
Codes on Graphs: Behavioral Realizations and

the Sum-Product Algorithm∗

Arun ’Nayagam

February 2001

1 Introduction

There are many methods of representing a code C, three of which are listed
below.

• Using the Generator Matrix, G: C is all possible linear combinations of
the rows of G

• Using the Parity Check Matrix, H (the generator matrix of the dual code
C D): C consists of all possible n-tuples v satisfying 〈v,HT 〉 = 0

• Trellis (state space) representation: C consist of all distinct paths through
the trellis

The above representations are special cases of a general class of represen-
tations called Behavioral Realizations (Originated from the behavioral ap-
proach to system theory). In this tutorial-level survey, an attempt is made
to introduce a technique of modelling codes from a behavioral perspective. A
method of graphically viewing this behavior is also described. Finally a tech-
nique to decode codes based on their behavior is given. The paper is organized
as follows: Section 2 introduces the concept of behavioral modelling. Section 3
describes factor and TWL graphs, which provide a graph-based realization of
the behavior of a code. Section 4 introduces the sum-product algorithm which
is the decoding basic algorithm for codes on graphs. Section 5 illustrates 2 ap-
plications/instances of the sum-product algorithm : the BCJR MAP algorithm
for convolutional codes and turbo decoding. The paper is concluded in section
6.

∗This paper does not represent any original work by the author. This is just a compilation
of material available in the literature. See section 6 for more details

1

2 ELEMENTARY BEHAVIORAL REALIZATIONS OF LINEAR BLOCK CODES2

2 Elementary behavioral realizations of linear
block codes

A behavioral realization B defines a code C by a set of constraints that the code
symbols and other auxiliary state variables must satisfy. For linear block codes,
it is sufficient to consider linear behavioral realizations where the constraints
are linear.

• A simple example : Variables are elements over GF(q) and the constraints
are linear equations over these variables

• In Coding Theory: Variables are vector spaces over GF(q) and constraints
are expressed in terms of linear codes.

There are three components to an elementary linear behavioral realization.

1. n code words,x

2. s state variables s ,also called hidden or state variables.(s need not have
any dependence on n).

3. e linear homogeneous equations over GF(q) involving code words and state
variables.

The full behavior B generated by the above realization is the set of all x
and s that satisfy all the constraint equations. The code C generated by the
behavior B is the set of all n-tuples x,such that for any x ∈ C, there exist an
s3 (x, s) ∈ B .
In general the e homogeneous constraint equations in matrix can be represented
in matrix notation as,

x1×nAn×e + s1×sBs×e = 0 (1)

Some examples:
1. A code defined by a generator matrix Gk×n. Given a message sequence u,
the code word v is obtained as

v = u.G (2)

or
v − u.G = 0 (3)

Comparing (3) with (1) it is seen that the linear code C has an elementary
linear behavioral realization with the state k-tuple u and n constraint equations
defined by (3).
2. A code defined by the parity check matrix Hn×n−k. All the code words
v ∈ C satisfy

v.HT = 0 (4)

3 GRAPHS OF LINEAR BEHAVIORAL REALIZATIONS 3

Hence, the code C defined by H has an elementary linear realization with
no state variables.

The characteristic function for a behavior B is defined as

ψC(x1, . . . , xn) =
{

1 if (x1, . . . , xn) ∈ B
0 otherwise (5)

A probabilistic interpretation can be given to the characteristic function by
noting that ψB is proportional to a probability mass function that is uniform
over all valid codewords. The variables in general linear behavioral real-
izations are not just elements of GF(q) but are vector spaces over GF(q). In
other words, the symbol and state variables are m-tuples over GF(q). And also,
the constraint equations are replaced by constraints that a certain subset of
variables must lie in a linear block code over GF(q). A trellis representation of
a code is very good example of a general linear behavioral realization. At any
time the 3-tuple (Si, xi, Si+1)fully characterizes all possible paths through the
trellis at that time instant. It is also easy to show that the 3-tuple is a linear
code.

Figure 1: Trellis representation of a linear block code

For the trellis shown in figure 1, at time T=2, the trellis is fully characterized
by the following 3-tuples, T2={(0,0,0)(0,1,1)(0,2,2)(0,3,3)}. Both the input and
state variables are in GF(4). It can be seen the 3-tuples governing the local
behavior of the second trellis section form a linear code i.e., any 3 -tuple in T2
can be expressed as a linear combination of the other 3-tuples.

3 Graphs of linear behavioral realizations

A graph representing an elementary linear behavioral realization is called a Tan-
ner graph or a factor graph.Strictly speaking, a factor graph does not represent
a code but represents a code’s characteristic function. For the rest of this sur-
vey, the factor graph will be referred to as representing the code itself. A factor
graph has two types of vertices: variable vertices (symbol and state/hidden vari-
ables) and constraint vertices. An edge is drawn between a constraint vertex
and a variable vertex iff the variable is involved in the corresponding constraint
equation. The graph so formed is bipartite because the variable vertices only

3 GRAPHS OF LINEAR BEHAVIORAL REALIZATIONS 4

map to constrain vertices and vice-versa.A sample factor graph is shown in fig-
ure 2. The filled circles indicate state variables and the empty circles indicate
symbol variables.

Figure 2: A Tanner/Factor graph of a generic elementary linear behavioral
realization.

Degree of a variable vertex is the number of constraint equations(aka checks
in coding theory) it is involved in. Degree of a constraint vertex is the number
of variables that it involves. The degree of any vertex can be determined by
counting the number of edges incident on it.

Figure 3 shows the factor graph for (7,4) Hamming code with generator
matrix,

G =

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 1

 (6)

Figure 3: a.Factor graph for the (7,4) dual Hamming code. b.The factor graph
rearranged to show the loop formed by u1, v5, u4, v6

It is seen that the corresponding factor graph has cycles. Figure (b) ex-
plicitly shows one loop by rearranging one constraint vertex. Cycles or loops in
factor graphs are formed when the same set of two or more variables participate
in more than one constraint equation (check). The cycle shown in figure(b) is
formed because symbol variables u1 and u4 participate in two parity checks(the
constraint equations calculating the values of v5 and v6). Cycles in factor graphs

4 THE SUM-PRODUCT (BELIEF PROPAGATION) ALGORITHM 5

can lead to problems when we apply the belief propagation algorithm over the
graph. This is described in the next section.

The (7,4)dual-Hamming code can also be represented by a trellis.. Trellises
are just Markov models for codes. Since the the behavior of the trellis at any in-
stant is governed by the current state, input and next state, it can be represented
by a factor graph as shown in figure 4. The hidden variables are represented

Figure 4: The TWL graph for the trellis in figure 1

by double circles. A factor graph with hidden variables, that represents a gen-
eral behavioral realization is also known as a TWL (Tanner/Wiberg/Loeliger)
graph. We can see from figure 4 that the TWL graph has no loops. By taking
into account the trellis structure of the Hamming code, we introduced state
variables into the behavioral realization. This helped to get rid of the cycles in
the factor graph.

Comment: Often a behavioral realization, which is nothing but a set the-
oretic description of a system is simplified by introducing hidden (also referred
to as auxiliary, latent or state) variables.

Since, every code has a trellis representation, every code can be represented
by a cycle-free factor graph. But as the block size increases the state space
becomes very big to be of any practical use.

4 The Sum-Product (Belief Propagation) algo-
rithm

The sum-product(SP) algorithm is the basic decoding algorithm for codes on
graphs. Instances and variants of the SP algorithm exist in a number of fields
like communications, controls and statistical inference.

1. Instances: APP decoding, the BCJR decoding algorithm for convolutional
codes, Turbo decoding, Kalman filter, belief propagation.

2. Variants: MLSD, Viterbi Algorithm, belief revision.

Looking back at the definition of factor graphs in section 2 and by looking
at figure 2, factor graphs can also be thought of as a bipartite graph that
expresses the structure of a factorization, i.e., how a function of several variables
factors into several functions of several smaller variables.Consider the parity

4 THE SUM-PRODUCT (BELIEF PROPAGATION) ALGORITHM 6

check matrix of the (7,4) dual Hamming code,

H =

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

 (7)

The parity check matrix verifies if a given sequence is a valid codeword by
performing the check given in 4. Figure 5 gives the factor graph for the behav-
ioral realization of the (7,4) dual Hamming code as defined by the parity check
matrix.

Figure 5: The factor graph of the (7,4) dual Hamming code as defined by the
parity check matrix

The box plus in figure 5 represents the sum to zero operation, i.e, the nodes
participating in each constraint equation should sum to zero (over GF(2)). The
characteristic function for the behavioral relationship governed by H can be
written as

ψB(v1, v2, v3, v4, v5, v6, v7) = (v1⊕v4⊕v6⊕v7 = 0)(v2⊕v4⊕v5⊕v7 = 0)(v3⊕v5⊕v6⊕x7 = 0)
(8)

This factorization is captured by the factor graph in figure 5.Hence, if all the
checks are satisfied, the characteristic function ψB takes on the value 1. Even
if one check fails, ψB takes the value 0 implying [v1, . . . , v7] /∈ code C with
parity check matrix H. A probabilistic interpretation can also be given to (8)
by rewriting it as

Prob(v1, v2, v3, v4, v5, v6, v7) = Prob(v1⊕v4⊕v6⊕v7 = 0)Prob(v2⊕v4⊕v5⊕v7 = 0)Prob(v3⊕v5⊕v6⊕x7 = 0)
(9)

The probability on the left in (9) is the probability that the sequence [v1, v2, . . . , v7]is
a valid codeword. The parity check works over a smaller set of elements(4-tuples)
to verify if the given 7-tuple is a codeword.

The SP algorithm is used to compute marginal functions associated with a
function of several variables. The SP algorithm is finite and exact for graphs
without loops. For graphs with cycles, the algorithm becomes iterative and
approximate. To illustrate the operation of the SP algorithm a graph without
loops will be considered. The application of SP algorithm to graphs with cycles
will be discussed later.

The factor graph that will be used to illustrate the SP algorithm is shown
in figure 6. The factor graph represents the factorization,

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5) (10)

4 THE SUM-PRODUCT (BELIEF PROPAGATION) ALGORITHM 7

Figure 6: The factor graph of representing the factorization in (10)

The filled squares in figure 6 are called factor nodes. Factor nodes represent
a function of the variables that are incident on them. The constraint vertices
that were used in the previous sections are examples factor nodes where the
function was linear in nature.

The following steps should be followed to compute a single marginal function:

1. Redraw the factor graph with the corresponding node as the root.(x1 is
chosen for illustration, i.e., we want to calculate g1(x1)). This is shown
in figure 7.

Figure 7: The factor graph in figure 6 redrawn with x1 as the root

2. Begin at the leaves of the factor graph.

3. Each leaf variable node sends a trivial identity function to its parent.

4. Each leaf factor node f sends a description of ‘f’ to its parent.

5. Each vertex waits for messages from all its children before computing the
message to be sent to its parent. i.e., a variable node sends the product
of the messages received from its children to its parents, while a factor
node f with parent x forms the product of the messages received from its
children and operates on the result with a

∑
∼x operator.

4 THE SUM-PRODUCT (BELIEF PROPAGATION) ALGORITHM 8

6. The algorithm terminates at node xi where g(xi) is obtained as the prod-
uct of the messages received from all its children.

Since we are computing one single marginal probability, this algorithm is also
called the single-i SP algorithm. The

∑
∼x denotes a sum w.r.t to all variables

except x and is called the summary operator .Hence, a factor node waits for
messages from all its children and sums the function with respect to all the
variables except its parent. Applying the single-i to the factor graph shown in
figure 7:

• First nodes x4 and x5 send identity messages to the factor nodes fD and
fE .

• Then the factor nodes operate on the result with a
∑
∼x3

operator or
equivalently fD applies the

∑
x4

operator and fE applies the
∑

x5
opera-

tor.

• Node x3 forms the product of the messages received from its children fD

and fE and sends it to its parent fC .

• Proceeding as described in the previous steps, fC forms the product of the
messages received from its children and operates on them with the

∑
∼x1

operator (which is equivalent to the
∑

x2,x3
operator) and sends them to

x1.

• The marginal function of x1 is then obtained as the product of all the
messages received from its children fA and fC as

g1(x1) = fA(x1)
∑

x2,x3

fB(x2)fC(x1, x2, x3)
∑
x4

fD(x3, x4)
∑
x5

fE(x3, x5)

(11)

From (10), the marginal function of x1 can be written as

g1(x1) = fA(x1)
∑
x2

fB(x2)
∑
x3

fC(x1, x2, x3)
∑
x4

fD(x3, x4)
∑
x5

fE(x3, x5)

(12)
It is observed that the marginal function computed using the SP algorithm (11)
and the marginal function calculated directly (12) are equivalent. The single-i
SP algorithm can be applied by considering each variable vertex as a root to
compute all the marginal probabilities.

Comment: The SP algorithm computes exact marginal probabilities when
it is applied on a cycle-free factor graph.

Computing several marginal functions by repeatedly applying the single-i
SP algorithm more than once is inefficient because many of the subcomputa-
tions will be repeated over and over. An efficient approach to calculate all the
marginal functions would be to not have a fixed parent-child relationship among
the vertices of the factor graph. No particular vertex is considered as the root.

5 APPLICATIONS TO CODING THEORY 9

Instead each neighbor of a node is considered a parent at some point of time
and as a child at another. The algorithm is initiated at the leaves of the factor
graph. Once a node receives messages from all its neighbors except one (say
i), it regards i as its parent and computes the message to be sent to i. Once a
message has been sent to i, the node being considered waits for a message to
return from i. Once it gets the message from i, it can compute messages to be
sent to its other neighbors, each considered in turn to be a parent. The algo-
rithm stops when two messages have been passed in opposite directions on each
edge. In other words the algorithm stops when there are no messages pending.
Equations (13) and (14) specify the messages that are passed around in the SP
algorithm.

µx→f (x) =
∏

y∈ℵ(x)\f
µy→x(x) (13)

µf→x(x) =
∑
∼x

f(ℵ(f))
∏

z∈ℵ(f)\x
µz→f (z) (14)

where,
µx→f is the message passed from variable node x to the factor node f .
µf→x is the message passed from the factor node f to the variable node x.
ℵ(x) denotes the set of all neighbors of node x.
ℵ(x) \ f denotes the set of all neighbors of x excluding f .
Note that a message flowing on an edge is always a function of the variable vertex
associated with the edge irrespective of the direction of flow of the message.

5 Applications to coding theory

In section 2 and 3 factor graphs were shown to capture behavioral realizations
and the structure of the factorization of a function of several variables. In coding
theory, the latter is used for probabilistic modelling. Since the independence
of random variables is dependent on how the joint probability mass function
factors out, factor graphs can be used to model this independence. In coding,
the problem is determine what the transmitted codeword (x) was given the cor-
rupted received codeword(y). The encoding of the codeword can be modelled
by a factor graph (behavioral modelling) as shown in section 2. But, it is not
possible to observer the output of the encoder directly, instead we only have
the corrupted version of the encoder output as the observable quantity. Hence,
we just add to the factor graph of the encoder, factor nodes that represent the
quantity Prob{yi | xi}. This a mixed modelling style using both the behavioral
and the probabilistic methods. Figure 8 shows a TWL graph with the proba-
bilistic nodes added. The inputs ui’s are suppressed towards the right end of
the trellis to allow trellis termination.

The a posteriori probabilities (APP) associated with the code word compo-
nents x is by Baye’s rule, proportional to g(x) = p(x)p(y | x). The function

5 APPLICATIONS TO CODING THEORY 10

Figure 8: A TWL graph with the probabilistic nodes attached

g(x) is considered as a function of x with parameter y. If all the codewords were
uniformly distributed,

p(x) =
ψC

|C| (15)

where ψC is the characteristic function of the code C and |C| is the number of
codewords in C. It follows that

g(x1, . . . , xn) = p(x)p
{
(y1, . . . , yn) | (x1, . . . , xn))} (16)

Assuming that the channel is memoryless, the second term on the RHS in (16)
factors out into product of individual conditional probabilities. Using this fact
and (15)in (16) ,we get

g(x1, . . . , xn) =
ψC

|C|
n∏

i=1

p(yi | xi) (17)

Applying (17)to the code defined by the parity check matrix of the (7,4) dual
Hamming code in (7), we get

g(v) = (v1⊕v4⊕v6⊕v7 = 0)(v2⊕v4⊕v5⊕v7 = 0)(v3⊕v5⊕v6⊕x7 = 0)
7∏

i=1

p(yi | vi)

(18)
The characteristic function of the (7,4) dual Hamming code as given in (8) is
used to get (18). It was shown that the factor graph representation of behaviors
represented by the generator or parity-check matrices have loops in them. Since
all codes have a trellis representation that lead to a cycle-free TWL graph, the
TWL graph would be more suitable for the application of the sum product
algorithm. In TWL graphs, the behavior is checked by the Trellis nodes (the
black square labelled Ti’s). In other words, the constraints defining a valid
behavior are local checks performed at the trellis nodes. A trellis nodes Tichecks

5 APPLICATIONS TO CODING THEORY 11

if the 4-tuple (si, ui, xi, si+1) represents a valid behavior (physically, a valid path
through the trellis at time i). A behavior is valid only if it passes all the trellis
checks. Modifying the characteristic function to represent the trellis constraint,
the joint probability mass function of u, s,x and y can be written as

g(u, s,x,y) =
n−1∏

i=0

Ti(ui, si, xi, si+1)(
7∏

i=1

p(yi | xi) (19)

Since the APPs are proportional to the marginal functions associated with
the function g(u, s,x,y) (i.e.,p(ui | y) ∝ ∑

∼xi
g(u, s,x,y)), the SP algorithm

can be applied over the graph in figure 8 to compute the APPs.

5.1 BCJR algorithm as an instance of the SP algorithm

The SP algorithm when applied to a TWL graph representing a trellis becomes
the famous BCJR algorithm. This fact is illustrated using figures in this section.
For the sake of illustration a small sample TWL graph shown in figure (9) is
considered.

BCJR operation

Figure 9: A TWL graph to illustrate the BCJR algorithm

• STEP 1: The leaf nodes send messages to their parents,i.e., the trellis
check nodes receive messages from all its neighbors. These messages are
indicated by black dots in the vicinity of the trellis checks. At the same
time, the channel nodes send the likelihoods to the corresponding variable
node. The arrows indicate the direction of message flow.

• STEP 2: Once the leaf nodes have sent their messages, they go into the
waiting mode, waiting for a message to come from the trellis check nodes.

5 APPLICATIONS TO CODING THEORY 12

(Recall from section 4, the SP algorithm is completed when two messages
flow in opposite directions on each edge). The black circles in the vicinity
of the trellis check nodes can also be thought of as pending messages that
should be sent back to the node they originated from. The variable nodes
xi are of degree 2 and hence they just have one incoming message (the
likelihood) and they just pass this to the trellis check node. The message
passed from the variable node to the trellis node (µxi→Ti(xi)) is referred
to as γ(xi) in the the literature.

Figure 10: Step 1 and Step 2 of the BCJR algorithm

• STEP 3: Traverse the trellis from left to right. The trellis check node
Ti is first considered as the parent and receives the messages are sent by
si.The trellis nodes then compute the messages to be sent to si+1 as given
in (20) . Since si+1 is the parent, the product of the messages received by
Ti is summarized with respect si+1. In literature, the message µsi→Ti(si)
is referred to as α(si).

α(si+1) =
∑
∼si+1

Ti(ui, si, xi, si+1)α(si)γ(xi) (20)

This flow of messages continues till the last trellis variable Tn−1 is reached.
It does not matter if the information from Tn−1 is passed to sn. (Passing
or not passing this information on the last edge does not affect the APPs).
Hence, the message pending to go the last state variable node sn−1 may be
ignored.The computation of the α’s, illustrated in figure 11,are therefore
completed after a message flows from sn−1 into Tn−1.

• STEP 4: Now the parent-child relationship is reversed i.e., traverse the
trellis from right to left. The trellis check Ti becomes the parent and sends
a message to the previous state variable si−1. On receiving the message
from Ti, the state variables in turn computes the message to be sent to
the previous check Ti−2. The message µsi→Ti−1(si) is referred to as β(si).
Just like the α’s were calculated in a forward recursion (20) ,the β’s are
computed in a backward recursion in the following manner

β(si) =
∑
∼si

Ti(ui, si, xi, si+1)β(si + 1)γ(xi) (21)

5 APPLICATIONS TO CODING THEORY 13

Figure 11: Step 3 of the BCJR algorithm - α calculation

Similar to the computation of the alpha’s, the computation of the betas
are completed when the messages flowing from right to left reach the first
trellis check node, T0. Again, we can ignore the message pending for s0 as
this does not affect the computation of the APP’s. Figure 12 illustrates
the computation of the betas.

Figure 12: Step 4 of the BCJR algorithm -β calculation

• STEP 5: Once the betas have been calculated, the pending messages
that matter are only the messages to be sent to the input variable nodes
(the APPs). The message is computed as the product of the messages
received at a trellis check node on all the other edges, summarized w.r.t
the corresponding input variable node.The expression for computing the
APPs is given in (22)and figure 13 illustrates this operation. The message
µTi→ui(ui) is referred to as δ(ui). These messages are also called extrinsic
information in the turbo code literature.

δ(ui) =
∑
∼ui

Ti(ui, si, xi, si+1)α(si)β(si + 1)γ(xi) (22)

After the delta’s have been computed, the only messages remaining are the ones
that do not affect the calculation of the APPs (sending the messages pending for
the channel output nodes serves no purpose.). Hence, for all practical purposes
it can be stated that the SP algorithm terminates on a factor graph having

5 APPLICATIONS TO CODING THEORY 14

Figure 13: Step 5 of the BCJR algorithm - δ/APP calculation

no cycles when there are no messages pending on the graph. It can be seen
that δ(ui) is indeed the marginal function associated with g(u, s,x,y) which is
proportional to the APP p(ui | y).

The way the algorithm is described above, it takes 3 passes through the graph
to compute the APP’s. The first pass calculates the α’s, also called the forward
state metrics based on how they are computed. The second pass calculates
the β’s, also called the reverse state metrics and the final pass calculates the
δ’s. This way of calculating the APPs is not efficient. It was noted in section
4 that as soon as messages arrive on all but one of the branches, a message
can be computed to be sent on that branch. During the computation of the
reverse state metric, once the trellis node Ti gets a message from state si +1, it
has all the information required to compute δ(ui) (the other messages needed
to compute δ(ui),see (22), are α(si),β(si+1) and γ(xi), which have all been
acquired). Hence, Ti can simultaneously calculate the messages β(si) and δ(ui)
and send them on the corresponding edges. This eliminates one pass through
the network and speeds up the computation of the APPs. This is shown in
figure 14.

Figure 14: Single pass computation of β(si) and δ(ui)

This example illustrates two facts: the SP algorithm computes exact marginal
functions when the factor graph is cycle free and that the BCJR decoding
method is indeed an instance of the SP algorithm.

5 APPLICATIONS TO CODING THEORY 15

5.2 Turbo decoding as an instance of the SP algorithm

A turbo encoder consists of two recursive systematic convolutional encoders.
One of the constituent encoders receives the input directly while the other en-
coder receives a permuted version of the input. Since the convolutional codes
have a natural trellis representation they can be represented using a TWL graph.
The two encoders are identical and hence a factor graph for a typical turbo code
would look like the one shown in figure 15. The same code used in the previous
section is used. The only difference is that an input is also associated with the
trellis termination stage. In figure 15, the sequence x1 is a permuted version of
the input sequence x.

Figure 15: TWL graph of a rate 1
3

rdTurbo code

We observer that the concatenation of two encoders creates loops in the fac-
tor graph. Thus, the SP algorithm becomes iterative and approximate. The
BCJR algorithm is applied to one of the decoders first. For the sake of illustra-
tion the TWL graph at the bottom in figure 15 is taken as the first encoder. The
BCJR algorithm proceeds as explained in the previous section. Since the only
function of the probability nodes is to provide the likelihood value, these nodes
are not drawn in some of the figures in this section. After the initializations
and the channel likelihoods are sent to the variable nodes, the pending messages
(only the messages that are of direct consequence are shown, the ones that can
be ignored are not shown) are shown in figure 16. Similarly the hidden variable

5 APPLICATIONS TO CODING THEORY 16

nodes xi’s have no role to play except to forward the likelihoods to the trellis
check nodes. So the hidden nodes are also suppressed in most of the figures in
this section. Figures 17 and 18 shows the calculation of the forward state met-

Figure 16: Pending messages at the beginning of turbo decoding

rics, the reverse state metrics and the likelihoods as described in the previous
section.

Figure 17: Forward state metric computation in encoder 1

Once the all the extrinsic information reach the second encoder the same
process is repeated. Note that at this point, the edges connecting the trellis
check nodes and the input variable nodes of encoder 1 have passed messages
in opposite directions and so according to encoder 1, the SP algorithm has
terminated. But after passing through the second encoder, the extrinsic from
the second encoder again pass on the edge from the input variable node to
the trellis check node on encoder one. This causes the input variable nodes of
encoder 1 to consider this as a new run of the SP algorithm and it again goes into
the waiting phase (waiting for a message to return in the opposite direction).
Thus, the SP algorithm does not self-terminate as it did when applied on a
graph with no loops because at any instant there are messages pending (nodes
in the waiting phase) in a graph with cycles. This illustration shows us that for
a factor graph with loops, the SP algorithm has to be iterated and that turbo
decoding is indeed an instance of the SP algorithm (when applied to a graph
with loops).

6 CONCLUSIONS, COMMENTS AND REFERENCES 17

Figure 18: Reverse state metric and extrinsic computation in encoder 1

6 Conclusions, comments and references

This paper gives a tutorial level overview of modelling codes on graphs based
on their behavior. Two different graphical methods of describing valid code
behavior was introduced:the factor and the TWL graph. The sum product
algorithm was described as the basic decoding algorithm for codes on graphs
and two instances of the operation of the sum-product algorithm were studied.

This paper just scratches the surface of an area that is vast and interesting.
There is a lot of material in the literature that can be baffling for a novice in
this area. This paper aims to demystify and illustrate some of the concepts sur-
rounding codes on graphs. The tutorial does not provide a complete coverage
of this topic and is intended to motivate further study in this area. The best
place to start looking for material on this topic is
[1] “IEEE Transactions on Information Theory-Special issue on codes on graphs
and iterative algorithms, Vol. 47,Issue 2, February 2001.” This issue contains a
number of excellent papers on this topic.
The material covered in section 2 of this tutorial was adapted from G.D.Forney’s
graduate course handouts.
[2] “Lecture [5]: Codes on Graphs, 6.451 Principles of digital communications
II- M.I.T,Spring 2001”,G.D.Forney.
Most of the material in sections 3 and 4 (including the illustrative example of
the operation of the single-i SP algorithm) borrowed heavily from the classic
paper,
[3] “Factor graphs and the sum-product algorithm”, F.R.Kschischang, B.J.Frey
and H.A.Loeliger, IEEE Transactions on Information Theory-Special issue on
codes on graphs and iterative algorithms, Vol. 47,Issue 2, February 2001.
This is a very good tutorial paper with lots of illustrations of instances of the
SP algorithm. The turbo code illustration in section 5 was adapted from
[4] “Iterative decoding of compound codes by probability propagation in graph-
ical models”,F.R.Kschischang and B.J.Frey, IEEE journal on selected areas in
communications, vol.16, No.1, JAN. 1998.

