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Chapter 1

Introduction

In this project we study the effectiveness of the normalized least-mean-

squares (LMS) algorithm when applied to a noise suppression application.

A typical noise suppression application is shown in Fig. 1.1. A speech signal

is recorded in the presence of a noise source (a lawn mower in this example).

This is the noisy version of the speech, d = x + n0. We also assume that a

recording of the noise source alone (n1) is also available. The purpose of the

adaptive filter is to estimate the noise embedded in the speech signal, n0,

using the noise observations, n1. If the noise observations, n1 are strongly

correlated with n0, i.e., n0 = f(n1), the adaptive filter can estimate the

noise embedded with the desired signal and subtract it from the noisy sig-

nal, thereby cleaning the signal. For the purpose of this project we shall

assume that an finite impulse response (FIR) filter brings out the correla-

tion between n0 and n1, i.e., a linear combination of consecutive samples of

n1 gives an estimate of n0. Thus we have

n̂0(k) =
M−1∑
i=0

w(k)n1(k − i), (1.1)
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Figure 1.1: An adaptive noise suppression system.

where w = {w0, w1, . . . , wM−1} represents the filter weights and M is the

order of the filter. The adaptive filter adjusts the weights of the filter such

that n̂0 is as close to n0 as possible. The system output is defined as the

difference between d(k) and n̂0(k). In the absence of the speech signal

(x(n) = 0), this represents the error in the estimation of n0(k). In the

presence of speech, the estimation error is scaled by the speech signal x(k).

The adaptive filter changes the weights in every iteration such that the mean

square error (MSE), E[{d(k)− n̂0(k)}2] is minimized. This is an instance of

adaptive minimum mean square error (MMSE) estimation. In the absence

of the speech signal, the MMSE should converge to zero. In the presence

of the speech signal the MMSE should converge to the energy of the speech

signal.

The report is organized as follows. In the next chapter, we introduce the

optimum solution for MMSE adaptation. We then introduce the steepest

descent as a way to adaptively arrive at the optimal set of weights. Then the
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LMS algorithm, which is the simplest and most popular of all the steepest

descent algorithms is presented. In Chapter 3 we perform a simulative study

of the normalized LMS algorithm with a 2-tap FIR filter. In Chapter 4 we

study the performance of higher order filters and pick the optimum filter

order. The report is concluded in Chapter 5.
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Chapter 2

Adaptive Filter Preliminaries

The symbology used in the sequel is first introduced. The weights, input to

the adaptive FIR filter and output of the filter are represented by w(n), u(n)

and y(n) respectively and they are related as follows

y(n) =
M−1∑
i=0

w(n)u(n− i), n = 0, 1, . . . . (2.1)

Since the data in our noise suppression problem is real, all the quantities

defined below are real. The purpose of the adaptive filter is produce an esti-

mate of a desired signal d(n). The error, e(n), associated with the estimation

of d(n) is defined as

e(n) = d(n)− y(n), n = 0, 1, . . . . (2.2)

The weights of the filter are optimized by minimizing the mean square error

of e(n). Note that e(n) is a random variable since it is a function of the

random variable u(n). The cost function (MSE) to be optimized is defined

as

ξ = E[|e(n)|2]. (2.3)
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The optimum set of filter weights produce the minimum value of the cost

function, ξmin. We now introduce the optimal solution to the minimization

of ξ. Then the LMS algorithm is introduced as an adaptive, computationally

viable approach to recursively estimate the optimal solution.

2.1 Optimal Filtering: The Wiener solution

We first represent (2.1) in vector representation as

y(n) = wTu(n). (2.4)

Thus, the cost function as defined in (2.3) can be expressed as

ξ = E[d2(k)]− 2PTw + wTRw, (2.5)

where P represents the cross-correlation between the input u and desired

response d and R is the autocorrelation of the input. The statistical expec-

tations are usually computed using time averages as

P (i) = E[u(n− i)d(i)] ≈
N−1∑
m=0

d(m)u(m− i) (2.6)

R(i− k) = E[u(n− i)u(n− k)] ≈
N−1∑
m=0

u(m− i)u(m− k). (2.7)

We have P = [P (0), P (1), . . . , P (M − 1)]T and R is the cross correlation

matrix defined as

R =



R(0) R(1) · · · R(M − 1)

R(1) R(0) · · · R(M − 2)
...

. . .

R(M − 1) R(M − 2) · · · R(0)


. (2.8)
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Note that (2.5) helps visualize the error signal in the space defined by the

filter weights and thus is referred to as the performance surface. ξ can be

minimized by differentiating wrt the weights. This results in the following

set of equations called the Wiener-Hopf equations

P (i) =
M−1∑
k=0

R(i− k)wopt(k), i = 0, . . . ,M − 1, (2.9)

In vector notation we can represent (2.9) as

P = Rwopt. (2.10)

Thus the optimal set of filter weights can be expressed as

wopt = R−1P. (2.11)

The optimal set of weights are referred to as the Wiener solution to the

optimal filtering problem. The minimum value of the cost function, ξmin, is

obtained by using w = wopt in (2.5) as

ξ = E[d2(k)]−PTwopt. (2.12)

Note that the inversion operation in (2.11) is O(n3) in complexity and thus is

computationally not viable for use in real-time on-the-fly implementations.

In the next section, we introduce an adaptive approach to iteratively achieve

the minimum of the performance surface.

2.2 Adaptive Filtering: Gradient descent and the

LMS algorithm

Gradient descent is a class of unconstrained optimization algorithms that

search the performance surface and iteratively converge towards the min-
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imum value. The basic idea is that local iterative descent. All gradient

descent algorithms have the following mode of operation:

• The algorithms operate on an initial guess or seed value of the weights,

w0.

• Then a sequence of weight vectors w1,w2, . . . is generated such that

the cost function ξ(w) is reduced at each iteration, i.e.,

ξ(w(n)) < ξ(w(n− 1)).

• The successive refinements applied to w at each iteration are in the

direction opposite to the gradient of the cost function ξ(w), i.e.,

w(n) = w(n− 1)− 1
2
µ∇ξ(w), (2.13)

where∇ξ(w)= ∂ξ(w),
∂w and µ is called the it step size that parameterizes

the gradient search.

Since the gradient of the error points towards the direction of increasing

error, any movement in the opposite direction will tend to decrease the

error (provided the step size is chosen properly). This is the philosophy of

the gradient search procedures. Note that the step size controls the speed of

adaptation. A small step size would require many iterations to converge to

the optimum solution and a small MSE. A large step size would cause faster

convergence but suffers from the problem of overshooting the minimum and

divergence. Also, the steady state MSE is higher with a higher step size.

The above procedure is called local iterative descent because it only

used local information (local to the current iteration) to compute the new

values of the weights. The procedure assumes that an estimate of the gradi-

ent is available. Typically the gradient is estimated using the perturbation

method.

10



For simplicity let wn = w(n − 1), then ∇ξ(wn) = ξ(wn+4w)−ξ(wn−4w)
24w .

Though the gradient descent is simple in operation, the estimation of the

gradient requires two samples of the performance surface in the vicinity of

the current weights and one division. This limits the speed of the algorithm

and hence faster and simpler methods of estimating the gradient are required

for real-time applications.

The least-mean-squares (LMS) algorithm is the simplest and most widely

used of all the gradient descent algorithms. Its popularity lies in its simplic-

ity. The LMS uses a very noisy estimate of the performance surface. The

LMS approximates the performance surface by the power of the current

error,

ξ(w(n)) = E[|e(n)|2] ≈ e(n)2 = (d(n)− y(n))2. (2.14)

This makes the computation of the gradient very simple.

∇̂ξ(w(n)) = −2e(n)u(n), (2.15)

where u(n) = [u(n), u(n − 1), . . . , u(n −M + 1)]. Thus, the weight update

equation in (2.13) reduces to

w(n + 1) = w(n) + µ(d(n)− y(n))u(n), (2.16)

Thus, in LMS adaptation, the weight update only requires a vector multi-

plication and thus the complexity is just O(M + 1). Convergence analysis

has shown that the step size is constrained as

µ≤ 1
E[uTu]

, (2.17)

where E[uTu] represents the power of the input signal. Thus, if the signal

is not stationary, then the signal power might change causing the initial
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step size to exceed the allowed value. This might cause the LMS algorithm

to diverge. To overcome this obstacle, a variant of the LMS called the

normalized LMS was proposed. In the normalized LMS, the step size at

each iteration is scaled by the signal power thereby forcing the step size to

be within the allowed limit. Thus, the weight update equation becomes

w(n + 1) = w(n) +
α

E[uTu]
(d(n)− y(n))u(n), 0 < α < 1. (2.18)

The normalized LMS can also be derived as an application of the principle

of minimal disturbance. The basic philosophy is the same as in LMS, but the

optimization (minimization) is performed such that the change in weights

from one iteration to another is as small as possible. Thus the change in

the sequence of weights is made as smooth as possible. The minimization

results in the normalized LMS algorithm. The weight update equation in

(2.18) keeps the change in weights as small as possible.

Though the estimation of the gradient is very noisy, the algorithm per-

forms extremely well (as demonstrated in homeworks 1 and 2). The perfor-

mance of the normalized LMS algorithm in the noise cancellation problem

is studied in the next chapter.
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Chapter 3

Performance evaluation in a

non-stationary environment

We first demonstrate the performance of normalized LMS adaptation using

a simple two-tap filter. Though this filter does not get perform very well,

it serves to demonstrate the principles involved. We define performance

measures and study both the time and frequency domain performance of

the filter. In the next Chapter, we study the performance of higher order

filters.

3.1 Problems with Non-Stationarity

If the input to an LMS adaptive filter is stationary, then the only function

of the filter is to eventually converge to the optimum set of filter weights.

In the noise suppression application, the desired response of the filter is not

stationary (has speech embedded in it!). This causes the performance surface

to change location in the weight space. To demonstrate this behavior, two
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Figure 3.1: Performance surface contours for two non-overlapping segments

of data. A window of length 200 is used to compute R and P.

different segments of data are taken, one from sample 250–450 and the other

from sample 15000–15200. The autocorrelation of the filter input, R, and

the cross-correlation between the filter input and the desired response P are

computed in the chosen windows. The optimum filters weights are computed

using (2.11) and the minimum MSE (minimum value of the performance

surface) is then computed using (2.12). The weights are varied in the vicinity

of the optimum value and the contours of the performance surface are plotted

in Figure 3.1. It can be seen that the performance surface achieves its
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Figure 3.2: Optimum filter weights, wopt=R−1P, at different iterations. A

window of length 200 is used to compute R and P.

minimum, ξmin, at different weights for the two different data segments.

This shows that for non-stationary inputs, the performance surface does not

have a unique minimum value and that it moves around in the space defined

by the weights.

The non-stationary behavior of the input can also be visualized by track-

ing the optimum filter coefficients through the data sequence. Again a win-

dow size of 200 was used to compute R and P. The optimum filter weights

were then obtained for for every 200th sample index. The result is shown

in Figure 3.2. It can be see than the optimal filter weights are different

depending on which set of samples we are looking at. Each optimal filter

weight produces a different value of ξmin and this is shown in Figure 3.3.
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Figure 3.3: Minimum mean squared error (ξmin) at different iterations. A

window of length 200 is used to compute R and P.

Thus, non-stationarity poses a problem for LMS adaptation. In this case, it

is not enough for the algorithm to converge to a particular optimal value of

the weights. The algorithm should be robust enough track changes in the

statistics of the input and then converge to the new set of optimal weights.

The convergence and tracking behavior of normalized LMS is studied in the

next section.

3.2 Convergence and Tracking Behavior

The convergence behavior of the adaptive filter can be observed in a lot

of ways. The learning curve or the path followed on the performance sur-

face while achieving ξmin are usual methods of looking at the convergence

behavior. However, these performance metrics do not allow easy visualiza-
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tion/interpretation of the tracking behavior.
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Figure 3.4: Convergence and tracking behaviour of the normalized LMS

with α = 0.01.

The instantaneous MSE offers a convenient way of observing the track-

ing behavior of the adaptive filter. The instantaneous MSE is shown in

Figure 3.4. It can be seen that the adaptive filter first tries to converge to

an optimal set of weights. As soon as the input statistics change (speech

begins or a different word begins), the filter starts tracking the change and

then tries to converge to the new set of optimal weights. The convergence

regions and the tracking regions are indicated in Figure 3.4.

The convergence behavior can be assessed by looking at the progression

of weights during the iterations. This is shown in Figure 3.5. With both the

step sizes shown, it is seen that the filters try to converge to the vicinity of
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Figure 3.5: Convergence of the weights using normalized LMS with two

different step sizes.

some steady-state value. It is observed that a larger step size causes faster

convergence but there is a lot of oscillations around the steady state value.

A smaller step size shows slower convergence but the oscillations around the

final value are very small. This suggests that the filter with a larger step size

tries to track variations in the signal statistics faster creating oscillations in

the filter tap weights. A filter with a smaller step size cannot track signal

variations that fast and thus shows the smooth behavior seen in Figure 3.5.

Another convenient way of visualizing the convergence behavior is to

look at the path that the filter follows on the performance surface. Initially,

the filter weights are set to random values between 0 and 1. This gives a

random point on the performance surface. As the filter adapts, the points on
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malized LMS with α = 0.05 is used .

the performance surface should move towards the bottom of the quadratic

surface, since the MSE should decrease in each iteration. Ideally, the min-

imum on the performance surface would eventually be reached. If instead

of looking directly at the performance surface, we looked at the contours of

the performance surface, we would start at point far away from the center

(note that the center of the performance contours corresponds to ξmin) and

gradually move towards the center as the iterations progressed. Remember

that the performance surface shifts for non-stationary signals and therefore,

a point in the vicinity of the center and not the actual center is reached.

This behavior is shown in Figures 3.6 and 3.7. As in the case of the weight

convergence, it is seen that a larger step size creates an oscillatory path to-

wards the minimum whereas a smaller step size follows a smooth path. Note
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that this indicates that a larger step size stops at a value farther away from

the true center when compared to a filter with a smaller step size. Thus,

we can expect that a filter with a smaller step size produces a steady state

MSE that is smaller than the steady state MSE for a filter with a larger step

size. This fact is demonstrated in the next section.
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Figure 3.7: Convergence of the MSE (ξ) on the performance surface. Nor-

malized LMS with α = 0.01 is used .

3.3 Learning curves

The progression of the MSE as the number of iterations increase is called

the learning curve. Usually for stationary signals, the MSE decreases as the

filter adapts and then reaches a steady state value, that produces a point on
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Figure 3.8: Convergence of the MSE to ξmin on the performance surface.

Normalized LMS was used with α = 0.05.

the performance surface that coincides with ξmin. The performance surface

does not have a unique minimum value for non-stationary signals. The

speed of adaptation can be easily interpreted using the learning curve. A

learning curve that shows a sharp transition and achieves the steady state

value soon implies fast convergence whereas a learning curve that reaches the

steady state value slowly implies slow convergence. The steady state value

gives an indication of the effectiveness of the adaptation. A high steady

state value implies that the residual error after the filter has adapted is

large and hence the adaptive filter is not very good. A performance metric

involving the steady state MSE value (ξ∞) is called the misadjustment and

will be studied in the next section. The learning curve for the two-tap
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filter is shown in Figure 3.8. It is seen that a lower step size makes the

filter converge slowly when compared to a higher step size. Though the

higher step size shows faster convergence, it produces a lot of ripples after

convergence. Note that the lower step size also produces ripples at the exact

same sample indices. This could indicate locations where the statistics of the

input (desired response) changes. For example there is a ripple near sample

1000, which could indicate the start of speech. A higher step size tries to

track these changes faster causing bigger ripples in the MSE. A smaller step

size converges to a lower value of the MSE. Looking at the behavior after

convergence suggests that a larger step size should have a higher residual

error. This is illustrated in the next section.

3.4 Misadjustment

The convergence behavior can be visualized using the learning curves. How-

ever, this is not a convenient measure for looking at the long term behavior

of the LMS algorithm. To quantify the steady state MSE achieved by the

LMS algorithm, let us first introduce some terminology. Let ξ(n) be the

MSE produced by the LMS filter at iteration n. Let the final value of the

MSE be denoted by ξ∞. The difference between ξ∞ and the minimum value

ξmin achieved by the optimal Wiener filter is called the excess MSE, ξex(∞).

The ratio of the excess MSE to the minimum MSE is called the misadjust-

ment, M. To summarize,

ξex(∞) = ξ∞ − ξmin, (3.1)

M =
ξex(∞)
ξmin

. (3.2)
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Thus, the misadjustment is a measure of how far the steady-state solu-

tion is from the Wiener solution. We compute the misadjustment as follows.

The data is divided into blocks of length 200. In each window, we use time

averages to compute the input autocorrelation R and the cross-correlation

P (see eqns. (2.6) and (2.7)). Then ξmin is calculated using (2.11) and

(2.12). Then we use the value of the weights that the LMS algorithm has

converged to in that window in (2.5) to compute ξ∞. A time average is

used to compute E[d2(k)]. The misadjustment is then computed for each

window using (3.2). Then the time average over all windows is used to com-

pute the misadjustment. The LMS algorithm with random initial weights

is used. Therefore, the misadjustment could depend on the initial value

of the weights used. To get rid of this dependence on the initial values of

the weights we use 10 independent realizations of the LMS algorithm and

perform an ensemble average to get a final estimate of the misadjustment.

The misadjustment for a two-tap filter as a function of the step size is

shown in Figure 3.9. Very small step sizes will force the filter to converge

too slowly to be of any use and thus causes a high MSE which translates

to a large misadjustment. Further increases in step size causes convergence

which decreases the MSE and thus the misadjustment. The misadjustment

decreases till an optimal step size is reached after which it increases. This

increases could be attributed to the larger MSE that a filter with a large

step size converges to and the ripples in the MSE after convergence (see

Figure 3.8).
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Figure 3.9: Misadjustment for a two-tap filter as a function of step size.

3.5 Signal-to-noise ratio improvement

Another performance metric that can be used to study adaptive filters is the

signal-to-noise (SNR) ratio improvement. The SNR improvement is defined

as the ratio between the output SNR and the input SNR,

SNRimp =
SNRout
SNRin

(3.3)

Since we are not given an estimate of the signal power at the input, we

use the power of the desired response as the input power. The reference

noise samples are correlated with the noise samples embedded in the speech

and hence the power of the reference noise is a very coarse estimate of the

input noise power. The output of the adaptive filter is an estimate of the

noise in the speech signal. In the case of perfect adaptation, the noise in the
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Figure 3.10: Misadjustment for a two-tap filter as a function of step size.

speech is identical to the output of the adaptive filter and the output of the

noise canceler will have clean speech. But now we have speech corrupted

with a smaller noise power. We use the power of the error(noise canceler

output) to quantify the output signal power. Therefore we have,

SNRimp =
E[d2]
E[e]2

, (3.4)

where e(n) = d(n)− y(n) represents the output of the noise canceler.

The SNR improvement in decibels is shown as a function of the step size

in Figure 3.10. Again the SNR improvement was time-averaged over the

sample size and ensemble-averaged over 10 independent runs of the LMS

algorithm. It is observed the SNR improvement increases with step size and

then decreases. For very small step sizes, the filter does not converge fast
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enough. The high misadjustment leads to a small SNRimp. Again, for high

step sizes, the misadjustment is high causing a small SNRimp. In this case

the optimal step size is around 0.01. In Figure 3.8, a step size of 0.05 had

more ripples after convergence than a step size of 0.01. Correspondingly,

the SNR improvement is higher for α = 0.01 when compared to α = 0.05.

3.6 Frequency Response

In this section the frequency response of the two-tap adaptive filter is stud-

ied. The non-stationarity of the given data does not facilitate taking the

discrete Fourier transform (DFT) to get the frequency domain representa-

tion. To illustrate the principles involved, we look at a small window of data

between sample 20000 and 25000 and take the DFT of this window. This

particular window was chosen because this window includes both speech an

background noise. Windows towards the beginning and end of the given

data samples contain only noise and thus is not a good choice for observing

the frequency domain behavior.

The frequency domain representation of the reference noise, desired sig-

nal and the output of the adaptive LMS filter is shown in Figure 3.11. We

observe that the reference noise and the noise in the desired signal are highly

correlated. i.e, both of them produce spikes with comparable powers at the

same frequencies. Also, note the spikes at the lower frequency spectrum

(< 4KHz). Since speech lies in the lower frequency spectrum, the noise in

this part of the speech produces more distortion to the speech. A good noise

canceler should suppress these spikes. Note especially, the spikes around

100Hz, 1.3KHz and 2.1KHz. We shall compare the effects of the filters

with these spikes as reference. Note that with a two-tap filter, the spikes
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Figure 3.11: Frequency domain representations of signals at various loca-

tions in the noise canceler.

at 100Hz is almost completely removed whereas the spikes at 1.3KHz and

2.1KHz are well suppressed. This can be explained by looking at the fre-

quency response of the filter which is shown in Figure 3.12. We see a deep

notch around 100Hz and very small amplitude gains at the other frequen-

cies mentioned above. Thus, the two-tap filter is reasonably successful in

getting rid of the noise.
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Figure 3.12: Frequency response of the two-tap adaptive noise canceler.
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Chapter 4

Performance with higher

filter orders

The performance of filters with higher filter orders is demonstrated in this

chapter. The misadjustment (M) is shown in Figure 4.1 for three different

filter orders. It is seen that the misadjustement is lower for higher filter

order. This is because a higher filter order is able to better approximate the

relation (correlation) between the reference noise and the noise in the desired

signal. It is also seen that a higher filter order reaches its optimum perfor-

mance (minimum M) at a smaller step size. This is because the maximum

allowed step size (in order to keep the filter from diverging) decreases with

the filter order. The maximum allowed step size is inversely proportional

to the filter order. Thus, a higher-order filter reaches its minimum M at a

smaller step size when compared to a filter with a smaller order. This fact

is also corroborated by plotting the misadjustment as a function of the filter

order for a fixed step size. Thus, we see that keeping the step size fixed and

increasing the filter order causes and increase in M. This fact has also been
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Figure 4.1: Misadjustment as a function of step size for different filter orders.
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demonstrated by plotting the learning curves for filters of different order in

Homework 3. Note that minimum achievable misadjustment for an order-15

filter is considerably lower than an order-12 filter. At the same time it is not

much worse than the lowest misadjustment achieved by an order-25 filter.

This suggests that going from a filter of order 15 to a filter of order 25 pro-

vides only negligible gains. Thus, to keep the implementation complexity

and latency of the filter down, we suggest the use of an order-15 filter for

this application.
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Figure 4.3: SNR improvement (SNRimp) as a function of step size for

different filter orders.

Next, we demonstrate the behavior of the SNR improvement as a func-

tion of the filter order. It is natural to expect a higher-order filter to estimate

the noise in the desired signal with a higher accuracy and hence lead to a
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better improvement in the SNR. The SNR improvement as defined in the

previous chapter (see eqn. (3.4)) is shown in Figure 4.3 for different filter

orders. It can be seen that a higher filter order produces higher SNR im-

provements. As in the case of the misadjustment behavior, it is seen that

a higher order filter achieves the maximum SNRimp at a smaller step size

than a lower-order filter. For very small step sizes (< 10−2), a filter with

a higher order produces a smaller SNR than a filter with a smaller order.

This again suggests that as the filter order goes up, the step size should be

reduced in order to harvest the benefits of a greater number of taps in the

filter. Also note that the SNR improvement between the filters of orders 15

and 20 is almost the same. Hence, to keep the delay and processing require-

ments small, we recommend the use of a filter of order 15. Any subsequent

increase in the size of the filter will only produce marginal improvements.

Thus, looking at both the misadjustment and SNR improvement, we see that

a filter of order 15 gives very good performance at an affordable complexity.

We know look at the effectives of the order 15 filter by studying its

frequency response. As mentioned in the previous chapter, we look at the

noise spikes at 100Hz, 1.3KHz and 2.1KHz. The spectra of signals at

various locations in the filter are shown in Figure 4.4 Note that the spike

at 100Hz is completely suppressed. The two-tap filter does not suppress

the spike at 2.1KHz very well (see Figure 3.11). Note that the 15-tap

filter has suppressed the spike at 2.1KHz by more than a factor of 2 when

compared to the two-tap filter. The frequency response of the filter is shown

in Figure 4.5. Note that the response shows clear notches at the frequencies

mentioned. Thus, the filter with order 15 forms a much better noise canceler

than the two-tap filter.
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Figure 4.4: Frequency domain representations of signals at various locations

in the order 15 noise canceler.
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Figure 4.5: Frequency response of the adaptive noise canceler.

33



34



Chapter 5

Concluding Remarks

Based on our simulation study the following conclusions can be made about

the LMS-based adaptive filter.

• For non-stationary signals, the optimal filter weights change with time.

Simulations results show that the LMS algorithm can track these

weight changes effectively. The tracking time is inversely proportional

to the step size while the minimum MSE (and therefore the misad-

justment) is directly proportional to the step size. Thus, there is a

tradeoff between speed of adaptation/tracking and the MSE.

• A two-tap filter is not effective in bringing out the correlation between

the reference noise and the noise in the desired signal.

• The misadjustment, M, for non-stationary inputs is also due to two

factors. The first one is weight-lag (due to sudden change in optimal

weights and the lag for the filter to track it) and the second is gradient

noise (remember that LMS uses a very noisy estimate of the gradi-

ent). A smaller step size leads to a smaller misadjustment. However
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extremely small filter sizes does not allow the filter to converge causing

an increase in convergence.

• The SNR improvement increases with filter order M (provided step

size is reduced considerably). For the same (small enough) step size,

higher order filter produces a smaller SNR improvement.

• The step size that achieves optimum performance, smallest misadjust-

ment or largest SNR improvement, decreases with an increase in step

size.

• By observing the decrease in misadjustment and increase in SNR im-

provement, we recommend a filter with order 15 to be used in this

particular noise canceling application.
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