
A Hyper-Trellis based Turbo Decoder for
Wyner-Ziv Video Coding
Arun Avudainayagam, John M. Shea and Dapeng Wu

Wireless Information Networking Group (WING)
Department of Electrical and Computer Engineering

University of Florida
{arun@dsp, jshea@ece, wu@ece }.ufl.edu

Abstract— A new approach to design video coding schemes for
wireless video applications has emerged recently. Schemes using
this approach are based on the principle of distributed source
coding, and they exploit the correlation in the frames of the video
sequence at the decoder. One such scheme models the correlation
between frames as aLaplacian channel, and uses a turbo code
to correct errors occurring in this pseudo-channel. Existing
implementations use a sub-optimal approximation to compute the
channel likelihoods in the BCJR algorithm in the turbo decoder.
To resolve this sub-optimality, we propose applying the BCJR
algorithm on a trellis-structure with parallel transitions. This
trellis structure is called a hyper-trellis. The BCJR maximum
a posteriori algorithm is modified to use the hyper-trellis, and
computation of the channel-likelihoods are shown to be optimal
on the hyper-trellis. Simulation results show that the hyper-trellis
approach can yield a5 dB improvement in peak signal-to-noise
ratio.

I. I NTRODUCTION

In traditional video coding schemes likeMPEGandH.26x,
the encoder bears most of the computational burden when
compared to the decoder. The statistical correlation in the
frames of the video sequence is exploited at the encoder
to perform predictive coding. Predictive coding is usually
performed by using motion estimation algorithms that are
computationally expensive. However, the advent of wireless
video and sensor networks have placed stringent requirements
on the complexity of the video encoder. In these applications,
video coding has to be performed in small, power-constrained,
and computationally-limited low-cost devices. These applica-
tions call for a simple encoder to reduce cost of the video
sensing device, and to enable real-time encoding. Though a
simple encoder is required, the coding rate should not be
compromised because this directly impacts the amount of
power consumed in transmission.

Low-complexity codecs based on the principles of dis-
tributed source coding have been proposed recently for wire-
less video applications [1], [2] . These techniques are similar
in the fact that they exploit source statistics at the decoder. The
Slepian-Wolf theorem [3] and its continuous-source counter-
part, the Wyner-Ziv result [4] motivate this approach. These
information-theoretic results state that it is possible to encode
the frames of a video sequence (or any correlated source)
independently and still achieve efficient compression as long

as decoding is performed jointly. In the context of video coding
these results imply that (ideally) all the processing to exploit
temporal (interframe) and spatial (intraframe) correlation in
the video stream should be performed the decoder. This
facilitates the design of a simple video encoder at the cost
of increased complexity at the decoder.

In this paper, we focus on the scheme introduced by Aaron
and Girod [1], [5]. In this scheme, the frames are encoded
independently (intraframe encoding) and decoded jointly (in-
terframe decoding). Since their technique is based on the
Wyner-Ziv theorem [4] on source coding with side-information
at the decoder , we refer to their codec as the Wyner-Ziv video
codec. The decoder is assumed to have side-information (SI)
about the frames to be encoded. The correlation between the
pixels in the SI frame and the original frame is modelled as
a Laplacian channel. A turbo code is then used to correct the
errors in this “correlation-channel”. It will be shown in the next
section that the channel likelihoods in the turbo decoder are
computed in a sub-optimal manner in [1], [5]. This limits the
application of the Wyner-Ziv codec to situations in which the
quality of the SI is good (low mean-squared-error between the
SI and the original frame). In this paper, we introduce a new
trellis structure (ahyper-trellis) for use in the Wyner-Ziv video
decoder. By using this hyper-trellis, the channel-likelihoods
can be optimally calculated using a modified version of the
BCJR [6] algorithm. The decoder complexity does not increase
if the hyper-trellis is used for decoding. It will be shown in
Section IV that the hyper-trellis approach can increase the
peak-signal-to-noise ration by more than5 dB when compared
to the approach in [1], [5].

II. W YNER-ZIV VIDEO CODING USING TURBO CODES

In this section, we briefly explain the operation of the
Wyner-Ziv video codec presented in [1], [5]. We also discuss
in some detail the BCJR maximuma posteriori(MAP) decod-
ing [6] algorithm used in the Wyner-Ziv decoder. Although
this is a well-established scheme, repeating some of the
equations here makes it easier to identify the sub-optimality
of the technique in [1], [5]. These equations also facilitate
the development of the BCJR algorithm on the hyper-trellis
(Section III-B).

Fig. 1. Wyner-Ziv Codec

The Wyner-Ziv codec of Aaron and Girod operates as
follows. Let F1, F2, . . . , FN be the frames of the video se-
quence. The odd frames (F2i+1) of the video sequence are
intra-coded using the typical approach of applying a discrete
cosine transform (DCT) followed by uniform quantization with
different step sizes for each DCT coefficient. These intra-
coded frames are referred to asI-frames inMPEG andH.26x
video coding schemes. TheI-frames can be decoded with high
accuracy. At the decoder, the odd frames are used to generate
side-information (SI) (S2i) for the even frames (F2i). Thus,
the I-frames are also referred to as key frames. The SIS2i is
usually generated by interpolating the key frames. Following
the approach of [1], [5], we do not consider coding of the odd
frames, and assume that perfect estimates of the key frames
are available to the decoder.

The Wyner-Ziv codec is shown in Figure 1. The Wyner-Ziv
codec is only used to encode and decode the even frames.
Each pixelu of F2i is quantized using a uniform quantizer
with 2M levels to produce a quantized symbol1 q. The
quantized symbolq is then converted to a binary codeword
[q0, . . . , qM−1]. A sufficient number of symbols are collected
and are encoded using a turbo code. The turbo encoding
is done as follows. The quantized symbols are converted to
binary codewords and encoded using a recursive systematic
convolutional (RSC) code to produce a systematic bit stream
and a parity bit stream. The quantized symbols are interleaved
on the symbol level and then encoded using another identical
RSC code to produce a second parity bit stream.

The decoder has SI (S2i) about the current frameF2i . In
the video coding literature, the difference between the pixels
of F2i and S2i is usually modeled as a Laplacian random
variable. I.e.,

{S2i}m,n = {F2i}m,n + η, (1)

where(m,n) indexes the pixel location, andη is a Laplacian
random variable with density functionp(η) = α

2 e−α|n|. Thus,
S2i can be considered to be the output of a channel with

1Note that the quantized symbol (q) is not a vector. We use the vector
notation to indicate that the quantized symbol has a binary representation given
by q = [q0, . . . , qM−1]. This notation allows us to use the quantized symbol
(q) and the binary representation of the quantized symbol ([q0, . . . , qM−1])
interchangably, thereby simplifying exposition.

Laplacian noise to which the original frameF2i is the input.
This fictitious channel that arises because of the correlation
between the frames of the video is sometimes referred to
as thecorrelation channel. Since a noisy version ofF2i is
available at the decoder in the form ofS2i, the systematic
part of the turbo code need not be transmitted. As shown in
Figure 1, the systematic part is discarded. The parity streams
generated by the two RSCs can be punctured to obtain any
desired rate. Compression is achieved when fewer parity bits
are transmitted than the size of the input bit stream to the turbo
encoder. The turbo decoder in the receiver has to estimate the
original frameF2i from the SIS2i and the parity bits. The
parity bits are assumed to be transmitted through an error-
free channel. This is a common assumption in source coding,
wherein the compressed bits are assumed to be error-free at
the source decoder. In [1], [5], a feedback channel is assumed
between the decoder and the transmitter. The transmitter starts
by sending a small set of parity bits. If the decoder encounters
a bit error rate greater than a pre-detemined threshold after
decoding, it requests additional parity bits from the transmitter.
Parity bits are requested until a target bit error rate is acheived.

The Wyner-Ziv video decoder consists of a turbo decoder
followed by a reconstruction function. The Wyner-Ziv decoder
estimates the pixels of the original frame (F2i) in a two-step
process. First, the turbo decoder operates on the transmitted
parity bits along with the side-information to produce an
estimate of the quantized symbols,q̂. This estimateq̂, and
the SIS2i are used to reconstruct an estimate of the original
pixel u in frame F2i as û = E(u|q̂, S2i). Details about
implementing the reconstruction function can be found in [1].

A. BCJR MAP decoding on the regular trellis

We now modify the BCJR MAP algorithm that is used in the
the turbo decoder to the context of Wyner-Ziv video coding.
This is a simple extension of the BCJR MAP decoder for
additive white Gaussian noise channels presented in [7]. The
following notation is used. The input to the rate-1/2 RSC code
is represented asx = [x1, . . . , xK]. The output of the RSC
code is denoted byc = [c1, , . . . , cK], where each ci = [xi, pi]
where pi is the parity bit produced by the RSC encoder at
time i. The received vector at the decoder is represented by
y = [y1, . . . , yK], where each yi = [yx

i , yp
i]. We have usedyx

i

to represent the received value for the systematic bitxi and
yp

i to represent the received value for the parity bitpi. The
state of the encoder at timei is denoted bysi.

The BCJR MAP decoder computes the log-likelihood ratio
(LLR) for information bit xk as

L(xk) = log
P (xk = 0|y)
P (xk = 1|y)

. (2)

The decoder decideŝxk = 0 if L(xk) > 0, and x̂k = 1 if
L(xk) < 0. Following the development in [7], the LLR can

be expressed as

L(xk) = log

(∑
X0

αk−1(s′)γk(s′, s)βk(s)∑
X1

αk−1(s′)γk(s′, s)βk(s)

)
, (3)

whereX0 is the set of all transitions from state(sk−1 = s′) →
(sk = s) with an input label of0, X1 is similarly defined, and
the branch metricsαk(s), βk(s) and γk(s′, s) are defined as
follows:

αk(s) , P (sk = s,yk
1) =

∑
sk−1=s′

αk−1(s′)γk(s′, s), (4)

βk(s) , P (yK
k+1|sk = s) =

∑
sk=s

βk(s)γk(s′, s), (5)

γk(s′, s) , P (sk=s, yk|sk−1 = s′). (6)

The branch metricγk(s′, s) can be further reduced to [7],

γk(s′, s) = P (xk)P (yx
k |xk)P (yp

k|pk). (7)

Note thatP (xk) denotes thea priori probability of xk. This
quantity takes the value of the extrinsic information at the
other constituent decoder (see [7]).P (yp

k|pk) is the likelihood
for the parity bits. In the Wyner-Ziv video coding setup, the
parity bits at the output of the encoder are either punctured, or
transmitted to the decoder without errors. Thus, the likelihoods
of the parity bits can be evaluated as

P (yp
k|pk) =

1, yp

k = pk, pk not punctured

0, yp
k 6= pk, pk not punctured

0.5, pk punctured

(8)

The probability P (yx
k |xk) in (7) is sometimes called

the channel-likelihood, as it represents information about
the information bitxk received directly from the channel.
The channel-likelihoods are calculated as follows. Recall
that the input labels (xi) on the trellis for the turbo de-
coder in the Wyner-Ziv codec correspond to the compo-
nents of the quantized symbolsq. A pixel u is quantized
to qi = [q0

i , q1
i , . . . , qM−1

i], i = [1, 2, . . . , 2M]. Then, as-
suming N quantized symbol are grouped together before
encoding, the input to the encoder can be written asx =
[q0

1 , . . . , qM−1
1 , . . . , q0

N , . . . , qM−1
N], whereqm

l is the mth bit-
plane in the quantized symbol representing pixell. In other
words, the input to the encoderxk = qm

l for some bit-plane
m and pixell. Thus, in order to compute the branch metric in
(7), the channel-likelihoods,P (yx

k |qm
l), need to be computed.

Since the systematic bitxk is not transmitted, there is no
information foryx

k . However, side-information for each pixel
is available at the decoder. The authors of [1], [5] use the
following approach to estimate2 P (yx

k |qm
l) from the SI. Let

vl be the side-information corresponding to pixelul that has
been quantized into symbolql. Also assume that a pixelu

2This information was obtained through a private communication with A.
Aaron, one of the co-authors of [1], [5].

is quantized toqi if bi−1 ≤ u ≤ bl. Then, the probability
P (qi|v) is given by

P (qi|vl) = P (bi−1 ≤ ul ≤ bi|vl) (9)

= P (bi−1 − vl ≤ η ≤ bi − vl) (10)

= Fη(bi − vl)− Fη(bi−1 − vl), (11)

where (10) follows from (1), andFη(·) is the cumulative
distribution function ofη. The probabilityP (qm

l = j|vl), j ∈
{0, 1} can then be obtained by marginalization as

P (qm
l = j|vl) =

∑
qi:qm

i =j

P (qi|vl), j ∈ {0, 1} (12)

The probabilityP (vl|qm
l = j) is then obtained using Baye’s

rule and used to approximate the channel-likelihoodP (yx
k |qm

l)
in the computation of the branch metric in (7).

There are two approximations in this approach to computing
the channel-likelihoods. First, the probabilitiesP (qm

l = j|vl)
and P (qn

l = j|vl), m 6= n are assumed to be independent
in the marginalization in (12). But this is not true. The
components of the quantized symbolsq are in fact correlated
i.e., P (q1

l = 0|vl) 6= P (q1
l = 0|vl, q

0
l = 0). That is, given

that the MSBq0
l = 0, P (ql|vl) needs to be marginalized only

over the symbols for which the MSB is0 in order to get
P (q1

l = 0|vl, q
0
l = 0). Second, since there is no channel output

for the systematic bits, the decoder approximates the channel
likelihoodsP (yx

k |xk) with P (vl|qm
l). In the next section, we

present a hyper-trellis for the turbo decoder which avoids the
marginalization in (12), and the channel-likelihoods can be
computed without approximation.

III. T URBO DECODING ON AHYPER-TRELLIS

In order to avoid the drawbacks of the approach mentioned
in the previous section, marginalizing the probabilitiesP (q|vl)
should be avoided. One obvious solution is to use a turbo
encoder/decoder over anM -ary alphabet. Convertingq to
binary codewords is no longer necessary if anM -ary alphabet
is used. In this case, the input to the correlation channel
would be the quantized versionqi of pixel vl, and the output
would be the corresponding pixelvl in the SI frame. Thus,
the channel likelihood for the correlation channel withM -ary
inputs will be of the formP (vl|xk = qi), i ∈ {1, 2, . . . , 2M}.
Thus, the channel likelihoods can be calculated using (11)
and Baye’s rule. However, the turbo encoder now requires the
ability to perform operations over a higher-dimensional field
which increases the complexity. Also, the decoder complexity
increases exponentially because the number of states in the
trellis is Mm for anM -ary alphabet, wherem is the memory
of the RSC code (a binary turbo code only requires2m states).
Though the decoder in the Wyner-Ziv application is allowed
to be as complicated as required, the exponential increase in
trellis complexity can be prohibitive. This is especially true
when a turbo code with a reasonable large memory is used in
conjunction with a quantizer having many levels.

Fig. 2. (a) Trellis for the (1, 5/7) recursive systematic convolutional
code.(b) The corresponding hyper-trellis for use with2 bit quantization (two
regular trellis sections are combined to form one hyper-trellis section). Labels
on the branches of the forma/b imply that input ofa produces an output of
b.

Fig. 3. A hyper-trellis section for use with3 bit quantization (three regular
trellis sections are combined to form one hyper-trellis section).

A. Construction of the Hyper-Trellis

We avoid this increase in complexity by introducing ahyper-
trellis structure for the turbo decoder, and implementing a
modified BCJR algorithm on the hyper-trellis. The encoder
does not change. The hyper-trellis is formed by mergingM
branches of the regular trellis into one hyper-trellis section.
Figure 2-(a) shows the regular trellis structure for the(1, 5/7)
RSC code and the corresponding hyper-trellis for use in a
Wyner-Ziv video codec with 2-bit quantization. Thus, two
sections of the trellis section are merged to form one hyper-
trellis section. The hyper-trellis is constructed as follows.
Starting at timei = 0, we trace through all the paths through
M consecutive sections of the trellis. If a path starts at state
s′ at time i = Mk for some integerk and ends at states at
time i + M − 1, then all the input labelsxi, . . . , xi+M−1 on
the branches in that path are collected to form an input label
Xi = (xi, . . . , xi+M−1) for the branch connecting states′ and
s in the hyper-trellis. Similarly, the output label on the length-
M path in the regular trellis are grouped together to form the
output label for the corresponding hyper-trellis branch. For
example, let the states in the regular trellis (Fig. 2-(a)) be
labelled{00, 10, 01, 11}. Consider the following sequence of
state transitions through two consecutive sections of the trellis:

00 → 10 → 01. The corresponding branch labels are1/11 and
1/10. Thus, in the hyper-trellis (Fig. 2-(b)), there is branch
connecting state00 and state01 with the label11/1110. This
is the branch labeledi in Figure 2-(b). A hyper-trellis section
for 3-bit quantization is shown in Figure 3. Note that the hyper-
trellis has parallel transitions. Since there are8 possible inputs,
eight branches emerge from each state, but since there are only
four possible states, two branches will lead to the same next
state. Thus, there are 2 parallel branches connecting a pair
of states at adjacent time intervals. The parallel transitions
between a pair of states is show in Figure 3 by using a
solid and a dashed line. By allowing parallel transitions, the
complexity of the decoder is not increased3 when compared
to the approach used in [1], [5] and described in Section II.

Recall that the input labelsxi+k, i ∈ {0,M, 2M, . . .}
on the regular trellis corresponds to thekth component of
quantized symbol (qi) at time i, i.e, xi+k = qk

i . Therefore
the input label on the hyper-trellisXi = [xi, . . . , xi+M−1] =
[q0

i , . . . , qM−1
i] = qi Thus, the input labels on the branches

of the hyper-trellis are the quantized symbolsq. This can be
see in Figure 2-(b), where the input labels correspond to the
four possible quantized symbols{00, 01, 10, 11}.

B. BCJR MAP decoding on the Hyper-Trellis

The input to the turbo encoder isx = [x1, . . . , xK]. To
derive the BCJR MAP algorithm for the hyper-trellis ,we group
the input bits into M-tuples and express the input asX =
[X1, . . . ,XN], whereXi = (xM(i−1), . . . , xMi−1), andxi ∈
{0, 1}. Thus, the output of the turbo encoder can be expressed
as C = [C1, . . . ,CN], whereCi = [cM(i−1), . . . , cMi−1] =
[xM(i−1), pM(i−1), . . . , xMi−1, pMi−1]. Similarly, the input
to the turbo decodery = [y1, . . . , yK] is also grouped
into M-tuples and the results vector is denoted byY =
[Y1, . . . ,YN]. Note that Yi = [yM(i−1), . . . , yMi−1] =
[yx

M(i−1), y
p
M(i−1), . . . , y

x
Mi−1, y

p
Mi−1]. Since there a total2M

different input labels, it is hard to define a log-likelihood
ratio as in the case of binary inputs. Thus, the following
developement of the BCJR algorithm for the hyper-trellis
operates in the log-likelihood domain instead of the LLR
domain. The log-likelihood for an inputXkis defined as

L′(Xk = qi) = log [P (Xk = qi|y)] , i = 1, 2, . . . , 2M .
(13)

The decoder decideŝXk = qi if L′(Xk = qi) > L′(Xk =
qj),∀i 6= j. Following the development in [7], the log-
likelihoods can be expressed as

L′(Xk = qi) = log

∑
Xqi

αk−1(s′)γk(s′, s)βk(s)

 , (14)

whereXqi is the set of all transitions in the hyper-trellis with
an input label ofqi, andα, β, andγ are defined in a manner

3Though there are more transitions per section in the hyper-trellis, the total
number of hyper-trellis sections is reduced, thereby preserving the complexity.

similar to (4), (5), and (6). As in (7), the branch metric for
the hyper-trellis can be expressed as

γk(s′, s) = P (Xk = qi)P (Yx
k|Xk = qi)P (Yp

k|Pk), (15)

where Pk = [pM(k−1), . . . , pMk−1] are the parity bits cor-
responding to the information symbolqi at time k, and
Y?

k = [y?
M(k−1), . . . , y

?
Mk−1], ? = {x, p}. The likelihoods

for the parity symbols,P (Yp
k|Pk)), can be evaluated as

P (Yp
k|Pk) =

M−1∏
i=0

P (yp
M(k−1)+i|pM(k−1)+i), (16)

whereP (yp
i |pi) is given in (8).

The side-information at the decoder plays the role of the
received systematic symbolsYx

k. Thus, the channel-likelihood
can be computed asP (Yx

k|Xk = qi) = P (vk|Xk = qi),
where vk is the side-information corresponding to pixeluk

(that has been quantized toqi). Thus,P (Xk = qi|vk) can be
computed using (11) fori = 1, . . . , 2M and then the channel-
likelihoods can be obtained using Baye’s rule. Note that in the
hyper-trellis approach, the channel-likelihoods are computed
as if anM -ary alphabet was used at the encoder. However,
the likelihoods for the parity bits are computed differently.

Once the likelihoods in (14) are evaluated, it is standard pro-
cedure to extract extrinsic information to be sent to the other
decoder. The extrinsic information for information symbolqi

is given by

L′
e(Xk = qi) = L′(Xk = qi)− log (P (Yx

k|Xk = qi)) .
(17)

Note that P (Xk = qi) in (15) represents thea priori
information available to the decoder aboutXk. In the first,
iteration of the turbo decoding,P (Xk = qi) = 2−M , ∀i ∈
{1, . . . , 2M}, and in the ensuing iterations, the extrinsic infor-
mation (L′

e(Xk = qi)) generated by the other decoder is used
as thea priori information.

IV. SIMULATION RESULTS

Simulation results are presented for a Wyner-Ziv codec that
uses the 3GPP turbo code. The 3GPP turbo code consists of
two identical RSC codes with feed-forward and feedback poly-
nomials given by1 + D + D3 and1 + D2 + D3 respectively.

The foreman sequence in QCIF format (144 × 176 pixels)
is used to evaluate the performance of the Wyner-Ziv codec.
This is one of the standard video sequences used to evaluate
the performance of video coding systems. Only the luminance
values of the video sequence are used in our simulations.
Quantization with four (M = 2) and sixteen (M = 4) levels
is implemented. The input blocklength of the turbo code is
fixed at 4800 bits. Thus for a2-bit quantizer,2400 pixels
are quantized, and the corresponding binary codewords are
encoded using the turbo code. For a4-bit quantizer,1200
pixels are collected and quantized before encoding. In [1],
[5], a feedback channel is assumed between the decoder and
the transmitter. The transmitter starts by sending a small
set of parity bits. If the decoder encounters a bit error

rate greater than10−3 after decoding, it requests additional
parity bits. Parity bits are requested until the bit error rate
is than10−3. Because of the multiple (re-)transmissions, the
number of parity bits transmitted for each frame adapts to the
varying “channel” quality between the side-information and
the original frame. Thus, the best possible rate (maximum
compression) is achieved for each frame. This assumption
of a feedback channel is not realistic, and also allowing an
unlimited number of retransmissions requires a lot of buffering
at the transmitter (which is undesirable). The best possible rate
is the usual performance metric in source-coding problems.
However, we look at the problem from a channel-coding
perspective and do not worry about the best possible rate.
Instead we report the rate-distortion performance for different
puncturing rates. This simplifies exposition, and demonstrates
the advantage of our hyper-trellis approach. It will be shown
that the hyper-trellis approach performs better than the scheme
in [1], [5] for all transmission rates.

We first evaluate the performance of the codec when
“good” side-information is available. We generate SI for the
even frames (F2i) by using motion compensated interpolation
(MCI) [8] between two consequtive odd frames (F2i−1 and
F2i+1). The interpolation is done under the assumption of
symmetric motion vectors(SMV) between frames (see [1], [5]
for details). This technique of generating SI will be referred
to as SMV-MCI. We use a search range of16 pixels and a
block size of16× 16 pixels in the block matching algorithm
(BMA) [8] used in SMV-MCI. The performance of different
schemes using the SI generated by SMV-MCI is shown in
Figure 4. If no parity bits are sent (zero-rate), the decoder
uses the SI frames as its estimates of the even frames. This
gives a peak signal-to-noise ratio (PSNR) of28.4 dB. This
is the line labeled SI (zero bpp) in Figure 4. Note that the
performance of the scheme in [1], [5] is less than28.4 dB for
rates less than3 bits-per-pixel (bpp). This implies that sending
additional parity bits degrades performance when compared
to sending no parity bits. This shows the suboptimality of the
scheme used in [1], [5], because having additional information
should never degrade the performance. These poor results are
a consequence of approximating the channel-likelihoods (see
Section II-A) in the approach in [1], [5]. The performance of
the Wyner-Ziv codec using the hyper-trellis converges to zero-
rate performance (MCI performance) as the transmission rate
decreases. When the rate is equal to2 bpp with M = 2 or 4
bpp with M = 4 (no compression at these rates), the perfor-
mance of both the hyper-trellis scheme and original scheme
coincide. This is the best possible performance achievable with
the respective quantizer. WithM = 4, there is a potential for
an approximately5 dB gain in PSNR using the hyper-trellis
approach. For example, when the rate is2 bpp (compression
ratio is two), there is a4 dB gain in PSNR. Similarly for
M = 2, there is a potential to increase the PSNR by1.5dB
using the hyper-trellis approach. If a threshold PSNR of 30
dB is considered acceptable, then forM = 4 the hyper-trellis
approach reduces the required transmission rate by over 1 bpp
in comparison to the approach in [1], [5]. Note that the gain in

0 1 2 3 4 5
22

24

26

28

30

32

34

36

38

bits per pixel (bpp)

P
S

N
R

 (
dB

)

SI (zero bpp)
M=2
M=4
M=2, Hyper−Trellis
M=4, Hyper−Trellis

Side−Information generated using
SMV−MCI

Fig. 4. Rate versus average PSNR performance for the first400 frames of the
foreman sequence. Side-information is generated using motion-compensated
interpolation under the assumption of symmetric motion vectors between two
consecutive odd frames of the sequence.

0 1 2 3 4 5
20

25

30

35

SI (zero bpp)
M=2
M=4
M=2, Hyper−Trellis
M=4, Hyper−Trellis

P
S

N
R

 (
dB

)

bits per pixel (bpp)

F
2i−1

 used as side−information for F
2i

Fig. 5. Rate versus average PSNR performance for the first400 frames of
the foreman sequence. Odd frameF2i−1 is used as side-information forF2i.

PSNR increases with the number of quantization levels. This
is because the marginalization error in (12) increases withM .
Note that whenM = 1, the hyper-trellis is identical to a
regular trellis, and the performance of the two schemes will
converge. There is no marginalzation error in this case.

The performance of different schemes when the quality of
side-information is poor is given in Figure 5. The odd frame
(F2i−1) is assumed to act as SI for the even frame (F2i). The
SI is worse when compared to the previous case because MCI
is not used. It is seen that the zero-rate PSNR is over3 dB
worse in this case. The various schemes behave in a manner
similar to the case of using SMV-MCI to generate the side-
information. At low rates (more compression), it is seen that
the hyper-trellis approach provides an increase in PSNR of
approximately4 − 5 dB whenM = 4 and 1 − 1.5 dB when
M = 2.

V. CONCLUSIONS

Wyner-Ziv coding of video is a new approach to encode a
video sequence in which the source statistics are exploited in
the decoder. It is shown that current implementations of the
Wyner-Ziv decoder use a sub-optimal approximation in the
BCJR algorithm used to estimate thea posterioriprobabilities
of the transmitted bits. It is also shown that using turbo codes
operating onM -ary alphabets can resolve this sub-optimality.
However, the exponential increase in decoding complexity
with M -ary codes can prove prohibitive.

In this paper, a hyper-trellis structure is introduced for
the Wyner-Ziv video decoder. The hyper-trellis is formed by
merging consecutive sections of a regular trellis into one
consolidated trellis section. The hyper-trellis structure can be
considered to be a hybrid of a trellis forM -ary codes and a
trellis for binary codes. The channel likelihoods in a hyper-
trellis are computed in a manner analogous to the channel
likelihoods for anM -ary code. However, the likelihoods for
the parity bits are computed in a manner consistent with
binary codes. By allowing parallel transitions between states,
the hyper-trellis avoids the exponential increase in complexity
required byM -ary codes. In fact, the complexity of the Wyner-
Ziv decoder remains the same irrespective of whether the
hyper-trellis or regular trellis is used for turbo decoding. It is
shown through simulation that the hyper-trellis approach has
the potential improve the PSNR by over5 dB for the same rate,
or decrease the rate required by over one bit-per-pixel for a
fixed PSNR threshold. The performance improvement offered
by the hyper-trellis approach increases with the number of
levels (2M) used for quantization.

REFERENCES

[1] A. Aaron, S. Rane, R. Zhang, and B. Girod, “Wyner-Ziv coding for video:
Applications to compression and error resilience,” inIEEE Data
IEEE Data Compression Conference, DCC-2003, (Snowbird, UT), Mar.
2003.

[2] R. Puri and K. Ramchandran, “PRISM: a new robust video coding
architecture based on distributed compression principles,” inAllerton
Conference on Communication, Control, and Computing, (Monticello,
IL), Oct. 2002.

[3] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,”IEEE Trans. Inform. Theory, vol. 19, pp. 471–480, July 1973.

[4] A. Wyner and J. Ziv, “The rate-distortion function for source coding with
side information at the decoder,”IEEE Trans. Inform. Theory, vol. 22,
pp. 1–10, July 1976.

[5] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed
video coding,”Proceedings of the IEEE,Special Issue on Video Coding
and Delivery, vol. 93, pp. 71–83, Jan. 2005.

[6] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rates,”IEEE Trans. Inform. Theory,
vol. IT-20, pp. 284–287, Mar. 1974.

[7] W. E. Ryan, “Concatenated Codes and Iterative Decoding”in Wiley
Encyclopedia of Telecommunications(J. G. Proakis ed.). New York:
Wiley and Sons, 2003.

[8] Y. Wang, J. Ostermann, and Y.-Q. Zhang,Video processing and commu-
nications. Prentice Hall,1st ed., 2002.

