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Abstract— Reliabilities at the output of soft-decision decoders and the validity of this estimate is demonstrated by comparing the
are random variables and hence are characterized by their estimate of the PDF with simulation results. This PDF estimate
density function. In this paper, we present a closed-form ap- can be used to analyze several communication schemes that utilize
proximation for the density function of reliabilities associated reliabilities as a design tool.
with the Max-Log-MAP decoding of convolutional codes. Den-
sity functions of reliabilities have been computed based on . INTRODUCTION
probabilities involving the projection of the noise in directions
corresponding to different error events. Each such projection  Decoders that operate on floating-point inputs and produce
results in a random variable, and two approaches have been floating-point outputs instead of hard-decisions are called soft-

taken to compute probabilities involving these random variables. . .
In the first gppropach, the random 3ariables are treated as |nput soft-output (S,I,SO) decoders.. The sign O_f the soft-output
if they are independent; in the second approach, correlations 9ives the hard-decision value, while the magnitude of the soft-

between the random variables are taken into account. The output is called the reliability of the bit decision [1]. Until

former approach results in conservative estimates and a relatively recently, the soft-outputs were typically used only to produce
s'mgler eXprejs'O? fotr thg tPDF’ I;Nhereas thel_ 'a:t%r approach hard-decisions. The utilization of soft-information as a useful
produces good esimales but TESults in & complcated eXpression. o) was largely ignored until the emergence of turbo codes.

The mathematical expressions found using either approach are .
generally too complicated for further use in analytical work. In ~ 1he turbo decoder makes explicit use of the soft-outputs to

this paper, we propose a simple approach to account for the compute extrinsic information, and this extrinsic information
correlation between the random variables resulting from the is exchanged between the constituent decoders.
projection of noise onto directions specified by different error In recent years, a number of algorithms have been proposed

events. Under this approach, we reduce the number of random that K licit f soft-inf fi liability. E
variables that are considered in the computation of the PDF by 1al Make explicit use o soit-information or reliabriity. -or

eliminating those that are highly correlated. Working with this~ €xample, reliability-based hybrid ARQ techniques have been
condensed set of random variables produces results that are closeproposed [2], [3], [4], wherein the reliability or mean reliabil-

to the true values even if the independence assumption is used. Ajty is used to decide the retransmission size or the set of bits
mathematically tractable estimate of the PDF is also presented, 15 pe retransmitted. Cooperative diversity is another area that



is receiving a lot of attention from researchers. Techniquesfor the received symbols, and the output consista pbsteri-

which cooperating nodes exchange reliability information [54ri probabilities (APPs). The decoder is usually implemented

[6], [7] or information based on reliability [8] have beenin the log-domain for fast operation. For each information bit

proposed. u;, the Log-MAP decoder computes the log-likelihood ratio
The main drawback in the analysis of these techniques(id-R) of the APP as follows,

that sufficient tools to model the reliability are not available.

For example, in order to analyze techniques that rely on P(u; = O|r)
the mean of soft information, it is usual practice to take Luifr) = In P(u; = 1|r)’ @)
a semi-analytic approach. The mean of soft information is

_ roach | | ecc, Plelr)
obtained through simulation and used in the analysis [9]. = In +7P’ (2)
In [10], the authors address this issue by characterizing the 2 cec. Plelr)

soft information by its probability density function (PDF).where r is the received codeword(, is the set of all
The authors of [10] examine the projection of noise in théodewords withu; = 0 and C_ is the set of all codewords
direction corresponding to an error event and interpret thiith «; = 1. Note thatc;, € {+1, —1}. The output LLR is also
random variable as a distance in Euclidean space to derive tbferred to as the soft-information or soft-output. Assuming
PDF. Here arerror eventdenotes a sequence that translateRat all the codewords are equally likely and using Baye’s
one codeword into another, where the path through the cadfe, the soft information for codewords transmitted on a
trellis that is induced by the error sequence is only in thedditive white Gaussian channel (AWGN) with noise variance
same state as the original codeword at the endpoints of ##= N,/2 can be written as

sequence. For the rest of the paper, the random variable

resulting from the projection of noise onto a direction specified

by an error event will be referred to as thejection random L(uilr) = In Z P(r[c) —In Z P(r|c),
variable (PRV). In [10], the authors present two approaches ceCy ceC-

to obtain the PDF. In the first approach, the PDF is derived . [ S exp ( e - 02)]

based on the assumption that different PRVs (projection of cec, 202

noise onto directions specified by different error events) are o
independent. The PDF obtained using the independence as- —In { Z exp ( _ r‘?”)}
sumption results in conservative reliability estimates that are ceC. 20

lower than the actual values. The authors suggest incorporating 3)

the correlation between the PRVs into the PDF to avoid
conservative estimates. In the second approach, the authord suboptimal implementation of the Log-MAP decoder
obtain a covariance matrix involving the correlation betweetalled the Max-Log-MAP decoder is obtained by using the
different PRVs and use it in a joint multivariate distribution t@pproximationin(} " z;) = max(In(xz;)) to evaluate the log-
obtain the PDF. Though the PDF obtained using the secoABP in (3). Thus, for a Max-Log-MAP decoder the soft-output
approach produces good reliability estimates, the expressisrgiven by,
for the density function is very complicated. In this paper, 2 2
, , : . lr—c] _(lr—c]

we present a simple technique to account for the correlation L(u;|r) = min <22> — min <22), (4)
between the PRVs. Using this technique, we can avoid the use o0+ 7 7
of complicated joint multivariate distributions. Since the union ofCy and C_ spans the space of all

Even with the independence assumption, the PDF obtaingid codewords, one of the terms in (4) corresponds to the
using this technigue cannot be expressed in closed-form drclidean distance betweanand the maximum-likelihood
involves products and summations that depend on the efMl-) decoding solution. . o .
meration of all possible error events. Thus, the PDF given The magnitude of the soft information is called tredia-
in [10] is not attractive for use in the analysis of reliabilityRility and is a measure of the correctness of the bit decision.
based techniques. In this paper, we present an ad hoc estinl&@ reliability for biti (A;) can be expressed as
of the PDF that is mathematically tractable. This closed-form
estimate of the PDF is parameterized by a single quantity thak 2

ceC_

1 . j
)| = g min { = 12 = I~ care

can be numerically evaluated. We show that our technique™ 20
produces an accurate approximation of the true PDF. ‘ (5)
Wherecl(:” is a codeword corresponding to an input sequence
Il. THE DECODER that differs from the ML input sequence in thith bit. Since

the distance betweenand the ML codeword is smaller than

Among all trellis-based decoding algorithms for lineathe distance betweanand any other codeword, the difference
codes, the BCJR maximuia posteriori (MAP) decoder [11] in (5) is always positive. Thus, the Max-Log-MAP decoder

achieves the optimum bit error probability. The inputs to associates with théth bit, the minimum difference between
BCJR MAP decoder ara priori probabilities and likelihoods the metric associated with the ML path and the best path



that differs from the ML path in the input of th&h trellis Since Z; is just a linear combination of Gaussian noise
section [12]. A high value of reliability implies that the ML samples,Z; is also a Gaussian random variable. It is easy
path and the next best path are far apart, hence there ito@ee that N

. X X . o
lower probability of choosing the other path and making a bit Zj ~ N<4dj, 16d§>. (11)
error. Thus, reliability is a measure of the correctness of the bit 2

decision, as has also been shown via simulation results in [Zhys, the reliability can be expressed as the minimum over
[3]. A bit with high reliability is more likely to have decoded 3 sequence of Gaussian random variables with distributions
correctly than a bit with low reliability. given by (11). Assuming that all th&;s are independently

in (5) does not affect the performance of the Max-Log-MARg \written as

decoder and is just an implementation consideration. If channel

estimates are available to the decoder, the scaling can be Fa(\) = 1 —HPrOt(Zj > A)
performed. j
dmaz a(d)
I1l. THE DENSITY FUNCTION OF RELIABILITY — 1_ A—dd
= 1- J] - , (12)
In [10], the authors derive the density function of soft- d=dmin v16do

information without the scaling of the reliability by the nOiSG{Nhere a(d) is the multiplicity of error events of weight

variance (see (5)). The density function for any noise Va”angﬁdQ(x) represents the Gaussian complementary distribution

can then be obtained by a simple transformation. The aum}ﬁﬁction. The PDF can be obtained by differentiating the CDF.

of [10] work in Euclidean space and use a geometrica]_. : L . .
. . S . sing the product rule of differentiation, the PDF is obtained
interpretation of the reliability is used to obtain the PD g P

In this section, we provide a more streamlined derivation by

working in the more conventional Hamming space and use&? N doneg { a(d;) (A —4d;)?

high signal-to-noise ratio (SNR) approximation to obtain th = Xp | — 3

Pllg)F. ° (SNR) app P S ACLLLS) 32d;o
Sincecz(:” is a codeword corresponding to an input sequence < A —4d; >“(d-7')‘1 dH* Q( A — 4d; )“(di)}

that differs from the ML input sequence in tii bit, Cz(’]) can 16d,02 e /16d;02

be expressed as, 4,74,

. _ (13)
Cl(-]) =cpr+ eE”, (6) S . .

_ Thus, even under the simplifying assumption of independent
whereegj) is an error event generated by an input sequenoatput error events, the density function obtained from first
with bit 4 equal tol. Since the symbols ocfl(j) andc,,; take principles is very complicated and not suited for use in the
on values in{+1,—1} and the error event transforms onenalysis of techniques involving reliabilities. For the Max-Log-
codeword into another, the componentseff take on values MAP decoder with the noise scaling implemented (as in (5)),
in {+2,0, —2}. Using (6) in (5), we get the CDF and PDF of the reliability can be obtained by a simple

transformation as

A; = min {2 = 2(r — cpyp )T - @ 7
tn {[le”|* — 2(r —earr)" e} (7) Fao(N) = Fa(20°X),  fao(\) =20°fa(20°))  (14)

At high SNRs, the ML decoder will find the correct codeword

(input sequence). Thus for high SNRs we can express t‘ﬁge subscriptr is used in the above expressions to indicate
received sequence as that the soft-information is scaled by the noise variance in

the Max-Log-MAP decoder. Sincé is non-negative and
r =cyy + e, (8) continuous, the mean of the reliability can then be evaluated

wheree ~ A(0, 221). This assumption is similar to the Numerically as

approach in [10], in which the authors obtain the conditional A] = / [1 _r ()\)]d/\
density function given correct decoding of a bit. Using (8) in ) Ao
(7) we get oo dmaz 2 QA _ 4d a(d)
)2y onT () = / [T jo =" d\. (15)
A; = min {[le”’||* +2e" - &7’} ) 0 aur V16do?
Note that according to our terminolog@éj) iS an error event, IV. ON THE CORRELATE'\?:NT;TWEEN OUTPUT ERROR

WhereaaaT~ez(.J) is the projection of the noise in the direction
of the error evenél(.j). Letd; be the Hamming weight (number In Section I, we model the reliability as the minimum
of non-zero elements) af’. Also, define of a number of Gaussian random variables that are assumed
! 4 to be independent. This assumption is valid only if all the
= ||e§j)||2 +2e" el (10) PRVs are independent. However, this is not a valid assumption

i



because different output error events depend on common nasg the resulting values are strikingly close to the simulation
samples and are thus correlated. Because of this correlatim@sults for properly chosen valuesdf,,... Thus, the need for
the expressions for the PDF and mean of the reliabilitiggint multivariate distributions involving the covariance matrix
given by (14) and (15) can significantly differ from theof output error events is avoided using this technique.
simulation results, as will be shown in Section VI. Thus,V A MATHEMATICALLY TRACTABLE DENSITY FUNCTION

the correlations among the output error events should be
considered in order for the analytical expressions to agreelhe expressions for the density function of the reliability
with the simulation results. In [10], the authors account fd&ven by (13), (14) are complicated and not convenient for
this correlation by obtaining the joint multivariate distributiorS€ in mathematical analysis of reliability-based techniques.
of Z; and using this distribution to compute the densityVe address this issue with an ad hoc estimate of the PDF
function. However, this approach would involve computin§ased on the following observations:

a covariance matrix involving different pairs of error events « The mean of the reliabilities obtained from (15) is very
and using this covariance matrix in the density function. This close to the simulation results. (This fact will be substan-
approach results in a very complicated expression. Even with tiated in Section VI).

the independence assumption, the density function in (13)e Given the correct decoder output, the conditional dis-
is complicated. Further, the approach using the multivariate tribution of the soft output for a bit is approximately
distribution offers no further insight into the behavior of the = Gaussian with variance approximately equal to twice the
reliabilities. mean (cf. [9]).

Note that the correlation between different PRVs arise Thus, we suggest modeling the reliability as the absolute
because they share common noise samples, which is a calue of a Gaussian random variable that satisfies the symme-
sequence of the associated error events differing from ttrg condition, i.e.,
correct codeword in a common set of symbols. We introduce a
simple approach to account for the correlation between PRVs A= IX]L X~ Np, 20), a7
by computing the correlation among different error events. Wehere, is the mean obtained by numerically evaluating (15).

first define the correlation between two error event&nde,  The cumulative distribution function (CDF) can easily found
of lengthsl; andi, respectively as, to be

min(l1,l2)
D oiet er;Oey;

max(h 5 lg)

Fa(\) = {Q(%) —Q(E8), A>0 .

Ceyer = ; (16) 0, otherwise

L Differentiating with respect td,, the PDF of the reliability is,
wheree; ; refers to theth bit of error event; and the &’ op-

erator denotes the XOR operation. For example,10 10 11’ exp (= 2% ) pexp (— L) >0
and ‘11 10 10 00 01 11’ are two error events of length fA(}A) = 2V ’ (19
8 and 12 respectively, and the correlation between the two 0, otherwise

events can be computed using (16) to (é. We account ynlike the expression in (14), the density function in (19)
for the correlation between output error events by eliminatirw)es not involve summations and products and is expressed
some of the error events that are highly correlated and usipdclosed-form. Indeed, we have to resort to numerical com-
the reduced set of error events to compute the PDF/CRftation to obtain the meany, but for problems involving

of reliabilities. We define a correlation threshdl@.,., and explicit probabilities of reliabilities, (19) is mathematically
whenever two error events have a correlation value greafpre tractable than (14). In Section VI we provide results

than Teo,r, the longer of the two events is eliminated fromhat show this Gaussian approximation is extremely accurate.
the event set. The longer of the two events is removed from

the event set because performance is usually dominated by VI. NUMERICAL RESULTS

the low weight error events. This process is continued until In this section, the analytical expressions derived in the
all remaining pairs of error events have correlation less thanevious sections are compared with simulation results. For
Tcorr- We normalize the correlation by the longer of the twall results, non-recursive, non-systematic convolutional codes
error event lengths to ensure that events with very dissimil@C) with a block size of1000 bits are used. The Max-
lengths have a low value of the correlation. This eliminatdog-MAP implementation of the BCJR algorithm is used for
the possibility of discarding a long event which may shamecoding. In our implementation the Max-Log-MAP metric is
a common initial path through the trellis with a small erroscaled by the noise variance as in (5). In Figure 1, the means
event. Thus, a condensed event set is obtained within whighthe reliabilities obtained using (15) are compared with the
the events have low correlation value. We expect the smalitual means obtained from simulation. The comparison is
correlation between the events in the condensed set to hatilewn for a ratel /2, constraint lengtt8 convolutional code

a negligible effect on the independence assumption usedaimd a ratel/3, constraint lengthr convolutional code. The
deriving the PDF. It will be shown in Section VI that if theconstraint length3 CC has generator polynomials + D?
summation in (13) is performed over the condensed eveand 1 + D + D? or (5,7)g in octal notation. The constraint
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= - - (554,624,764) CC, Analysis 7 4 4
[T | 8 8 8
4 9 16 9
2 10 32 5
T 40 1 11 64 11
© 12 128 5
© 13 256 14
T = 1 14 512 13
g dmaz=15 1024 20
8 2 1 TABLE |
= i ERROREVENT MULTIPLICITY OF THE (5,7) CONVOLUTIONAL CODE

10 -~ (57cCCd_ =5d =15 )

min max
£ - (554,624,764) CC: dmin=15, dmax=30
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-~ (5.7) CC. Analysis
! N . . . . 60~ —o— (554,624,764) CC, Simulation
Fig. 1. The mean of reliabilities as a function of the signal-to-noise ratic ~+ (554,624,764) CC, Analysis

when the correlation between the output error events are ignored.
50

a0t

length7 CC has generator polynomials54, 624, 764)s. It is
observed that the analytical expression produces the estims
that are smaller than the actual values. As explained
Section IV and in [10], the assumption that all the output errc
events are independent leads to over-counting which caus
the analytical results to produce conservative results. At lo

301

Mean of Reliabilities, E[A]

—~~(67)CC:d  =5,d =15T_ =07

SNRs, there is larger gap between analytically obtained valu T o

and the simulation results when compared to high SNRs. Ttk T | | (5541§24,764) FC: dminf15' dma‘x=30, T C‘0”=o.7
is because the performance at low SNRs is dominated | % 1 2 3 4 5 6 7 8
blocks that decode incorrectly and hence the assumption | E,/N, (dB)

is violated.

To tighten the gap between the analytical and simulatidt@- 2. The mean of reliabilities as a function of signal-to-noise ratio after
results, it is required to consider the correlation between erf8fnd Into account the correlation between output error events
events. The number of error events with weight(event
multiplicity) is shown in Table | for thg5,7)s CC It is seen

that eliminating events that have a correlation value higher . )
than the correlation thresholdl¢.,, = 0.7 in this case) the true PDF can be obtained when the correlation between

results in a condensed set of error events. We expect tRHfPUt error events is considered in the computation of the
using this condensed set of events with low correlation wiilensity function. The correlation is considered by evaluating

reduce the over-counting problem caused by the independet& PDF in (13) over the condensed set of error events shown
assumption. in Table I. Not.e that the analytical PDF is much closer to the
The mean of the reliabilities after accounting for the corrdfu€ PDF at higher SNRs.
lation between output error events (as explained in Section IV)The PDF obtained using the simple, ad hoc estimate in
is shown in Figure 2. If the summation in (13) is performe@l9) is shown in Figure 4. The meap, that specifies the
over a condensed set of error events (as shown in TableRDF is obtained numerically from (15). It is observed that
and the mean then computed using (15), it can be seen frims ad hoc expression produces results that are closer to the
Figure 2 that the analytical results are very close to the trtree PDF when compared to the expression in (13). Unlike
values even at low SNRs. the PDF given in (13), the ad hoc estimate produces results
The PDF of reliabilities (eqn. (14)) for thé,7)s code that are very close to the true PDF even at low SNRs. The
is compared with the true PDF in Figure 3. The true PD€orrelation between error events can be accounted for in the
was obtained experimentally by simulating the decoding afl hoc PDF estimate by evaluatipgover a condensed set
a number of blocks that were transmitted over an AWGNf low-correlation error-events (as shown in Table I). As
channel. The reliability of each bit was recorded and thHeefore, accounting for the correlation produces better results
true PDF was estimated from the histogram of the recordedhen compared to treating the PRVs as independent random
reliabilities. It can be seen from Figure 3 that results close tariables.
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been proposed. Unlike existing density functions, this PDF
estimate can be expressed in closed-form. The PDF estimate
is parameterized by a single quantity that can be numerically
evaluated. This alternative form could prove useful in analysis
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Fig. 3. The PDF of reliabilities of thé5, 7)s CC for two different signal-
to-noise ratios
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Fig. 4. The PDF of reliabilities of thé5, 7)s CC obtained using the simpler,
mathematically tractable expression given in (19)

VIlI. CONCLUSIONS

In this paper we develop simple yet accurate techniques to
approximate the density function for the bit reliabilities (the
magnitudes of the soft information). A streamlined derivation
of the PDF that is based on the interpretation of reliability in
Hamming space is presented. Correlation between output error
events tends to make the analytical reliability estimates con-
servative. It has been demonstrated that an effective method to
reduce the effect of correlation is to disregard error events with
high correlation in the computation of the density function. It
is shown that eliminating events with correlation values larger
than 0.7 produces good results. By using this technique, we
can avoid resorting to the use of joint-multivariate distributions
that tend to produce complicated expressions.

A mathematically tractable expression for the PDF has also

that require the computation of explicit probabilities of relia-
bilities. Analysis of reliability-based hybrid ARQ or reliability-
based cooperative diversity are typical examples where the ad
hoc PDF estimate could prove useful.
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