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While a Global Positioning System (GPS) is the most widely used sensor modality
for aircraft navigation, researchers have been motivated to investigate other navigational
sensor modalities because of the desire to operate in GPS denied environments. Due to
advances in computer vision and control theory, monocular camera systems have received
growing interest as an alternative/collaborative sensor to GPS systems. Cameras can act
as navigational sensors by detecting and tracking feature points in an image. One limiting
factor in this method is the current inability to relate feature points as they enter and
leave the camera �eld of view. The contribution of this paper is a new vision-based state
estimation method that allows sets of feature points to be related such that the aircraft
position and orientation can be correlated to previous GPS data so that GPS-like navigation
can be maintained in denied environments.

I. Introduction

GPS (Global Positioning System) is the primary navigational sensor modality used for vehicle guidance,
navigation, and control. However, the frequently cited and highly comprehensive study referred to as the
Volpe Report1 indicates several vulnerabilities of GPS associated with signal disruptions. The Volpe Report
delineates the sources of interference with the GPS signal into two categories, unintentional and deliberate
disruptions. Some of the unintentional disruptions include ionosphere interference (also known as ionospheric
scintillation) and radio frequency interference (broadcast television, VHF, cell phones, two-way pagers);
whereas, some of the intentional disruptions involve jamming, spoo�ng, and meaconing. Some of the ultimate
recommendations of this report were to, �create awareness among members of the domestic and global
transportation community of the need for GPS backup systems. . . �and to �conduct a comprehensive analysis
of GPS backup navigation. . . �which included ILS (Instrument Landing Systems), LORAN (LOng RAnge
Navigation), and INS (Inertial Navigation Systems).1

The Volpe report acted as an impetus for many companies and institutions to investigate mitigation
strategies for the vulnerabilities associated with the current GPS navigation aid protocol, nearly all follow-
ing the suggested GPS backup methods that revert to the archaic/legacy methods. Unfortunately, these
navigational modalities are limited by the range of their land-based transmitters, which are expensive and
may not be feasible for remote or hazardous environments. Based on these restrictions, researchers have
investigated local methods of estimating position when GPS is denied.
Given the advancements in computer vision and control theory, monocular camera systems have received

growing interest as a local alternative/collaborative sensor to GPS systems. One issue that has inhibited
the use of a vision system as a navigational aid is the di¢ culty in reconstructing inertial measurements from
the projected image. Current approaches to estimating the aircraft state through a camera system utilize
the motion of feature points in an image. Current approaches to recover the inertial state of the aircraft via
a camera system include linear or nonlinear estimation methods. In contrast to these estimation methods,
a geometric approach is proposed in this paper that uses a series of homography relationships. Speci�cally,
a new method is proposed to create a series of daisy-chained images in which the feature points can be
related so that the inertial coordinates of an aircraft can be determined between each successive image.
Through these relationships, GPS data can be linked with the image data to provide inertial measurements
in navigational regions where GPS is denied. Recently, a similar method using homography relationships
between images to estimate the pose of an aircraft were presented by Caballero, et al.2 Their method is
limited to aircraft above a planar environment, while ours is applicable to piecewise planar landscapes.
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Section II provides details on pose reconstruction using the epipolar homography. Section II also details
the extension of pose estimation to include daisy-chaining multiple reference images. Simulations are pre-
sented in Section III to demonstrate the accuracy and e¤ectiveness of this method. Section IV describes
future steps necessary to improve this method for broader application.

II. Pose Reconstruction From Two Views

II.A. Euclidean Relationships

Consider a body-�xed coordinate frame Fc that de�nes the position and orientation of a camera with respect
to a constant world frame Fw. The world frame could represent a departure point, destination, or some
other point of interest. The rotation and translation of Fc with respect to Fw is de�ned as R(t) 2 R3�3 and
x(t) 2 R3, respectively. The camera rotation and translation from Fc(t0) to Fc(t1) between two sequential
time instances, t0 and t1, is denoted by R01(t1) and x01(t1). During the camera motion, a collection of
I (where I � 4) coplanar and non-colinear static feature points are assumed to be visible in a plane �.
The assumption of four coplanar and non-colinear feature points is only required to simplify the subsequent
analysis and is made without loss of generality. Image processing techniques can be used to select coplanar
and non-colinear feature points within an image. However, if four coplanar target points are not available
then the subsequent development can also exploit a variety of linear solutions for eight or more non-coplanar
points (e.g., the classic eight points algorithm34), or nonlinear solutions for �ve or more points.5

A feature point pi(t) has coordinates �mi(t) = [xi(t); yi(t); zi(t)]
T 2 R3 8i 2 f1:::Ig in Fc. Standard

geometric relationships can be applied to the coordinate systems depicted in Fig. 1 to develop the following
relationships:

�mi(t1) = R01 �mi(t0) + x

�mi(t1) = H �mi(t0) (1)

�mi(t1) =

�
R01(t1) +

x01(t1)

d(t0)
n(t0)

T

�
�mi(t0) (2)

where H(t) is the Euclidean homography matrix, and n(t0) is the constant unit vector normal to the plane �
from Fc(t0), and d(t0) is the constant distance between the plane � and Fc(t0) along n(t0). After normalizing
the Euclidean coordinates as

mi(t) =
�mi(t)

zi(t)
(3)

(2) can be rewritten as

mi(t1) =
zi(t0)

zi(t1)| {z }
�i

�
R01(t1) +

x01(t1)

d(t0)
n(t0)

T

�
| {z }

H

mi(t0): (4)

where �i 2 R 8i 2 f1:::Ig is a scaling factor.

II.B. Projective Relationships

Using the standard projective geometry, the Euclidean coordinate �mi(t) can be expressed in image-space
pixel coordinates as pi(t) = [ui(t); vi(t); 1]T . The projected pixel coordinates are related to the normalized
Euclidean coordinates, mi(t) by the pin-hole camera model as

pi = Ami; (5)

where A is an invertible, upper triangular camera calibration matrix6 de�ned as

A ,

264 a �a cos� u0
0 b

sin� v0

0 0 1

375 : (6)

In (6), u0 and v0 2 R denote the pixel coordinates of the principal point (the image center as de�ned by
the intersection of the optical axis with the image plane), a, b 2 R represent scaling factors of the pixel
dimensions, and � 2 R is the skew angle between camera axes.
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Figure 1. Euclidean relationships between two planar patches.

By using (5), the Euclidean relationship in (4) can be expressed as

pi(t1) = �iAHA
�1pi(t0)

= �iGpi(t0): (7)

Sets of linear equations can be developed from (7) to determine the projective and Euclidean Homography
matrices G(t) and H(t) up to a scalar multiple. Given images of four or more feature points taken at Fc(t0)
and Fc(t1), various techniques78 can be used to decompose the Euclidean homography to obtain �i(t1),
n(t0),

x01(t1)
d(t0)

and R01(t1). The distance d(t0) must be separately measured (e.g., through an altimeter or
radar range �nder) or estimated using a priori knowledge of the relative feature point locations, stereoscopic
cameras, or as an estimator signal in a feedback control.

II.C. Chained Pose Reconstruction for Aerial Vehicles

Consider an aerial vehicle equipped with a GPS and a camera capable of viewing a landscape. A technique
is developed in this section to estimate the position and orientation using camera data when the GPS signal
is denied. A camera has a limited �eld of view, and motion of a vehicle can cause observed feature points to
leave the image. Therefore, this technique chains together pose estimations from sequential groups of points.
This allows the estimation to continue when the camera�s limited �eld of view would be inadequate.
The subsequent development assumes that the aerial vehicle begins operating in a GPS denied environ-

ment at time t0, where the translation and rotation (i.e., Ro(t0) and x0(t0) in Fig. 2) between Fc(t0) and
Fw(t0) is known. The rotation between Fc(t0) and Fw(t0) can be determined through the bearing informa-
tion of the GPS along with other sensors such as a gyroscope and/or compass. Without loss of generality,
the GPS unit is assumed to be �xed to the origin of the aerial vehicle�s coordinate frame, and the constant
position and orientation of the camera frame is known with respect to the position and orientation of the
aerial vehicle coordinate frame. This last assumption is necessary since the methods of Section II give the
change in position and orientation of the camera and must be related to position and orientation of the
vehicle through a coordinate transformation. The subsequent development further assumes that the GPS is
capable of delivering altitude, perhaps in conjunction with an altimeter, so that the altitude a(t0) is known.
As illustrated in Fig. 2, the initial set of tracked coplanar and non-colinear feature points are contained

in the plane �a. These feature points have Euclidean coordinates �mai(t0) 2 R3 8i 2 f1:::Ig in Fc. The
plane �a is perpendicular to the unit vector na(t0) in the camera frame; and lies at a distance da(t0) from
the camera frame origin. At time t1, the vehicle has some rotation R01(t1) and translation x01(t1) that can
be determined from the images by decomposing the relationships given in (7). For notational simplicity, the
subscript i is omitted in subsequent development.

As described in Section II, R01(t1) and
x01(t1)
da(t0)

can be solved from two corresponding images of the
feature points pa(t0) and pa(t1). A measurement or estimate for da(t0) is required to recover x01(t1). This
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Figure 2. Illustration of pose estimation chaining

Figure 3. Illustration of depth estimation from altitude

estimation is possible with distance sensors or with a priori knowledge of the relative positions of the points
in �a. However, with an additional assumption, it is possible to estimate da(t0) geometrically using altitude
information from the last GPS reading and/or an altimeter. From the illustration in Fig. 3, if a(t0) is the
height above �a (e.g. the slope of the ground is constant between the feature points and projection of the
plane�s location to the ground), then the distance da(t0) can be determined as

da(t0) = na(t0) � a(t0): (8)

Once R01(t1), da(t0); and x01(t1) have been determined, the rotation R1(t1) and translation x1(t1) can
be determined with respect to Fw as

R1 = R0R01

x1 = R01x01 + x0:

As illustrated in Fig. 2, a new collection of feature points pb(t) can be obtained that correspond to a
collection of points on a planar patch denoted by �b. At time t2, the sets of points pb(t1) and pb(t2) can be
used to determine R12(t2) and

x12(t2)
db(t1)

, which provides the rotation and scaled translation of Fc with respect
to Fw. If �b and �a are the same plane, then db(t1) can be determined as

db(t1) = da(t1) = da(t0) + x01(t1) � n(t0): (9)

When �b and �a are the same plane x12(t2) can be correctly scaled, and R2(t2) and x2(t2) can be computed
in a similar manner as described for R1(t1) and x1(t1). We can propagate estimations by chaining them
together at each time instance without further use of GPS.
In the general case, pb and pa are not coplanar and (9) cannot be used to determine db(t1). If pb and pa

are both visible for two or more frames, it is still possible to calculate db(t) through geometric means. Take
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t1� as some time shortly before the daisy chain operation is performed, when both pb and pa are visible in
the image. At time t1� ; we can solve an additional set of homography equations for the points pb and pa:at
times t and t1�

mai(t1) =
zai(t1�)

zai(t)| {z }
�a

�
R+

x

da(t1�)
na(t1�)

T

�
| {z }

Ha

mai(t1�) (10)

mbi(t1) =
zbi(t1�)

zbi(t)| {z }
�b

�
R+

x

db(t1�)
nb(t1�)

T

�
| {z }

Hb

mbi(t1�): (11)

Note that in (10) and (11), R and x are the same, but the distance and normal to the plane are di¤erent for
the two sets of points. The distance da(t1�) is known from using (9). De�ne xb =

x
db(t1� )

and xa = x
da(t1� )

:

The translation x is solved as
x = da(t1�)xa

and we can then �nd db(t1�)

db(t1�) =
xTb x

kxbk
:

db(t1) can then be found by using (9). Additional sensors, such as an altimeter, can provide an additional
estimate in the change in altitude. This can be used in conjuction with (9) to update depth estimates.

III. Simulated Results

III.A. Position Estimation Through Camera Data

Several simulations are provided to test the performance of the proposed estimation scheme.

III.A.1. Position estimation using a single planar patch

The �rst simulation is focused on a single planar patch without the need to daisy-chain multiple planar
patches. This scenario is useful to return the air vehicle to a possible GPS available location. The simulated
camera is positioned above four coplanar points and moves in a circular path with constant linear velocity,
altitude, and constant angular velocity in the camera frame, e.g. constant thrust and yaw, as depicted in
Fig. 4.
At each time instant, the homography is calculated and the translation and rotation are determined. The

position and orientation of the initial pose is known, including d(t0) and the initial distance to the plane
containing the points. The position and rotation errors are presented (as roll-pitch-yaw angles) in Figure 5.
To investigate the e¤ects of a poor estimate of d(t0); the simulation was repeated, but d(t0) was o¤set

by 10%. The true and estimated trajectory are seen in Figure 6. The true trajectory is a solid line, while
the estimate is shown as a dotted line. The estimation error is shown in Figure 7. The maximum error
corresponds to a 10% error in the x direction and 4% in the y direction. As expected, rotation error is not
a¤ected by the error in estimating d(t0):

III.A.2. Position estimation by daisy-chaining multiple planar patches

The simulations in this section are limited to the ideal case that each planar patch is in the same plane. This
assumption is valid for high altitude over relatively �at landscape. Future work will focus on the general case
where the planar patches are not in the same plane. The camera now moves over three point patches and
switches to the closest one at times t = 50 and t = 80. In Figure 8 the aircraft os shown to move in a straight
path with constant velocity and a slight pitch angle. The pitch angle ensures that d(ti) 6= d(ti�1);8i > 0,
and d(t1) must be estimated as in (9). Plots of the estimation errors in translation and rotation are seen in
Figure 9.
A more complicated trajectory is shown in Figure 10. The trajectory given by the solid line is generated

by a time varying linear velocity and a time-varying pitch and yaw angular velocity. Thus, at the switching
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Figure 4. Circular tra jectory above coplanar points
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Figure 5. Estimation error for circular tra jectory

6 of 10

American Institute of Aeronautics and Astronautics



Figure 6. Circular tra jectory with error in initial depth estimation

Figure 7. Estimation error for circular tra jectory with error in initial depth estimation

Figure 8. Daisy-chaining pose estimation for a straight tra jectory
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Figure 9. Estimation error for daisy-chaining along a straight tra jectory
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Figure 10. Daisy-chaining pose estimation for a six degree of freedom tra jectory

times t = 50 and t = 80, d(t1) must be estimated as in (9). The estimated position is given by a dashed
line, and some error develops over time for this trajectory. The translation and rotation errors are shown in
Figure 11. Small errors in the position estimation arise from errors in estimating the translation from the
homography H(t);but the rotation error remains negligible.

IV. Future Work

The e¤orts in this paper describe the initial results for pose estimation of an aerial vehicle. Future
e¤orts will target the estimate development when the assumptions are not satis�ed. Of particular concern
is the accuracy of the depth estimation, which scales the translation in (2). When the aerial vehicle cannot
measure the altitude above the plane �j , it is not possible to calculate the distance d(t0) as in (8). A
scenario of this problem is when the aerial vehicle is over an environment with a changing topology. When
the planes �j are not the same, depth estimation cannot be propagated as in (9). There are several methods
to estimate the depth. For example, comparing image velocity to true ground velocity of the camera can be
used to estimate altitude. Knowledge of control inputs can be also be compared with the expected results
in the image to estimate disturbances to the perfect model, such as wind speed. These estimations could be
done through mathematical relationships, or preferably through the use of a state estimator that could be
integrated directly with the �ight controls of an aerial vehicle.
Our end goal is to enable �ight in GPS denied environments. The Euclidean homography decomposition

returns a coordinate transformation matrix which can be used to determine both Euler angles and body rates
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Figure 11. Estimation error for daisy-chaining along six degree of freedom tra jectory

for use in a rudimentary autopilot design. Future work will also entail he use of the developed state estimate
as a control strategy for an air vehicle, as well as addressing stability issues and uncertainty concerns such
as noise, wind, and non-�at earth. Further investigation is warranted to see how the system performs under
more complicated trajectories, particularly trajectories that obey �ight dynamics.

V. Conclusions

GPS is a useful tool in estimating position, but it is not perfect. In the case that GPS is lost or jammed, a
backup method of position estimation is needed. A rotation and translation estimation method is presented
that uses the Euclidian homography between two camera views. Using the proposed methods, an aerial
vehicle equipped with a camera could continue to estimate its position when GPS signals are not reliable or
not available. A daisy chaining idea is proposed to include large motions where the camera�s limited �eld
of view would prove inadequate. Simulations of the position and orientation estimation are presented to
illustrate the performance of the developed methods. Future work remains to extend the model to more
realistic cases, and to integrate the position estimation and variation from the ideal model into the vehicle
control framework.
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