tions such as IBVS camera retreat during rotation. We feel that
the fact that the systems worked well, even when the subsys-
tems did not perform ideally, is a testament to the strength of the
switched system.

During live experiments, both PBVS and IBVS systems failed
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Fig. 5. Probabilistic Switching

Fig. 6. Goal and Initial Image

this task if used individually. PBVS lost the feature points, and
IBVS, experienced a great deal of camera retreat, losing focus
of the image, and ultimately losing the feature points when mak-
ing rotations. The figures show the same data we presented in
the simulated results, with some minor changes. The graphs of
both the feature point error and feature point trajectories have
the color of the dot they correspond to, and trajectories with a
black shadow indicate that PBVS was used to calculate that mo-
tion.

Figure 7 shows the results for the state-dependent switching
method. Since the feature points are close to the image edge
we are begin by using IBVS. As expected, the camera retreats
rotates, bringing the the feature points towards the image center
along with an increase in camera distance. Finally PBVS takes
over and is able to reduce both. The system is unable to com-
pletely zero the feature point error, after 250 iterations when vi-
sual servoing was halted. Results for random selection are seen
in Figure 8. The maximum feature distance from the image cen-
ter is higher than seen in the state-dependent method, but the
camera retreat is kept much lower. Due to the lower camera re-
treat, the system is able to zero the error faster than either the
state-dependent or probabilistic methods. However, the maxi-
mum feature point distance is 250 pixels; clearly, the error must
be along the horizontal image axis, or the feature points would
have left the field of view and the system would have failed.
This indicates a potential for system failure using the random
method, though the system never failed during our experiments.
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Fig. 7. State-Dependant Switching
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Fig. 8. Random Switching

The probabilistic method is presented in Figure 9. The
method choices are identical to the state-dependent method for
the first thirty iterations. After this point the switching does be-
come fairly random, though the velocity screw shows much evi-
dence of change due to switching. This system is also unable to
completely zero the error after 250 iterations, due to remaining
optical axis translation.

We repeated the experiments using an oblique view involving
heavy rotation about the camera y-axis, moderate rotation about
the camera z-axis, and translation along all axes. The goal and
initial images are shown in figure 10.

For this task, both subsystems are capable of zeroing the fea-
ture point error, and camera retreat is not a dangerous factor
here. Results can be seen in figures 11, 12 and 13. The state-
dependent and probabilistic methods again perform very simi-
larly. The random system is able to zero the error more quickly
than the other two methods, but in general experiences a larger
feature point error.

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400
Feature point error at each iteration (pixels)

0 50 100 150 200 250
−6

−4

−2

0

2

4

6
End Effector Velocity (mm/iter and deg/iter)

Tx
Ty
Tz
Wx
Wy
Wz

0 50 100 150 200 250
140

160

180

200

220

240

Maximum feature point distance from image center

0 50 100 150 200 250
250

300

350

400
Maximum cartesian distance from object

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

Feature point trajectory, o−start to *−goal

Fig. 9. Probabilistic Switching

Fig. 10. Goal and Initial Image

V. AN AFFINE/HOMOGRAPHIC HYBRID SWITCHED
SYSTEM

The major strength of the homography-based controller in
this system is that it is the only controller capable of handling
general motions which include rotation about the � and [ B axes.
If the camera motion does not involve such rotations, the two ap-
proaches have similar performance. However, in the presence of
noise, the affine method is much more accurate. We conducted
a series of Monte Carlo tests in which both systems performed
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Fig. 11. State-Dependant Switching
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Fig. 12. Random Switching

0 50 100 150 200 250 300
0

50

100

150

200

250

300
Feature point error at each iteration (pixels)

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

Feature point trajectory, o−start to *−goal

0 50 100 150 200 250 300
100

150

200

250

300
Maximum feature point distance from image center

0 50 100 150 200 250 300
400

500

600

700

800
Maximum cartesian distance from object

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

Feature point trajectory, o−start to *−goal

Fig. 13. Probabilistic Switching

an identical affine motion under the effects of increasing white
noise. Under large amounts of noise, the homography-based
method typically had an error in the pose estimation that was
fifty times greater than the affine approach, and error in the total
rotation was almost fifteen times greater.

We again explored three switching rules:
State-Dependent Switching. After solving the homography,
we take the RMS value of the rotations about �!B and [ B and
compare it to a threshold value, if the amount of rotation is less
than this value, we select the affine solution. We have found that
the affine method can successfully zero the error for any motion
with a rotation about y or x less then 0.5 � .
Random Switching. As discussed in Section IV.
Biased Random Switching. The current RMS of ��B and [ B
rotation is used to determine the value of a random variable
which selects the current system.

We performed simulations and experiments of a similar cam-
era motion task, an oblique view of the image plane requiring
motion along each degree of freedom to zero the error. The sim-
ulation and camera configurations are the same as discussed in
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Fig. 14. General Motion, State-Dependant Switching

SectionIV.
We first present the simulations using the state-dependent

switching method. For the results in Figure 14 a rotation of
thirty degrees of the feature point plane about both the world
y-axes is followed by a a moderate camera translation along all
degrees of freedom and rotation about the optical axis. This
causes a general motion involving all degrees of freedom.

The top left image shows the feature point trajectory; black
line segments are motions induced by the affine method, while
cyan portions are induced by the homographic method. We see
the homographic method used for the first portion of the motion,
with a switch to the affine method when the x and y rotation have
been reduced. The upper right graph shows the pixel error for
the four feature points. A black vertical line at the bottom of
the graph indicates a switch to the affine method, a cyan line
indicates a switch to the homographic system. Clearly a switch
to the affine method occurred at about the twelfth iteration, and
causes a slight incongruity in the velocities, though the error
remains fairly smooth.

We repeated the previous test, but added a Gaussian random
variable with variance 0.5 pixels to the feature point locations,
simulating white noise. The results are seen in Figure 15. The
system remains to the homographic method for almost all of
the motion, briefly switching to the affine method at several
points when the noise causes the RMS( 2S-U N2T/ ) term to exceed
the threshold. The system still zeros the error, though it takes
longer than previous tests, over 75 iterations. The velocities are
extremely rough in appearance due to the noise.

Figure 16 shows test results using the random switching
method. The trajectory and motion vectors are irregular, though
the feature point errors are smooth. It is worth noting that
this system avoids the large feature point motions of the state-
dependent switching system, which almost loses the feature
points from the image plane.

We finally simulated the biased switching rule, shown in Fig-
ure 17. It has a similar appearance to the state-dependent switch-
ing system, remaining in the homography-based method for the
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Fig. 15. General Motion with Noise, State-Dependant Switching
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Fig. 16. General Motion, Random Switching

first portion, while performing x and y rotations. At this point
the probabilistic effects begin to surface as the controller oscil-
lates between methods, with a slight preference for the affine
method. The error is zeroed in just under 60 iterations, and the
error plots and trajectories are quite smooth while the velocities
are irregular.

Simulations provided a good idea of the performance charac-
teristics of our switched system controller. We then conducted
experiments also involving an oblique view, as seen in Figure
10. The experimental setup was the same as that described in
Section IV.

We first explored the state-dependent switching method.
Since there is a great deal of rotation about that the camera [ B
axis, we expect that it will use the homographic method for the
majority of iterations, and switch to using the affine method
when the y axis rotation has become very small. Figure 18
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Fig. 17. General Motion, Biased Random Switching
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Fig. 18. Experiment Results State-Dependant Switching

shows the feature point error, the velocity screw of the vector
and the recorded feature point position for each iteration. In the
first two graphs, small lines on the bottom of the graph indicate
a switch has taken place; a black line indicates the homogra-
phy method is being used for the following iteration, while a
cyan line indicated the affine method will be used. We do see
the homographic method used for almost two thirds of the itera-
tions, at which point it switches between the affine solution and
the homographic method as the amount of [ B axis rotation be-
comes negligible. The third graph shows the trajectory the point
followed in the image plane. Portions of the lines with a black
shadow indicate when the affine method is being used.

Figure 19 shows the results of random switching. All the mea-
sured values are much more chaotic. The feature point error
tends to be greater, as does the magnitude of the velocity screw
variables. However, the error is still zeroed in approximately
the same amount of time and we also avoid the extremely large
initial motion which the homographic method introduced in the
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Fig. 19. Experiment Results Random Switching
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Fig. 20. Experiment Results Probabilistic Switching

state-dependent case.
Finally, Figure 20 shows the probabilistic system. The feature

point error is similar to the state-dependent method, though it
tends to be slightly smaller. Likewise the velocity screw tends
to have similar shape and size to the state-dependent method.
The system is, however, not able to zero the error as quickly as
the other switching methods.

VI. CONCLUSION

We have presented two switched hybrid control visual servo
systems. Each switched system is composed of two visual sub-
systems, and a decision maker that generates a signal to switch
between them depending on the current state of the system, the
time, or both. Simulation and experimental results are extremely
promising. The IBVS/Homographic system showed a great deal
of potential. It was ostensibly stable in all of our tests and suc-
cessfully zeroed a task error that caused either individual sub-
system to fail. The Affine/Homographic system also displayed
stability in all of our tests, but the practicality of this system may
be limited.

There remain future avenues to explore. There are more sys-
tems that could be integrated into a hybrid switched system
framework, as well as the complication of including more than
two continuous subsystems. There also remains the question of
stability, which has not been resolutely established. Our exper-
imental results are certainly compelling, and indicate this is a
fruitful field for development.
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