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Abstract— Reliabilities at the output of soft-decision decoders
are random variables and hence are characterized by their
density function. In this paper, we present a closed-form ap-
proximation for the density function of reliabilities associated
with the Max-Log-MAP decoding of convolutional codes. Den-
sity functions of reliabilities have been computed based on
probabilities involving the projection of the noise in directions
corresponding to different error events. Each such projection
results in a random variable, and two approaches have been
taken to compute probabilities involving these random variables.
In the first approach, the random variables are treated as
if they are independent; in the second approach, correlations
between the random variables are taken into account. The
former approach results in conservative estimates and a relatively
simpler expression for the PDF, whereas the latter approach
produces good estimates but results in a complicated expression.
The mathematical expressions found using either approach are
generally too complicated for further use in analytical work. In
this paper, we propose a simple approach to account for the
correlation between the random variables resulting from the
projection of noise onto directions specified by different error
events. Under this approach, we reduce the number of random
variables that are considered in the computation of the PDF by
eliminating those that are highly correlated. Working with this
condensed set of random variables produces results that are close
to the true values even if the independence assumption is used. A
mathematically tractable estimate of the PDF is also presented,

and the validity of this estimate is demonstrated by comparing the
estimate of the PDF with simulation results. This PDF estimate
can be used to analyze several communication schemes that utilize
reliabilities as a design tool.

I. I NTRODUCTION

Decoders that operate on floating-point inputs and produce
floating-point outputs instead of hard-decisions are called soft-
input soft-output (SISO) decoders. The sign of the soft-output
gives the hard-decision value, while the magnitude of the soft-
output is called the reliability of the bit decision [1]. Until
recently, the soft-outputs were typically used only to produce
hard-decisions. The utilization of soft-information as a useful
tool was largely ignored until the emergence of turbo codes.
The turbo decoder makes explicit use of the soft-outputs to
compute extrinsic information, and this extrinsic information
is exchanged between the constituent decoders.

In recent years, a number of algorithms have been proposed
that make explicit use of soft-information or reliability. For
example, reliability-based hybrid ARQ techniques have been
proposed [2], [3], [4], wherein the reliability or mean reliabil-
ity is used to decide the retransmission size or the set of bits
to be retransmitted. Cooperative diversity is another area that



is receiving a lot of attention from researchers. Techniques in
which cooperating nodes exchange reliability information [5],
[6], [7] or information based on reliability [8] have been
proposed.

The main drawback in the analysis of these techniques is
that sufficient tools to model the reliability are not available.
For example, in order to analyze techniques that rely on
the mean of soft information, it is usual practice to take
a semi-analytic approach. The mean of soft information is
obtained through simulation and used in the analysis [9].
In [10], the authors address this issue by characterizing the
soft information by its probability density function (PDF).
The authors of [10] examine the projection of noise in the
direction corresponding to an error event and interpret this
random variable as a distance in Euclidean space to derive the
PDF. Here anerror eventdenotes a sequence that translates
one codeword into another, where the path through the code
trellis that is induced by the error sequence is only in the
same state as the original codeword at the endpoints of the
sequence. For the rest of the paper, the random variable
resulting from the projection of noise onto a direction specified
by an error event will be referred to as theprojection random
variable (PRV). In [10], the authors present two approaches
to obtain the PDF. In the first approach, the PDF is derived
based on the assumption that different PRVs (projection of
noise onto directions specified by different error events) are
independent. The PDF obtained using the independence as-
sumption results in conservative reliability estimates that are
lower than the actual values. The authors suggest incorporating
the correlation between the PRVs into the PDF to avoid
conservative estimates. In the second approach, the authors
obtain a covariance matrix involving the correlation between
different PRVs and use it in a joint multivariate distribution to
obtain the PDF. Though the PDF obtained using the second
approach produces good reliability estimates, the expression
for the density function is very complicated. In this paper,
we present a simple technique to account for the correlation
between the PRVs. Using this technique, we can avoid the use
of complicated joint multivariate distributions.

Even with the independence assumption, the PDF obtained
using this technique cannot be expressed in closed-form and
involves products and summations that depend on the enu-
meration of all possible error events. Thus, the PDF given
in [10] is not attractive for use in the analysis of reliability-
based techniques. In this paper, we present an ad hoc estimate
of the PDF that is mathematically tractable. This closed-form
estimate of the PDF is parameterized by a single quantity that
can be numerically evaluated. We show that our technique
produces an accurate approximation of the true PDF.

II. T HE DECODER

Among all trellis-based decoding algorithms for linear
codes, the BCJR maximuma posteriori (MAP) decoder [11]
achieves the optimum bit error probability. The inputs to a
BCJR MAP decoder area priori probabilities and likelihoods

for the received symbols, and the output consists ofa posteri-
ori probabilities (APPs). The decoder is usually implemented
in the log-domain for fast operation. For each information bit
ui, the Log-MAP decoder computes the log-likelihood ratio
(LLR) of the APP as follows,

L(ui|r) = ln
P(ui = 0|r)
P(ui = 1|r)

, (1)

= ln

∑
c∈C+

P(c|r)∑
c∈C−

P(c|r)
, (2)

where r is the received codeword,C+ is the set of all
codewords withui = 0 and C− is the set of all codewords
with ui = 1. Note thatck ∈ {+1,−1}. The output LLR is also
referred to as the soft-information or soft-output. Assuming
that all the codewords are equally likely and using Baye’s
rule, the soft information for codewords transmitted on a
additive white Gaussian channel (AWGN) with noise variance
σ2 = N0/2 can be written as

L(ui|r) = ln
∑

c∈C+

P(r|c)− ln
∑

c∈C−

P(r|c),

= ln
[ ∑

c∈C+

exp
(
− ‖r− c‖2

2σ2

)]

− ln
[ ∑

c∈C−

exp
(
− ‖r− c‖2

2σ2

)]
,

(3)

A suboptimal implementation of the Log-MAP decoder
called the Max-Log-MAP decoder is obtained by using the
approximationln(

∑
xi) = max(ln(xi)) to evaluate the log-

APP in (3). Thus, for a Max-Log-MAP decoder the soft-output
is given by,

L(ui|r) = min
c∈C+

(
‖r− c‖2

2σ2

)
− min

c∈C−

(
‖r− c‖2

2σ2

)
, (4)

Since the union ofC+ and C− spans the space of all
valid codewords, one of the terms in (4) corresponds to the
Euclidean distance betweenr and the maximum-likelihood
(ML) decoding solution.

The magnitude of the soft information is called therelia-
bility and is a measure of the correctness of the bit decision.
The reliability for bit i (Λi) can be expressed as

Λi , |L(ui|r)| =
1

2σ2
min

j

{
‖r− c(j)

i ‖2 − ‖r− cML‖2

}
,

(5)
wherec(j)

i is a codeword corresponding to an input sequence
that differs from the ML input sequence in theith bit. Since
the distance betweenr and the ML codeword is smaller than
the distance betweenr and any other codeword, the difference
in (5) is always positive. Thus, the Max-Log-MAP decoder
associates with theith bit, the minimum difference between
the metric associated with the ML path and the best path



that differs from the ML path in the input of theith trellis
section [12]. A high value of reliability implies that the ML
path and the next best path are far apart, hence there is a
lower probability of choosing the other path and making a bit
error. Thus, reliability is a measure of the correctness of the bit
decision, as has also been shown via simulation results in [2],
[3]. A bit with high reliability is more likely to have decoded
correctly than a bit with low reliability.

Note that the scaling of the reliability by the noise variance
in (5) does not affect the performance of the Max-Log-MAP
decoder and is just an implementation consideration. If channel
estimates are available to the decoder, the scaling can be
performed.

III. T HE DENSITY FUNCTION OF RELIABILITY

In [10], the authors derive the density function of soft-
information without the scaling of the reliability by the noise
variance (see (5)). The density function for any noise variance
can then be obtained by a simple transformation. The authors
of [10] work in Euclidean space and use a geometrical
interpretation of the reliability is used to obtain the PDF.
In this section, we provide a more streamlined derivation by
working in the more conventional Hamming space and use a
high signal-to-noise ratio (SNR) approximation to obtain the
PDF.

Sincec(j)
i is a codeword corresponding to an input sequence

that differs from the ML input sequence in theith bit, c(j)
i can

be expressed as,

c(j)
i = cML + e(j)

i , (6)

wheree(j)
i is an error event generated by an input sequence

with bit i equal to1. Since the symbols ofc(j)
i andcML take

on values in{+1,−1} and the error event transforms one
codeword into another, the components ofe(j)

i take on values
in {+2, 0,−2}. Using (6) in (5), we get

Λi = min
j

{
‖e(j)

i ‖2 − 2(r− cML)T · e(j)
i

}
. (7)

At high SNRs, the ML decoder will find the correct codeword
(input sequence). Thus for high SNRs we can express the
received sequence as

r = cML + e, (8)

where e ∼ N
(
0, N0

2 I
)
. This assumption is similar to the

approach in [10], in which the authors obtain the conditional
density function given correct decoding of a bit. Using (8) in
(7) we get

Λi = min
j

{
‖e(j)

i ‖2 + 2eT · e(j)
i

}
. (9)

Note that according to our terminology,e(j)
i is an error event,

whereaseT ·e(j)
i is the projection of the noise in the direction

of the error evente(j)
i . Let dj be the Hamming weight (number

of non-zero elements) ofe(j)
i . Also, define

Zj , ‖e(j)
i ‖2 + 2eT · e(j)

i . (10)

Since Zj is just a linear combination of Gaussian noise
samples,Zj is also a Gaussian random variable. It is easy
to see that

Zj ∼ N
(

4dj , 16d2
j

No

2

)
. (11)

Thus, the reliability can be expressed as the minimum over
a sequence of Gaussian random variables with distributions
given by (11). Assuming that all theZjs are independently
distributed, the cumulative density function (CDF) ofΛ can
be written as

FΛ(λ) = 1−
∏
j

Prob(Zj > λ)

= 1−
dmax∏

d=dmin

{
Q

(
λ− 4d√
16dσ2

)}a(d)

, (12)

where a(d) is the multiplicity of error events of weightd
andQ(x) represents the Gaussian complementary distribution
function. The PDF can be obtained by differentiating the CDF.
Using the product rule of differentiation, the PDF is obtained
as

fΛ(λ) =
dmax∑

dj=dmin

{
a(dj)

4
√

(2πdjσ2)
exp

(
− (λ− 4dj)2

32djσ2

)

×Q

(
λ− 4dj√
16djσ2

)a(dj)−1 dmax∏
di=dmin

di 6=dj

Q

(
λ− 4di√
16diσ2

)a(di)}
.

(13)

Thus, even under the simplifying assumption of independent
output error events, the density function obtained from first
principles is very complicated and not suited for use in the
analysis of techniques involving reliabilities. For the Max-Log-
MAP decoder with the noise scaling implemented (as in (5)),
the CDF and PDF of the reliability can be obtained by a simple
transformation as

FΛ,σ(λ) = FΛ

(
2σ2λ

)
, fΛ,σ(λ) = 2σ2fΛ

(
2σ2λ

)
(14)

The subscriptσ is used in the above expressions to indicate
that the soft-information is scaled by the noise variance in
the Max-Log-MAP decoder. SinceΛ is non-negative and
continuous, the mean of the reliability can then be evaluated
numerically as

E[Λ] =
∫

λ

[
1− FΛ,σ(λ)

]
dλ

=
∫ ∞

0

dmax∏
d=dmin

{
Q

(
2σ2λ− 4d√

16dσ2

)}a(d)

dλ. (15)

IV. ON THE CORRELATION BETWEEN OUTPUT ERROR

EVENTS

In Section III, we model the reliability as the minimum
of a number of Gaussian random variables that are assumed
to be independent. This assumption is valid only if all the
PRVs are independent. However, this is not a valid assumption



because different output error events depend on common noise
samples and are thus correlated. Because of this correlation,
the expressions for the PDF and mean of the reliabilities
given by (14) and (15) can significantly differ from the
simulation results, as will be shown in Section VI. Thus,
the correlations among the output error events should be
considered in order for the analytical expressions to agree
with the simulation results. In [10], the authors account for
this correlation by obtaining the joint multivariate distribution
of Zj and using this distribution to compute the density
function. However, this approach would involve computing
a covariance matrix involving different pairs of error events
and using this covariance matrix in the density function. This
approach results in a very complicated expression. Even with
the independence assumption, the density function in (13)
is complicated. Further, the approach using the multivariate
distribution offers no further insight into the behavior of the
reliabilities.

Note that the correlation between different PRVs arise
because they share common noise samples, which is a con-
sequence of the associated error events differing from the
correct codeword in a common set of symbols. We introduce a
simple approach to account for the correlation between PRVs
by computing the correlation among different error events. We
first define the correlation between two error eventse1 ande2

of lengthsl1 and l2 respectively as,

Ce1,e2 =
∑min(l1,l2)

i=1 e1,i � e2,i

max(l1, l2)
, (16)

whereej,i refers to theith bit of error eventej and the ‘�’ op-
erator denotes the XOR operation. For example, ‘11 10 10 11’
and ‘11 10 10 00 01 11’ are two error events of length
8 and 12 respectively, and the correlation between the two
events can be computed using (16) to be0.5. We account
for the correlation between output error events by eliminating
some of the error events that are highly correlated and using
the reduced set of error events to compute the PDF/CDF
of reliabilities. We define a correlation thresholdTCorr, and
whenever two error events have a correlation value greater
than TCorr, the longer of the two events is eliminated from
the event set. The longer of the two events is removed from
the event set because performance is usually dominated by
the low weight error events. This process is continued until
all remaining pairs of error events have correlation less than
TCorr. We normalize the correlation by the longer of the two
error event lengths to ensure that events with very dissimilar
lengths have a low value of the correlation. This eliminates
the possibility of discarding a long event which may share
a common initial path through the trellis with a small error
event. Thus, a condensed event set is obtained within which
the events have low correlation value. We expect the small
correlation between the events in the condensed set to have
a negligible effect on the independence assumption used in
deriving the PDF. It will be shown in Section VI that if the
summation in (13) is performed over the condensed event

set, the resulting values are strikingly close to the simulation
results for properly chosen values ofTCorr. Thus, the need for
joint multivariate distributions involving the covariance matrix
of output error events is avoided using this technique.

V. A MATHEMATICALLY TRACTABLE DENSITY FUNCTION

The expressions for the density function of the reliability
given by (13), (14) are complicated and not convenient for
use in mathematical analysis of reliability-based techniques.
We address this issue with an ad hoc estimate of the PDF
based on the following observations:
• The mean of the reliabilities obtained from (15) is very

close to the simulation results. (This fact will be substan-
tiated in Section VI).

• Given the correct decoder output, the conditional dis-
tribution of the soft output for a bit is approximately
Gaussian with variance approximately equal to twice the
mean (cf. [9]).

Thus, we suggest modeling the reliability as the absolute
value of a Gaussian random variable that satisfies the symme-
try condition, i.e.,

Λ = |X| , X ∼ N (µ, 2µ), (17)

whereµ is the mean obtained by numerically evaluating (15).
The cumulative distribution function (CDF) can easily found
to be

FΛ(λ) =

{
Q

(
µ−λ√

2µ

)
−Q

(
µ+λ√

2µ

)
, λ > 0

0, otherwise.
(18)

Differentiating with respect toλ, the PDF of the reliability is,

fΛ(λ) =

 exp
(
− (µ−λ)2

4µ

)
+exp

(
− (µ+λ)2

4µ

)
2
√

πµ , λ > 0

0, otherwise.
(19)

Unlike the expression in (14), the density function in (19)
does not involve summations and products and is expressed
in closed-form. Indeed, we have to resort to numerical com-
putation to obtain the mean,µ, but for problems involving
explicit probabilities of reliabilities, (19) is mathematically
more tractable than (14). In Section VI we provide results
that show this Gaussian approximation is extremely accurate.

VI. NUMERICAL RESULTS

In this section, the analytical expressions derived in the
previous sections are compared with simulation results. For
all results, non-recursive, non-systematic convolutional codes
(CC) with a block size of1000 bits are used. The Max-
Log-MAP implementation of the BCJR algorithm is used for
decoding. In our implementation the Max-Log-MAP metric is
scaled by the noise variance as in (5). In Figure 1, the means
of the reliabilities obtained using (15) are compared with the
actual means obtained from simulation. The comparison is
shown for a rate1/2, constraint length3 convolutional code
and a rate1/3, constraint length7 convolutional code. The
constraint length3 CC has generator polynomials1 + D2

and 1 + D + D2 or (5, 7)8 in octal notation. The constraint
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Fig. 1. The mean of reliabilities as a function of the signal-to-noise ratio
when the correlation between the output error events are ignored.

length7 CC has generator polynomials(554, 624, 764)8. It is
observed that the analytical expression produces the estimates
that are smaller than the actual values. As explained in
Section IV and in [10], the assumption that all the output error
events are independent leads to over-counting which causes
the analytical results to produce conservative results. At low
SNRs, there is larger gap between analytically obtained values
and the simulation results when compared to high SNRs. This
is because the performance at low SNRs is dominated by
blocks that decode incorrectly and hence the assumption (8)
is violated.

To tighten the gap between the analytical and simulation
results, it is required to consider the correlation between error
events. The number of error events with weightd (event
multiplicity) is shown in Table I for the(5, 7)8 CC It is seen
that eliminating events that have a correlation value higher
than the correlation threshold (TCorr = 0.7 in this case)
results in a condensed set of error events. We expect that
using this condensed set of events with low correlation will
reduce the over-counting problem caused by the independence
assumption.

The mean of the reliabilities after accounting for the corre-
lation between output error events (as explained in Section IV)
is shown in Figure 2. If the summation in (13) is performed
over a condensed set of error events (as shown in Table I),
and the mean then computed using (15), it can be seen from
Figure 2 that the analytical results are very close to the true
values even at low SNRs.

The PDF of reliabilities (eqn. (14)) for the(5, 7)8 code
is compared with the true PDF in Figure 3. The true PDF
was obtained experimentally by simulating the decoding of
a number of blocks that were transmitted over an AWGN
channel. The reliability of each bit was recorded and the
true PDF was estimated from the histogram of the recorded
reliabilities. It can be seen from Figure 3 that results close to

d a(d) a(d)
All Events TCorr=0.7

dmin=5 1 1
6 2 2
7 4 4
8 8 8
9 16 9
10 32 5
11 64 11
12 128 5
13 256 14
14 512 13

dmax=15 1024 20

TABLE I

ERROREVENT MULTIPLICITY OF THE (5, 7) CONVOLUTIONAL CODE
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Fig. 2. The mean of reliabilities as a function of signal-to-noise ratio after
taking into account the correlation between output error events

the true PDF can be obtained when the correlation between
output error events is considered in the computation of the
density function. The correlation is considered by evaluating
the PDF in (13) over the condensed set of error events shown
in Table I. Note that the analytical PDF is much closer to the
true PDF at higher SNRs.

The PDF obtained using the simple, ad hoc estimate in
(19) is shown in Figure 4. The mean,µ, that specifies the
PDF is obtained numerically from (15). It is observed that
this ad hoc expression produces results that are closer to the
true PDF when compared to the expression in (13). Unlike
the PDF given in (13), the ad hoc estimate produces results
that are very close to the true PDF even at low SNRs. The
correlation between error events can be accounted for in the
ad hoc PDF estimate by evaluatingµ over a condensed set
of low-correlation error-events (as shown in Table I). As
before, accounting for the correlation produces better results
when compared to treating the PRVs as independent random
variables.
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Fig. 4. The PDF of reliabilities of the(5, 7)8 CC obtained using the simpler,
mathematically tractable expression given in (19)

VII. CONCLUSIONS

In this paper we develop simple yet accurate techniques to
approximate the density function for the bit reliabilities (the
magnitudes of the soft information). A streamlined derivation
of the PDF that is based on the interpretation of reliability in
Hamming space is presented. Correlation between output error
events tends to make the analytical reliability estimates con-
servative. It has been demonstrated that an effective method to
reduce the effect of correlation is to disregard error events with
high correlation in the computation of the density function. It
is shown that eliminating events with correlation values larger
than 0.7 produces good results. By using this technique, we
can avoid resorting to the use of joint-multivariate distributions
that tend to produce complicated expressions.

A mathematically tractable expression for the PDF has also

been proposed. Unlike existing density functions, this PDF
estimate can be expressed in closed-form. The PDF estimate
is parameterized by a single quantity that can be numerically
evaluated. This alternative form could prove useful in analysis
that require the computation of explicit probabilities of relia-
bilities. Analysis of reliability-based hybrid ARQ or reliability-
based cooperative diversity are typical examples where the ad
hoc PDF estimate could prove useful.
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